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Abstract

The Poyang Lake is the largest fresh water lake in China. As an internationally important wetlands, conservation of wild birds needs
updated information on land use and land cover in the Poyang Lake region. This paper introduced a non-parametric knowledge-based
classification method (decision tree classifier) for land cover classification in the Poyang Lake region. We merged optical sensor
(Landsat 5 TM) image with Japanese Earth Resource Satellite-1(JERS-1) synthetic aperture radar (SAR) images. The overall
accuracy of the classification result was about 82%, of which forest was classified with higher accuracy (over 87%) and less errors of
omission and commission. Main classification errors came from the similar spectrum of different land cover classes in winter. The
seasonal dynamics should be considered for selecting optical satellite images for classification when using this pixel-based classification
algorithm. The results of this study suggests that the non-parametric decision tree classifier together with fusion of optical and SAR
images is an efficient method for mapping complex landscapes with agriculture, wetlands and forests.
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1. INTRODUCTION

Land use changes are cumulatively transforming land cover
at an accelerating pace on global scale(Turner, et al., 1994).
Land use/cover changes in terrestrial ecosystems are closely
linked with the issue of sustainability of socio-economic
development since they affect essential parts of our natural
capital such as climate, soils, vegetation, water resources and
biodiversity (Mather, et al., 1991). It was widely recognized
that land use change is a major driver of global change, through
its interaction with climate, ecosystem processes, biogeochemical
cycles, biodiversity and human activities(Lambin, et al., 1999).
Therefore, land cover mapping is important and necessary for
quantifying past land use changes, modeling the processes
of biogeochemical cycles, and predicting the effects of land
use changes on the dynamics of land cover in the near future.

The Poyang Lake is now the largest fresh water lake in China
and covers over 4000 square kilometers. It plays an important
role in regional water resource management and biodiversity.
However, due to the reclamation of natural wetlands and urban
development since last mid-century, main lake area reduced
over 2000 square kilometers. Many rivers were filled up and
their flow directions were even altered. The reduction of water
holding capacity in the Poyang Lake caused great loss to
local people during the historically largest flood event in 1998.
Quantifying the areas of individual land cover types during
this period is necessary in order to study the driving factors
of flooding and make policies of land-use conversion after
this big flood disaster.

Optical remote sensing techniques have proven efficient for
land cover and classification in the past 20 years. The

vegelation indices were derived from Advanced Very High
Resolution Radiometer (AVHRR) images, including Normalized
Difference Vegetation Index (NDVI), Seasonally-Integrated
Normalized Difference Vegetation Index (SINDVI), Soil
Adjusted Vegetation Index (SAVI) and Vegetation Health Index
(VHI); and these vegetation indices were widely used to map
seasonal or interannual dynamics of vegetation(Hope, et al.,
2003; Pelkey, et al., 2003; Boken, et al., 2004; Ferreira, et al.,
2004). Other applications of vegetation indices include: NDVI
for monitoring mangrove in east coast of India using IRS-1C
LISS3 images(Satyanarayana, et al., 2001), Modified NDVI
(MNDVTI) and Modified SAVI (MSAVI) in Brazilian Amazon
using SPOT-4 Vegetation data(Carreiras, et al., 2003) and NDX
model for unmixing coast marsh using TM images(Rogers, et
al., 2004). TM images were also used to map mammalian habitat
and biological diversity in Maasai Mara ecosystem based on
the integration of remote sensing and GIS(Oindo, et al., 2003).
Mason and others(Mason, et al., 2003) used airborne LiDAR
data to measure skylark habitat variables for organism-habitat
models.

