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Abstract

In this study, the weighted distance method, which combines the cumulative sum method and the inverse distance, is devised for
monitoring spatial patterns of point events around fixed points. It is found the weighted-distance approach can better reveal the
cluster scale and is less subject to observations far away from the monitor site than the distance-based method developed by Rogerson
and Sun (1999). It is also found that combining the weighted-distance approach and the distance-based approach achieves better
results for monitoring spatial patterns or changes in spatial patterns.

I. INTRODUCTION

With advances in computing technologies including
geographical information systems, and the increased
availability of large set of geo-referenced data, interests in
exploratory spatial data analysis (ESDA) have been growing.
Particularly, many methods have been developed for
identifying spatial patterns, or detecting spatial clusters
(Openshaw et al., 1986; Openshaw, 1994; Stone, 1988;
Turnbull et al., 1990; Baseg and Newell, 1991; Getis and Ord,
1992; Fotheringham and Rogerson, 1994; Anselin, 1995;
Kulldorf and Nagarwalla, 1995; Ord and Getis, 1995; Tango,
1995, 2000; Fotheringham and Zhan, 1996; Rogerson, 1999).

Four major dimensions can be observed from the existing
literature, global vs. local, absolute clusters vs. relative
clusters, point data vs. area data, and retrospective vs.
prospective. Global tests are used to answer questions such as
“whether or not there exists a cluster of points within the study
area.” Local statistics can be used for detection around focal
points and for detection of clusters (Baseg and Newell, 1991).
They are useful in answering the question “where the clusters
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are.

Methods for detecting absolute clusters assume that the study
area is a homogeneous plain without any variation from place
to place. The spatial patterns are tested against complete spatial
random (CSR). Methods for detecting relative clusters
acknowledge the spatial variations of population at risk. For
example, in crime analysis, methods for detecting absolute
clusters will note where the crime is clustering without
considering the population distribution, while methods for
detecting relative clusters will take the population distribution
into account. It is naturally expected that crime is less likely
to take place at locations where few people live. Methods for
detecting absolute clusters include nearest neighbor statistics
(Clark and Evans, 1954), K-functions (Ripley, 1981), and
quadrat counts analysis. Examples of methods for detecting
relative clusters include Tango’s C (1995) and Rogerson’s

spatial Chi-square (1999).

Techniques for testing spatial clustering for both area and point
data are available. Point pattern analysis is associated with
area pattern analysis in the sense that point data can always be
grouped into some area scheme. For example, crime data may
be grouped by census tracts or they may be grouped by
imposing a set of grids. Methods for testing patterns of point
data have the advantage of using the exact location of the
events, while methods for testing area data may provide
convenience for further analyses if other attributes are available
for the areal scheme.

Raubertas (1982) pointed out another dimension in testing
spatial clustering: retrospective vs. prospective. Retrospective
tests constitute a single attempt to decide on the presence or
absence of clustering, based upon a set of past observations.
In prospective approaches, observations are processed
sequentially (Rogerson and Sun, 2001; 1999), and the effort
of detecting spatial clustering becomes an on-going continuous
process as new cases become available.

However, so far the major efforts have been focusing on
developing methods from the retrospective side, though recent
efforts are being devoted to the prospective side (Collica and
Taam, 1996; Hansen et al., 1997; Rogerson, 1999; Rogerson
and Sun, 2001, 1999). It is argued that such methods for
continuously monitoring spatial patterns should be valuable
in practice. For example, in crime analysis, residents and law-
enforce agents might be interested in methods which can help
identifying new, emerging hot spots, so that resources can be
allocated more efficiently. Potential hot spots might be
prevented from developing further into serious problems in
certain areas.

