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Abstract

Extracting significant points from a digitized curve is a basic principle behind the simplification of a line within the fields of
computer vision, cartography and related areas. A new method to identify significant points is discussed in this paper. This method
yields fewer significant points than the conventional methods, yet the set of significant points derived is sufficient to preserve the

shape of the curves being simplified.

I. INTRODUCTION

Human cognition plays an important role in the generalization
or simplification of an object. Though the cognitive aspects
of generalization are not fully understood, the simplification
of curves has been approached with the assumption that
significant points or points of a high information content must
be retained to preserve the shape of the curves. Attneave
(1954) showed that corner points of an object boundary say
the most about the shape of that object. He further illustrated
that a rough shape of the object could be obtained by
connecting these corner points. This claim has motivated a
number of algorithms for the detection of corner points (Ansari
and Delp, 1991; Teh and Chin, 1989). These algorithms,
however, were found deficient because the search for
significant points is often localized along a portion of a curve
and the algorithms themselves do not control for possible
deformation of the curves (Thapa, 1987). Another type of
algorithms makes use of the theory of approximation. A
continuous curve is often regressed with a set of digitized points
from which significant points are derived. Significant points
thus extracted from the digitized curves do not necessarily
belong to the actual curve which, in turn, may introduce
unjustifiable deformation that is not suitable for post
processing.

The methods of polygonal approximation, or segmentation of
points along a curve, are employed commonly in the extraction
of significant points. Three basic approaches to polygonal
approximation include (a) merge, (b) split, and (c) split and
merge (Pavlidis, 1980). The merge approach considers each
point along a digitized curve and decides whether (1) to merge
the point with the straight line defined by preceding points, or
(2) to start a new line and declare the preceding point as a
significant point. This uni-directional and localized approach
does not take into account the global situation and tends to
extract more significant points than required. The split
approach is based upon recursive partitioning of a curve at
points whose distances from a given chord connecting two

terminal vertices are the farthest and greater than a given
threshold (Ramer, 1972). Because significant points are
extracted from and dependent upon two pre-determined points
at each iteration or split, the number of significant points thus
derived is not optimal. Finally, the split and merge approach
combines the above two approaches (Pavlidis and Horowittz,
1974) and is clearly not able to yield an optimum set of
significant points.

The number of significant points determines the shape of a
generalized curve. This paper attempts to show that there exists
an optimum number of significant points which best describe
a curve and whereby deviation from this optimum will yield
less than desirable results. It will also show that the number
of significant points derived from popular algorithms is not
always optimal.

II. PREMISES FOR AN OPTIMUM NUMBER OF
SIGNIFICANT POINTS

For line simplification, there are several criteria used to define
optimality. They are minimal number of points, minimize
length, vector displacement (Ramer, 1972), areal displacement
(Visvalingam and Whyatt, 1993), angular deviation and other
geometric criteria (McMaster, 1986/87; Cromley and
Campbell, 1991/92). Besides, some research on perceptual
optimality has been done (Attneave, 1954; Peucker, 1975;
Marino, 1979; White, 1985). Up to now, it still leaves the
question of WHICH points to select for the criterion of minimal
number of points. In this paper, the authors use both minimal
number of points and vector displacement as the criterion for
extracting optimal points.

Areview of existing algorithms for extracting significant gives
rise to the following conditions to securing an optimum number
of significant points: (1) the algorithm would begin with a
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specified starting point to detect the next significant point and
would establish an optimum starting point in the process; (2)
asignificant point is determined by analyzing its relations with
an extended range of neighbors; and (3) the deformation of a
curve is controlled within a given tolerance or threshold.

Condition 1 suggests that the starting point for a curve may
not be the pivot point from which subsequent significant points
are derived. It is necessary to offset undesirable effects (e.g.
knots) of the default starting point upon the selection of
subsequent significant points. Condition 2 fixes the uni-
directional and localized approach by extending the definition
of neighbors to include points within a specified distance from
and on both sides of a selected point. It is imperative to
consider not only the trend of subsequent points but also that
of the preceding ones for a more comprehensive view of the
point in question. Condition 3 attempts to minimize the
jaggedness of a curve, such as reducing the occurrences of
sharp and pointed corners along a curve. This would result in
a “smoother” looking and an improved rendition of a
generalized curve.