However, clouds and rains hampered the acquisition of multi-
temporal optical remote sensing data from such optical sensors
like Landsat and SPOT-4, and thus few multi-temporal images
are available for land cover classification. Microwave remote
sensing technique has all-day and all-weather capacity in
monitoring and mapping the earth, and is sensitive to soil
moisture content and vegetation structure, an advantage over
optical sensors. Integration of optical images with microwave
remote sensing data has been adopted in mapping specific
land cover types or changes. Multi-temporal AVHRR and
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RADARSAT imagery were used to monitor flood extent in the
Northeast China(Zhou, et al., 2000). The synergy of airborne
hyperspectral and radar imagery was used to map tropical
mangrove ecosystems in coastal area of Australia(Held, et al.,
2003). The overall accuracies in discriminating different
vegetation types were slightly improved by integrating time
series of ERS-1 data and SPOT XS image, compared with the
results generated only using ERS-1 images or optical images
(SPOT XS and Landsat TM imagery)(Chust, et al., 2004).

The classification and regression tree (CART) algorithm
produces rule-based models for prediction of discrete/
continuous variables based on training data. Unlike neural
network, the tree developed by this algorithm is interpretable
and easy to use. This algorithm has been used to predict and
map continuous variables such as tree canopy coverage and
imperious surface(Huang, et al. 2001, Yang, et al. 2003a, Homer,
et al. 2004) using Landsat-7 Enhanced Thematic Mapper plus
(ETM+) imagery over large areas. In this study, the decision
tree classifier, one approach of CART, was introduced to map
categorical(discrete) variables- land cover types through
integrating multi-temporal JERS-1 images with a Landsat 5 TM
image to generate the land cover map in the Poyang Lake
region.

II. STUDY AREA

The Poyang Lake in Jiangxi Province covers an area of more
than 4000 square kilometers (Figure 1), and it plays an important
role in regional flooding control and water resource
management. Five rivers(Gangjiang, Xiushui, Raohe, Xinjiang
and Fuhe) flow into different parts of the Poyang Lake. As itis
connected to downstream Yangtze River, the flooding pattern
of the Poyang Lake was influenced not only by local
precipitation and water source from the five rivers, but also by
the backflows from Yangtze River. Thus, the flooding pattern
in the lake varies from area to area and from year to year.

The study area is located in middle part of the Poyang Lake
region, within 28°43'~29°8' N and 115°50'~116°37' E (Figure 1).
The land cover types in this region include water body,
herbaceous vegetation in wetlands around open water, bog,
sandy area, residential area, trees and shrub in uplands, and
agriculture. Natural wetlands are colonized by floating
vegetation, submergent vegetation, emergent Carex
community, and emergent semi-aquatic higher plant
(Miscanthus floridulus & Phragmites communis) community,
from open water to lake peripheries with the variation of
elevation and environment conditions. Agricultural systems
are dominated by single rice cultivation system and rice-rice
rotation system; rapeseed-rice rotation system also exists
depending on local soil and weather condition.

Subtropical monsoon climate causes distinct dry and rainy
seasons in the Poyang Lake region. The rainy season starfs in
early April when southeast monsoon starts to influence this

Yangtze River

Figure 1. The study area in the Poyang Lake region, Jiangxi
Province, China. Landsat TM image acquired on December 10,
1999 was displayed here, a false color composite of band 4 (red),
band 3(green) and band 2(blue)

region. Precipitation in the rainy season gradually decreases
as summer monsoon retreats after July, and then the dry season
follows with less precipitation. Annual precipitation is
approximately 1482mm, but precipitation varies significantly
between months, years, and even different parts of the Poyang
Lake region. Maximum monthly precipitation occurs in June,
accounting for over 17% of annual precipitation, whereas
minimum monthly precipitation in December is only 42mm.
Influenced by both summer and winter monsoons, distinct
four seasons (spring, summer, fall and winter) also exist in this
region with very hot weather in summer and cold weathers in
winter. Annual mean temperature is about 25°C, with highest
monthly average temperature in July (29.4°C) and lowest in
January (4.8°C)(Zhu, 1997).

The data of water level dynamic in 1998 were collected at the
Tangyin hydrological station (Figure 2). In 1998 one of the
historical biggest floods took place along the Yangtze River
watershed including the Poyang Lake region. The highest
water level observed at the Tangyin hydrological station was
22.57 m on July 30, in 1998. The flooding lasted almost four
months from June to September when water level depth was
keeping above 20 m, and caused significant loss and damages
to local people and society.