The basic idea for these prospective approaches is to combine
the cumulative sum method, which will be briefly reviewed as
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follows, with some statistics measuring spatial patterns such
as nearest neighbor statistic (Clark and Evans, 1954), spatial
joint count, and Tangs’s C (Tango, 1995) among others. The
primary purpose of this paper is to devise a weighted-distance
approach for monitoring spatial patterns of point events around
fixed points, follow the ideas from the prospective side. To
begin with, the cumulative sum method will be briefly
introduced. After that, the distance-based method developed
by Rogerson and Sun (1999) will be presented and evaluated.
Then the weighted-distance approach, a revised version of the
distance-based approach, is devised and tested. Finally, both
the distance-based and the weighted-distance methods are
adopted to explore the 1996 data of residential burglaries in
the City of Buffalo, New York. Finally, the findings of this
paper will be summarized

II. THE CUMULATIVE SUM (CUSUM) METHOD

Cumulative sum (cusum) methods are widely used in industrial
process control for monitoring variables over time (Wetherill
and Brown, 1991; Hawkins and Olwell, 1997). These methods,
summarized as bellow, can be adapted for use in monitoring
spatial patterns of point data such as geocoded crime data,
disease distribution, or new development of properties.

Suppose that successive independent values of a random
variable (Z) come from a normal distribution with mean 0 and
variance 1. One wishes to monitor Z and signal an alarm if the
mean of Z becomes greater than zero. The one-sided cusum
statistic at time 7 (for detecting upward trend), S,* is defined
as

ST =Max0,S", +Z —k) (1)
S =0

The value of & is a constant reference value chosen prior to
the analysis, and is usually chosen to be equal to one half the
magnitude (in standard deviation units) of the change one
wishes to detect. Often £ is chosen to be equal to 1/2.

As long as S does not get too large, one can accept the idea
that the medn of the Zs is zero; the process is said to be
“in control.” However, when the cusum is larger than a
predetermined value, 4, this indicates that large values of Z
have accumulated and that the process is “out of control.”

Similarly, to detect downward trend (decreasing means), cusum
is defined as

S, =Min(0,S_,+Z, +k) ()
S, =0
with a signal when S; is less than -/.

A measure of success of the monitoring system is the average

run length (ARL) until an out of control signal is given. The
value of /1 is chosen prior to monitoring so that the in control
ARL will be equal to some desired level. In control ARLs
define the times when a false alarm is sounded. Ideally one
would like long ARLs when the process is in control, and short
ARLs when the process goes out of control. The analyst must
decide on a tradeoff: one can have quick rates of detection at
the “price” of high false alarm rates, or one can have lower
false alarm rates, along with the “penalty” of slower detection
times when true change occurs. For example, when monitoring
standard normal random variables, h=4.0 and £/=0.5 will yield
an in control ARL of about 336, and when the mean changes
from 0 to 1, the ARL will be about 17. With 4=5.0 and £=0.5,
the false alarm rate is lower (in control ARL is approximately
930), but the time to detection of a change when the mean
shift from 0 to 1 is also higher (the out of control ARL in this
instance is about 21). The other approach to determine the
critical value of h is through simulations under the null
hypothesis of no significant change of the variable under
monitoring.

If the assumption of normal distribution is violated, the original
data can be grouped with each group containing a couple of
points (say, 5 points in each group). Then means of the groups
can be assumed to come from a normal distribution.

ITI. THE DISTANCE-BASED METHOD

Rogerson and Sun (1999) devised a distance-based method
for successively monitoring locations of points around a fixed
focus. First, it calculates out the expected distance (d,.,) and
variance (Var(d)) from a point to the focus under random
patterns. Using these two parameters, the z value can be
calculated for any successively observed point after the
observed distance (d,) from the point to the focus is obtained.
That is

_ dl - dexp

o ~Var(d) ®)

where d is the observed distance between a point at time t and
the focus; d,, and Var (d) are the expected distance and
variance between the point and the focus respectively under
random patterns.

Then the variable z becomes the variable in the cusum equation
(Equation 2).