III. AN ALGORITHM FOR DERIVING AN OPTIMUM
SET OF SIGNIFICANT POINTS

An algorithm for extracting an optimum set of significant points
comprises three requisite procedures: (a) a preliminary search
for significant points, (b) confirmation or validation of
significant points, and (c) substitution of the starting point.
First, a set of significant points is located using the conventional
merge technique. Each significant point in this preliminary
set is then screened for its prominence with respect to its
neighboring points. The screening is done with a moving
starting point which reestablishes itself after a significant point
is found.

Significant points derived from
the Merge algorithm:
Pi, Pit1, Pist1, Pist1, Pa

Optimum significant points:
Pi, PJ‘+|'-1 5 Pn

A preliminary search for significant points

Consider a digitized curve {p;, i=1,2,3,...n}. For any starting
point p; (Figure 1), its subsequent points (p, u=i+1, i+2, ..., n.
) can be seen as a series of transient points from which
significant points are determined. In this particular context, a
significant point is defined as a point that deviates by a margin
greater than a specified tolerance distance from the straight
line subtended by a starting point p and a transient point (p,
u=i+1, i+2, ..., n), which is as described in Eqn. 1 below.

(yu-yi) 2= (Xu—xi) yi# xi yu +Xu yi =0 (1)

The perpendicular deviation of all points (d, k=i+1, i+2, ...,
u-1) to the above line spanned by the starting point and each
of the transient point is given by Eqn. 2:
o4 o Oy X (X Y, - %Y, X,

o [(x, +-x)*+ (y,-y)* 1"
(k=i+1, i+2,... u-1)

(2)

The current transient point is not denoted a significant point
should all of the perpendicular deviations fall within a specified
tolerance distance. In this case, the subsequent point p,,;
becomes the next transient point and the procedure of
measuring perpendicular deviations is repeated. The process
continues until one of perpendicular deviations (dy in Figure
1) is found greater than the specified tolerance. At this stage,
the point preceding the current transient point is designated a
significant point (p;, in Figure 1) following the starting point.
This significant point subsequently becomes the new starting
point and the process of evaluating perpendicular deviations
is repeated until the next significant point is located. The above
describes the merge algorithm .

Figure 1 shows that the significant points derived by the merge

Pn

m=6
j'=j+t
j|l=]'|+tl

p—
tolerance

Figure 1. Significant points by merge algorithm
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algorithm are not necessarily the optimum result. In the first
step, the merge algorithm identifies point p;, as a significant
point since the deviation dy for the transient point p; exceeds
the given tolerance. Figure 1 also illustrates that there exist
two additional points (p;,.; and p;, ) that follow the significant
point p;;, that seem a more ideal significant point than the
point p;,. In fact, three points (point p;.,; together with the
terminal points p; and p,) can describe sufficiently the original
curve.

The example highlights two issues. First, the merge algorithm
fails to locate an optimum set of significant points for a
convoluted curve as it analyzes only transient points on one
side of the starting point and the process halts as soon as a
significant point is identified. As this significant point will
become the new starting point in the subsequent search for
significant points, there is not sufficient consideration given
to analyzing the similarity element or repeating pattern of the
curve. Second, this premature cessation of the merge process
in the first instance has the tendency to yield a simplified curve
with spikes that alter spatial and topological relationships
(Wang and Muller, 1993). Consequently, the number of
significant points for depicting the generalized curve is
apparently not an optimum number because some of the so-
called significant points can be discounted without causing an
observable difference in the trend or pattern of the generalized
curve.

Confirmation or validation of significant points

It is clear from the above discussion that a method is needed
to confirm the significance of a point. It follows that the
behavior of neighboring points on both sides of a point has
direct bearing on its significance. A significant point that has
been confirmed is hereby referred to as an optimum point. An
optimum point is established through the process of direct or
indirect verification, as described below.

Direct verification of an optimum point

A verification range consisting of m points (where m is
arbitrary and m e integer) must be established (Figure 1).
The relative importance of the significant point p;, must be
verified against m transient points along an extended range
following point p; (i.€., points p;.y, Pj.a,-.., Pjsm). This verification
procedure takes into consideration the trend of the curve (albeit
over a short distance) on both sides of the candidate significant
point. A curve exhibiting a similar behavior to sine or cosine
functions will yield many significant points using the
conventional methods. The verification process described here
can exclude unessential significant points needed to preserve
the shape of the curve.