III. SATELLITE DATA

Landsat 5 Thematic Mapper (TM) image on Dec 10", 1999,
and multi-temporal high resolution Japanese Earth Resources
Satellite-1 (JERS-1) Synthetic Aperture Radar (SAR) intensity
images from the end of 1997 to summer in 1998 were obtained
for this study (Table 1). JERS-1 SAR sensor operated at 1.3G L
band in HH polarization, and one high resolution image covered
about 75 km width with the resolution of 18-m. JERS-I raw
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Figure 2. Seasonal dynamics of water level observed at Tangyin hydrological station

Table 1. Satellite images used in this study for land cover
classification

Satellite data Date

Landsat 5 TM December10®, 1999

JERS-1 December 6", 1997
JERS-1 January 29", 1998
JERS-1 April 27", 1998
JERS-1 June 10%, 1998
JERS-1 July 24"™, 1998

data were input to GAMMA Modular SAR Processor (MSP)
to generate multi look intensity SAR imagery data with the
pixel size of 15mx15m (http://www.gamma-rs.ch/). All these
intensity images were geo-corrected and co-registered with
the projection of UTM WGS84 in GAMMA SAR Geocoding
and Image Registration Software (GEO), using the Shuttle
Radar Topography Mission (SRTM) 90 m DEM data
downloaded from USGS EROS data center (http://edc.usgs.
gov/). Gamma Map filtering was applied to reduce the speckles
within the 5x5 window in PCI 10.0 software package. The
Landsat 5 TM image was co-registered to JERS-1 data and
resampled to the same pixel size.

IV. METHODOLOGY

The decision tree classification algorithm for land cover
classification through integrating multi-source remote sensing
data is a supervised classification method. The training data
are first selected as input for learning and training to construct
a decision tree model, which should preliminarily be evaluated.

After applying the model spatially, the training data may need
to be modified based on the intermediate classification map.
The decision tree model would be re-constructed if necessary

(Figure 3).
Add training

Data layer selection
based on usage _| Decision tree classifier data to represent
frequency and developed by See5 mis-classified
cross-validation pixels

A

| Applying model spatially |

Are mis-classified pixels spectrally [ No
represented by training data?
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y

Recoding/editing if necessary
with documented masks

v

Final classification map |

Figure 3. The schematic diagram of land cover classification
procedure in this study

A. Decision tree classifier

Decision tree classifier is a machine learning algorithm, which
conducts a binary recursive partitioning and generates a set
of if-then rules based on training data to predict a target variable
(Yang, etal., 2003b). As a non-parametric classifier, the decision
tree algorithm can handle a mixture of nominal, ordinal and
quantitative data types, without necessity to consider the
statistic distribution of training data(Gahegan, et al., 1998).
The decision tree classifier used in this study was developed
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using the software See3/C5 (http://www.rulequest.com/see5-
win. hitml#CLASSIFIERS), and it recursively uses a gain ratio
criterion in generating a decision tree from a set of training
data. The complex tree constructed in See5/C5 could be
simplified and become more comprehensible by discarding
one or more subtrees and replacing them with leaves using an
error-based pruning method at a given confidence level
(Quinlan, 1993). The software See5/C5 could also pre-select a
subset from an abundance of attributes for constructing a
decision tree or rule-sets in order to reduce data redundancy.
Another advanced feature of the See5/C5 is its ability to
estimate the predictive accuracy by N-fold cross-validation.
In this option, the training data are divided into n blocks of
almost equal size and uniform class distribution. For each block
( hold-out block) in turn, a classifier is built from the remaining
blocks and tested using the hold-out block. The average error
rate over the n classifiers is the final accuracy of the decision
tree (http://www.rulequest.com/see5-win.html#XVAL).