As pointed out by Rogerson and Sun, the distance is not
normally distributed and the observations can be grouped into
batches of a certain number (b). It is found that the batch size
of 3 approximately gives the normal distribution of the
distance. Accordingly, the cusum formula for detecting
downward trend of the distance becomes

s7 =Min(0,s_, +z,+k/~b) 4)
s, =0

t
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and the critical value for s, also changes from — / to

—h/\/Z~

In the case where upward trend of the monitoring variable is
needed, the corresponding cusum formula becomes

st =Min(0,s", +z, —k//b) (5)

5 =i

Rogerson and Sun also discussed how to monitor changes in
point distribution around a focus, where it is necessary to
decide the base period (training period) for which the mean
ratio between the observed distance (d,) and expected distance
(d,,) is obtained. Then d,,, and Var (d) in equation 3 are
adjusted by the mean ratio calculated above for the base period.

Rogerson and Sun conducted series of tests on this method in
the unit circle and found that the average run length (ARL)
under the null hypothesis is about 755 and the median run
length is about 514, with & and / set to be '2 and — 4.1
correspondingly. Under clustering, the average run length
changes with different relative risk in the cluster. The higher
the relative risk is, the quicker the cluster can be detected. It is
also found that the method detects the clustering signal much
quicker than the retrospective method of nearest-neighbor
statistic.

The distance-based approach adopted the cusum formula for
detecting downward trend in equation 4. If one puts aside the
adjusting term “4” in equation 4 for the time being, what the
distance-based method does is to cumulate the difference of
the standardized distance between a point and the monitoring
site. From the mathematical perspective, if z, (adjusted by k)

is negative, then s, will decline; if z, (adjusted by k) is positive,

then s starts increasing. Therefore, if more negative z;s are

observed, the downward signals will be detected at certain
point down the road. In the context of the distance-based
method, when a cluster develops close to the monitoring site,
more points than expected have shorter distance from the
monitoring site; and hence, the clustering signal might be
detected. On the other hand, when more points than expected
are located farther away from the monitoring site, more zs
will be positive, causing s-, to rise. Therefore, it would be hardér
to detect the clustering signal around the monitoring site.
Furthermore, the closer a point is to the monitoring site, the
bigger will be the absolute value for the negative z,, leading to
a quicker detection of the clustering signal. The reverse case
is also true: the further a point is from the monitoring site, the
bigger the value for the positive z, making it more difficult to
detect the clustering signal at the monitoring site. When the
distant cluster(s) is (are) strong enough, the distance-based
method will fail to detect the clustering signal around the
monitoring, even though there might exist a cluster developing
around the monitoring site.

If one assumes the study area is a circle with radius R and the
circle center is the monitoring site, then the expected distance
between a random point in the circle and the circle center is
2R /3 and the variance of the distance is R*/18. Put it another
way, the circle with the radius of R is divided into two areas,
the inner circle and the outer ring (Figure 1), and the radius

for the inner circle is (2R/3 — R/2~/18 ). Therefore, the

clustering signal around the circle center can be detected if
more points than expected under random patterns fall within
the inner ring no matter whether or not the cluster is centered
at the unit circle center. However, when one or more clusters
are under development, particularly when the cluster(s) in the
outer ring is (are) stronger than the one within the inner circle,
it might become harder to detect the clustering signal at the
circle center. Therefore, the distance-based method might be
interfered by those remote clusters.

To summarize, the distance-based method provides a means
to monitor spatial patterns around a fixed site, and is most
effective when there is one cluster under development. If the
distance-based method detects a clustering signal around a
site, there is no doubt that a cluster is occurring around the
site up to the area of the critical ring, the radius of which is the
expected distance minus one half of the standard deviation of
the distance between a random point and the monitoring site.
However, if there is no signal occurring, one needs to be careful
in making further judgments, since a potential cluster might
be still under development around the monitoring site, while
the cluster is “covered” by a stronger cluster(s) developing in
the outer ring.