B. Training and test data collection

The strongest limiting factor in the decision tree classifier lies
in how carefully the target classes are chosen and how well
the attributes of the target classes are characterized (Gahegan,
et al., 1998). The Level-1 land cover classes for studying the
interactions between the atmosphere, the biosphere and soils
at global scale include water, wetlands, bare soil, agriculture,
grassland, shrubland, savanna, deciduous forest, coniferous
forest, evergreen broadleaf forest, and urban areas(Dobson,
et al., 1996). The topography around the Poyang Lake is very
complex, and includes mountains, hills to floodplain. Natural
wetlands are a dynamic system, and its coverage fluctuates
with open water area as water level changes over time. Most
croplands surrounding the lake are reclamation fields from
natural wetlands, and grow rice, rapeseed, peanuts and other
crops. Hills or uplands are covered with grass, shrubs and
forests. Considering local land cover attributes around the
Poyang lake region, we define a land cover classification
scheme with 7 classes: water, wetlands, bare land, cropland,
forest, urban/residential area and shrubs. Training data
representing above seven land cover classes were visually
picked up from Landsat5 TM image as shown in Table 2. Input
attributes of the training data for developing a decision tree
classifier includes seven Landsat 5 TM bands and five scenes
of JERS-1 images as listed in Table 1.

C. Model validation and input data layer selection

The decision tree algorithm is a knowledge-based data mining
method, and it is sensitive to the distribution of training data.
Thus the training data representing certain classes would be
modified through checking the classification map after n-fold
cross validation to generate a preliminary error matrix based
on training data or applying it spatially to the whole area. That
is to say, if one land cover class was overestimated or
underestimated, some of the training data representing it
should be deleted from or added to this class; if two classes

Table 2. Sample sizes (number of pixels) of training data sets
for different land covers in this study

Land cover Training data
Bare soil 63
Cropland 648

Forest 318

Shrub & grassland 408
Urban and Residential 357
Water 150
Wetlands 396

were mixed or misclassified with each other, the training data
quality representing them should be checked again or
sometimes more data be added.

Although twelve data layers were input for constructing the
decision tree classifier, the 4 layers including TM band 1 and
band 7, JERS-1 images on December 6" 1997, and April 27*
1998 were found to be negligible and winnowed in final
decision tree development, after evaluating their contribution
to decision tree development. The importance of input data
layers through calculating their usage frequency for one class
was also listed in Table 3. Most land cover classes were
differentiated by TM band 4 and band 2. Although upper data
layers are generally less important, they are very significant
for specific classes. For instance, TM band 3 was the most
important attribute for separating forest, but it made ignorable
contribution to the classification of cropland and water. The
same situation happened to JERS-1 on January 29" and June
10", 1998 for water, and TM band 3 for bare land.

V. ACCURACY ASSESSMENT

After modifying training data several times, the final decision
tree model was constructed and applied spatially to generate
a preliminary classification map. Although cross-validation
can give an evaluation about the effect of classification model
based on training data, a more objective accuracy assessment
process was given through randomly creating test points. The
error matrix of accuracy assessment for the preliminary
classification map is given in Table 4, and the overall accuracy
is about 80% and Kappa statistics is 0.8. The greatest error of
commission occurs on “urban/residential area”, with user’s
accuracy of about 60% and Kappa statistics of 0.6. About
10% of the bare land and water area were misclassified to
urban/residential area. The residential areas were mostly
villages or small towns, where no high-density and tall buildings
existed. Both mudflat and sand either emerged above water
surface or was covered with very shallow water in winter.
However, training data representing water class were still
picked from these areas because they would be flooded before
wetland vegetation sprouts. As shown in Table 3, the dominant
attributes for separating these seven land cover classes were




40 Huiyong Sang et al.: Land-cover Classification in the Poyang Lake Region, China, Using Landsat TM and JERS-1 Synthetic Aperture Radar Data

Table 3. Utilization and contribution of individual data layers to decision tree construction