Such analysis suggests a couple of approaches that can help
develop more effective methods for monitoring spatial patterns.
To use the distance-based method, the study areas maybe
divided into a few smaller sub-regions, so that each sub-region
may contain only one potential cluster, if any. Such an approach
is particularly usefully when one is certain where the clusters
might take place. For example, in studying impacts of pollution
from nuclear plants on disease distribution, one may define a
study area that contains only one nuclear plant so that there is
only one possible cluster to occur. A second possible approach
is to modify the distance-based method. Since the clustering

Outer ring

Figure 1. Defining the inner circle, and the outer ring
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signal for a site might be affected by a distant cluster, one may
want to lower the impacts of those observations far away from
the monitoring site so that those closer to the focus get higher
weights. The results following the latter approach will be
reported in the next section.

IV. THE WEIGHTED-DISTANCE APPROACH

In the above distance-based method, the variable under
monitoring is the distance between the observed point and the
monitoring site. The essence of the method is to cumulate the
difference between the observed distance (ObsDis) and the
expected distance (ExpDis) from a point to the monitoring
site. The weighted-distance method gives higher weight to the
points close to the monitoring site, and then cumulate the
difference between the observed weighted distance (ObsWD)
and the expected weighted distance (Exp/¥”D) under the null
hypothesis of no clustering in the study area. Specifically, the
monitoring variable is

WD, =W, (D, +1) (©)
where WD, is the weigted-distance for an observation at time
t; W,is the weight assigned to the observation at time #; and

D, is the distance from the monitoring site for a observed point
at time 7.

Essentially, the weighted-distance is inversely proportional to
the distance between a point and the monitoring site. In the
numerator the form “D,+ 17 is adopted instead of using “D,”,
to avoid the problem with 0 values of D,. Hence, the closer a
point is to the monitoring site, the higher the value of WD, will
be. To detect clustering, I will use the cusum formula for
detecting upward trend (equation 1) instead of the one for
downward trend as in the distance-based method (equation
2).

W, can be further obtained from the following formula,
VI/;:WC_(VV(‘_W;))*Dr/Dlnax (7)

where J¥. is the weight assigned to the monitoring site; 77, is
the weight assigned to the most distant location from the
monitoring site in the study area; and D, is the maximum
distance from the monitoring site for a location in the study
area.

Apparently, the weight for a point is in reverse proportion to
its distance from the monitoring site. The closer a point to the
monitoring site, the higher the weight value will be. If W, in
equation 7 is substituted for /7, into equation 6, the formula
for WD, in equation 6 becomes,

WD, =W,-W,-W,)*D,/R)/(D, +1)  (8)

This is a declining curve (Figure 1), given 7, 7,, and R.
As mentioned before, what the weighted-distance approach
does is 7, accumulate the difference between the observed

weighted distance (ObsIWD,) and the expected value for WD,
(ExpWD) (under the null hypothesis of random patterns).
ObsWD, can be calculated according to equation 8, given I,
Wp, and R, and ExpJVD can be obtained through the following
formula,

ExpWD =

o —

{w.-wW,-w,)*D,/R }*2D,/R*d, =

w.+w, . 20, =W,) In(R+1) o _ 2In(R+1)

R R*? R*? ‘ R®
_. ; W, ©)
For example, if one chooses /7, ¥, and R to be 10, 1 and 100
correspondingly and the expected value for WD (ExpWD,,, )
is approximately 0.11. Pulling together equations 8 and 9, once
the observed value for weight-distance (ObsWD)) is less than
the expected one (Expl¥D), the z value in the cusum will
become negative, which probably will lead the cusum value
to decline.

w.=w,)

That is, the cusum will likely go up if the following holds

ObsWD,, < ExpWD (10)

or

W. =W, -W,)*D,/RY(D, +1)<(W,+W,)/R
(11

Equation 11 is equivalent to the next equation,

D <D* (12)

where

w,
D*=R/2-1/2+ (13)

¢

In other words, when a point is less than D* from the circle
center, it will help develop a cluster signal at the monitoring
site. Similarly, the circle with radius of R is divided into two
areas (Figure 1): the inner circle and the outer ring, though the
radius is reduced from approximately 2R/3 to R/2. Therefore,
once a point is located within the inner circle, ObsWD, will be
less than ExpIVD, likely leading to a clustering signal at the
circle center. Whenever a point is in the outer ring, ObsWD,
will be greater than Exp/¥D, making the clustering signal at
the circle center harder to occur.

In comparison to the distance-based method, the radius of the
inner circle in Figure 1 is pushed down from 2R/3 to R/2, if R
is really large, and the ratio between Wp and Wc is very small;
hence, the cluster size is better defined by the weighted-
distance method than the distance-based method.

In addition, WD declines rapidly at the beginning as a point
moving away from the monitoring site. Even points away from
the monitoring site in a short distance will get very small value
of WD. Therefore, those distant points have little effects on
the cusum value and the weighted-distance is less influenced
by the remote clusters than the distance-based method. Such
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expectations are reconfirmed by results from simulations,
which are not reported here to save space.

With those conclusions in mind, the next section examines
one more issue about the weighted-distance method: what
would happen if the weights (/7. and 17, ) are changed?

From the above discussion, it is clear that the critical point for
the weighted-distance method is how to define the inner circle
and outer ring (Figures 1 and 2), and the issue is related to the
value of D* in equation 13. The effects of /¥, and ¥, can be
explored by examining the relationship between D* and IV,
and J¥,. From equation 13, it is clear that D* will decline as
J¥, increases, while it will increase with increasing 1¥,. An
implication of this is the size of inner circle may be manipulated
by changing W, or I¥,. Unfortunately, such a capacity of
weighted-distance approach is limited, and D* can only be
pushed down to (R/2 —1/2).

In conclusion, the weighted-distance approach allows us to
make more accurate statements regarding the scope of the
clustering area than the distance-based method. Furthermore,
the weighted-distance approach is also less subject to distant
clusters than the distance-based method, though it is still not
very effective in dealing with multiple clusters.

As discussed by Rogerson and Sun (1999), the distance-based
method can be used to monitor “changes” in spatial pattern
around a fixed point as well by defining the base-period.
Similarly, the weighted-distance approach can compare the
observed weighted-distance to the expected weighted-distance,
given the baseline pattern, instead of simply using the expected
weighted-distance under null hypothesis of random patterns.

V. MONITORING SPATIAL PATTERNS OF
RESIDENTIAL BURGLARIES IN THE CITY OF
BUFFALO

As discussed above, the weighted-distance approach can
achieve better delineation of the clusters, and both the methods
can detect deviation from the random pattern and changes in
spatial patterns. This section applies both the methods to the
residential burglary data in City of Buffalo, NY. Due to the
amount of computation, only selected 10 monitoring sites
within City of Buffalo (Figure 3) were selected to illustrate
how these methods can be applied in practice.

Figure 4 presents the results for monitoring the spatial patterns,
using the distance-based method. Keep in mind that the critical
value for the cusum is —2.38, with the observations grouped
into 3 a batch. It is clear that residential burglaries became
more clustered around the sites of 0, 1, 5, 7, and 8, and the
patterns around site 2 and 4 experienced ups and downs, while
the clustering around site 3, 6 and 9 was not sustained.

The weighted-distance approach gives different results (Figure

WD, = (W, —(W,~W,)* D,/ R)/(D, +1)

— WD

ExpWD

7

U
D*=R/2-1/2+—L
21,

ExpWD = (W, +V,)/ R

|
|
|
|

D

Figure 2. Relationship between weighted-Distance (/VD;) and
the distance between a point and the monitoring site (D,)