Bare soil Cropland Forest Shrubby grassland| Residential area Water Wetland  Average
Using (Importany Using |Importan{ Using (Importan{ Using |Importan-| Using [Importan-| Using [Importan-| Using [lmportan- lmp?‘;:;mce
frequency| ce(%) |frequency| ce(%) |frequency| ce(%) |frequency| ce(%) [frequency| ce(%) [frequency| ce(%) |frequency| ce(%)
Jers1980129 0 0 26 1 58 4 40 2 119 16 151 24 3 0 3
Jers1980610 0 0 81 2 2 0 7 0 3 0 149 23 170 9 3
TM band 5 0 0 81 2 7 0 219 10 17 2 6 1 223 12 T
TM band 6 3 1 616 13 62 4 66 3 8 1 6 1 31 2 7
TM band 3 59 23 106 2 606 37 331 15 17 Z 0 0 160 9 11
Ters1980712 0.0 0 624 13 324 20 358 16 129 17 6 1 235 13 14
TM band 2 71 27 1775 38 317 19 437 20 193 25 161 25 393 22 28
TM band 4 127 49 1323 29 251 15 713 33 271 36 161 25 579 32 29
Table 4. Error matrix for accuracy assessment of land cover classification
bare land  cropland forest shrubs urban/resid. ~ water wetlands total etah (f;:;: -
Bare land 438 2 0 0 0 0 0 50 96
cropland 17 77 2 2 4 11 113 68
forest 0 2 47 4 0 0 1 54 87
shrubs 0 3 6 43 3 0 5 60 72
urban/resid, 8 4 0 0 34 9 0 55 62
water 1 2 0 0 0 95 1 97 98
wetlands 0 1 0 0 0 0 70 71 99
total 74 88 53 49 39 109 88 500
producer’s 65 88 89 88 87 87 80 83
accuracy(%)
Kappa 0.9531 0.6134 0.8550 0.6859 0.5859 0.9736 0.9829 0.7968

TM band 2 and band 4 in winter. The surface reflectance values
of urban/residential area and mudflats are very close and
difficult to be separated. Another overestimated class was
“cropland”, which has user’s accuracy of 68% and Kappa
statistics of 0.61. In winter season, most croplands were fallow
and covered with grass or residual rice stalks, which were
easily mixed with bare land. Also the surface reflectance of
withered wetland vegetation was similar with that of crops
growing in winter. Thus bare land was mapped with the most
significant errors of omission. Another error resource was from
visual interpretation for training data collection and accuracy
assessment, which were carried out using Landsat 5 TM image.
Topographical relief and cropland patches distributed among

hills resulted in mixed pixels in Landsat TM image at 30-m
spatial resolution.

VI. RESULTS

77 field samples including land cover types and geographic
locations were collected in 2005 and 2006, of which 41 samples
from wetlands, 17 from cropland, 9 from urban/residential area
and 1 from shrubs were correctly mapped (Table 5). However,
among the 15 samples from cropland, 4 were collected from
those short (less than 10cm) and low-density grassland mixed
with bare land. 9 samples of bare land were misclassified to

Table 5. Field samples for validating the classification results in this study

Field
Map total
wetlands cropland urban/resid.area shrubs
wetlands 36 36
cropland 5 24 3 32
urban/resid. area 6 6
shrubs 2 1 3
total 41 26 9 1 77
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cropland, because these samples were mainly collected from
soil roads among croplands mixed with grass along roadsides.
The width of these country roads are mostly less than 1 pixel
size (15m) and are easily mixed with cropland. Also 3 samples
from urban/residential areas were misclassified to cropland,
which might be attributed to land cover changes between 1999
and 2006. Two samples from cropland were misclassified to
shrubs, where rapeseeds were grown in the winter of 2005—
2006. As shown in Table 3, the land cover map was determined
by band 2 and band 4 of the TM image. Most croplands near
Poyang Lake were grown single or double harvesting rice and
kept fallow in winter, and the spectrum of croplands were similar

to that of short grassland. Thus the mapped croplands should
include grasslands. However, the spectrum of rapeseeds was
similar to that of shrubs in winter. Natural wetlands were
mostly mapped correctly, but still 4 samples from wetlands
were mixed with croplands.