5), though similarities do exist among the two sets of results,
particularly for the patterns around site 3, 6, 7, and 9. Such
differences may indicate that the clustering took place in a
broader area around these monitoring sites (up to 2/3 R in the
unit circle), while no clustering was occurring in a more finely
defined area around them (up to %2 R in the unit circle). The
distance-based method shows that residential burglaries were
clustering between observations 1400 and 2700 around site 4,
while the weighted-distance method shows that the clustering
lasted for the whole year. Such differences indicate that
clustering might be happening in the more finely defined area
around site 4, although such patterns were not so consistent
for the broader area. Both methods show that clustering around
8 lasted for the whole year of 1996, while only occasional
clustering signals occurred around site 3, 6, and 9. The results

N

N

o

[ Jawl

e

Figure 3. The monitor sites in the city of Buffalo
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Figure 4. Monitoring spatial patterns of residential burglaries (distance-based method)
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clearly demonstrate the advantage of combined usage of both
the distance-based and the weighted-distance method: the
distance-based method gives a broader picture, while the
weighted-distance method depicts the picture more finely.

In the above tests, the two methods were used to monitor the
deviation of the observations from random patterns. Here
changes in spatial patterns will be monitored, where the first
five months of 1996 were chosen as the base period (Figures
6 and 7). In other words, one can determine if the residential
burglaries are becoming more clustered in the period from
June 1996. The distance-based method does report occasional
signals for some of the sites, though the signals do not sustain
long enough for most sites (Figure 6). For instance, three
individual signals were reported for sites 0, and all of the three
signals did not last more than two continuous observations.
Such results imply that no significant changes in residential
burglaries occurred around the sites in the second half year of
1996. The only site that witnessed significant changes is site
7, for which the signal lasts from observation 2778 to 2880.
However, the weighted-distance approach exhibits some
different pictures (Figure 7). As in the distance-based method,
the weighted-distance approach does not report signals lasting
long or no signals at all for site 0, 1, 5, and 9. However, the
weighted-distance approach does report lasting signals for the
other site (2, 3, 4, 6, 7 and 8), the most of the signals are due
to a few extreme observations. For example, for site 4, the
cusum jumps up from 0 to 37.21 at the observation 3107, which
causes the signal. The intensity of the signal is so high (37.21)
that it lasts for 1920 observations (384 batches) until
observation 4072, though the cusum value shows a declining
trend during that period. Similar observations can be noted
for site 6, 7, and 9. In comparison with the distance-based
method, the weighted-distance approach seems to be more
subjective to the observations extremely close to the monitoring
focus. For example, if one chooses the values for R, Wc, and
Wp to be 100, 10, and 1 correspondingly, the Z value for a
point at the circle center would be 52. In other words, the
cusum value would jump by about 52 point for the single
observation. The clustering signal may last for a long time,
though the points following the observation may not be
clustering around the focus. Clearly this might be a weakness
of the weighted-distance method.

VI. SUMMARY

A new method, the weighted-distance approach, is developed
and evaluated for monitoring spatial patterns around fixed
points. The effectiveness of this newly developed method is
also compared with the distance-based method (Rogerson and
Sun, 1999). It is found that both the distance-based method
and the weighted-distance approach are effective when only
one cluster is under development, while the signal will be
affected by potential remote clusters. The weighted-distance
approach better reveals the clustering area and is less
influenced by remote clusters than the distance-based method,

though it is strongly affected by close observations. Both these
two methods can also be used for monitoring changes in spatial
patterns, in addition to monitoring deviations of point
distributions from pure random patterns, given the base-period.
However, it seems that combining these two methods will
achieve the best result. The illustration of monitoring the spatial
patterns of residential burglaries in City of Buffalo did reveal
some clustering signals and signals of changes in spatial
patterns.

However, the weighted-distance method is still affected by
the remote clusters, as in the case of distance-based method.

. Neither of these two methods addresses the issue of population

at risk. It would be interesting to develop methods that can
better reveal the cluster size, avoid the interference from the
observations far away from the monitoring site, and take into
account population at risk. It would also be valuable to explore
questions such as why certain changes occur at specific time
and locations.
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Figure 6. Monitoring changes in spatial patterns of residential burglaries (distance-based method)
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