The preliminary classification map was generated only using
the decision tree developed in See5/C5, without any post-
classification processes that introduce other knowledge or
data layers. After manually editing the obviously misclassified
areas near water area and wetlands through visual
interpretation, the final land cover map is shown in Figure 4.

- bare land
cropland
- forest
- shrubs
urban/residential area
- water
- wetlands

Figure 4. Land cover map of the Poyang Lake region, China, in 1998

The entire study area covered about 5711 square kilometers.
Open water body accounted for 28.6%. Open water area varied
from month to month and year to year, depending on local
precipitation and water flow from the rivers in the region (Figure
1). In this study, floating vegetation under water surface could
not be detected by TM or JERS-1 images. Those areas
colonized by aquatic and semi-aquatic emergent vegetation
(defined as wetlands), covered about 850 km?. The mudflats,
which generally covered by water except in winter, were mostly
classified as open water areas, and a small partion of mudflats
were classified as bare land. Cropland has the largest area in
the Poyang Lake region, and covered over 2000 km?. Most
croplands were reclaimed from previous natural wetlands.
Reclamation of wetlands and overly land use were the two
factors that contribute to the largest flood and substantial
loss in 1998.

Forests in mountainous areas and shrubs mixed with grass in
uplands accounted for 180km? and 400km? respectively. In the
study area, only part of Nanchang city is included, and there
are no other large cities. These small towns and villages covered
about 260 km?. The sandy bare surface close to natural wetlands

and water body has an area of about 350km® Some of
reclaimed croplands were returned to natural wetlands or lakes
after the big flood in 1998. Some towns or villages near natural
wetlands were severely damaged by the flood and were then
abandoned, and local people moved to other places.

VIL. DISCUSSION AND CONCLUSION

A machine auto-learning decision tree classifier was used in
this study to conduct land cover classification. Optical remote
sensing image was fused with JERS-1 SAR images as input to
the decision tree classifier. The optical TM image dominated
the classification result, and the JERS-1 SAR images were only
complementary in this algorithm. The classification error of
cropland was mainly attributed to similar surface reflectance
values among harvested croplands, bare land and wetlands in
winter. The high accuracy in identifying natural wetlands was
partly ascribed to the JERS-1 image acquired on July 12, 1998,
when most wetlands were flooded due to high water level.
Seasonal dynamics of individual land cover types should be
considered when acquiring remote sensing data in land cover
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classification, especially for those land cover types with high
seasonal dynamics, for instance agriculture and wetlands.

Corner reflection in urban/residential areas resulted in high
backscattering signals which would make it easy to distinguish
buildings from other land cover types using radar images.
However, the superiority of SAR image in classifying urban/
residential area over optical imagery was not displayed in this
study, and it was instead weakened by integrating both of
them. The similar spectrum of urban/residential areas with low
density buildings to shallow water is the major reason for the
commission error in urban/residential areas.

The ability of L-band HH-polarized JERS-1 SAR data in land-
use/land-cover mapping has been proven due to its deep
penetration ability and higher sensitivity to vegetation
structures(Dobson, et al., 1996; Angelis, et al., 2002; Freeman,
et al.,, 2002; Rosengqyvist, et al., 2002). However, because the
time series of JERS-1 images processed by GAMMA were not
standard products, these intensity images could not be
calibrated to normalized backscatter coefficients(Salas, et al.,
2002). The thresholds used in the decision tree models from
the intensity images were not comparable before normalization,
which resulted in some difference on the classification results.
Thus, the potential of the time series JERS-1 data in separating
residential area and vegetations with different structures were
not fully explored in this study, even though forest and
wetland vegetation were mapped with higher accuracy.

Higher resolution image or field samples from homogeneous
targets should be used when selecting training data to avoid
those mixed pixels of two or more land cover types, especially
for shrubs and croplands. Generally, this non-parametric
classification algorithm has great potential in land cover
classification and the result can be improved significantly if
the optical remote sensing images in other seasons and the
normalized backscatter coefficients of JERS-1 imagery were
available .
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