Following the discussion for Figure 1 and upon the successful
location of a significant point p;, , maximum deviations of a
series of straight lines subtended by the starting point p; and
points i1, Pjs2s--s Pjem are computed. The first point among

Pi+1> Pjs2s--» Pjem that results in a shift from a smaller deviation
to one that exceeds the specified tolerance will signify the
existence of a better candidate for a significant point. In this
case, the point preceding it (i.e. point p;,,, within range I in
Figure 1) becomes the preferred significant point.

The above process is then repeated to verify if point pj,,, is an
optimum point. The process finds another point (i.e. point
pj+r1 Within range II in Figure 1) that replaces point Pjset O
become the preferred significant point. The location of a new
significant point, in turn, invokes the need for another
verification of optimum point. Again, the evaluation process
is repeated but no new significant point is found (range III in
Figure 1) this time around. Hence, point p;,,, is confirmed
an optimum point.

The example shows that in the case of a convoluting curve, 2
out of the 3 significant points can be eliminated by a forward
verification of the behavior of points within a specified range.
The verification process is similar to the merge algorithm but
uses the same starting point throughout the entire procedure.
By fixing the starting point, the significance of a point is
evaluated with due consideration to the totality of a complete
section along a curve. This method of direct verification has
a sound theoretical basis but involves intensive computations.
Henceforth, the indirect means of verification is devised.

Indirect verification of an optimum point

When the point p;, is designated a significant point, the chord
dy spanned by the starting point p; and the current transient
point p; (where u=j) has a slope angle defined as follows:
) =
tan k i Ly’ (3)
yu - ‘xi

This slope angle ( k ; in Figure 2) is used as the tilt threshold
against which other slope angles are compared. For each point
within the verification range consisting of m points (where m
is arbitrary and m 1 integer), Equation (3) is used to compute
the slope angles of the chords subtended by the starting point
and a transient point p, where u = j+1, j+2, ..., j+m. If the
slope angles for all points within the verification range are
less than the given tilt threshold (i.e., k;, < k,-j ), then the point
p;.1 is confirmed an optimum point. Otherwise, there may exist
a point p, whose maximum deviation from the straight line
subtended by the starting point p; and the point itself (i.e. d,’)
is greater than the specified tolerance. If d.’< d, and d,’ <
tolerance, then the point p;, is confirmed an optimum point.
Elseif d,’< d, and d,’> tolerance, then k,.” replaces kij as the
new tilt threshold against which slope angles are compared.
This situation also warrants the use of the direct verification
method described earlier on all points p, within the verification
range to confirm an optimum point. If there is a shift from a
deviation greater than the specified tolerance to one that is
smaller, then point p, will replace p;, as the optimum point.
While the direct verification method is simpler in principle
and easier to comprehend, it involves intensive computation.
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Figure 2. Indirect verification of optimum points

The indirect verification method makes use of the slope angle,
which is computationally less intensive, to detect the existence
of a possible candidate for an optimum point. The direct
verification method is then invoked but only upon a positive
detection. Therefore, the indirect verification method is
comparatively a more practical approach to verifying whether
a significant point is indeed an optimum point because the
computation for slope angles is more efficient and the intensive
direct verification method is called upon on as needed basis.

The search for an optimum starting point

It is apparent from the above discussion that an optimum set
of points, consisting of the terminal points of a curve and the
optimum points, does exist to simplify a curve. Itis also evident
that the selection of optimum points for a curve hinges upon
the starting point and for a given tolerance. The procedure to
derive the optimum set that normally begins from one end of a
curve would render well for curves of a relatively short length.
In the cases of longer curves (such as contour lines) and single
polygons (such as archipelagos), it is desirable to begin the
procedure from an optimum point for a premium solution;
hence there is a need to relocate the starting point.

A graphic representation (Figure 3) would illustrate that wide
corner points are significant in preserving the shape of a curve.
A wide corner point is defined here as a point whose ratio (c;
) of its perpendicular distance (d;) to the chord of length L;
connecting its adjacent neighbors (p;; and p,,) is a large value
(see also Ansari and Delp®; Teh and Chin!"). Equation 4
also indicates that a larger c; ratio would signify a more pointed
corner. If ¢; for a point p;is greater than a predetermined
criterion, then p; is a corner point.

¢=d/L; 4)

A series of corner points whose c¢; ratios exceed a specified
criterion would form a new curve. That corner point bearing
the largest ¢; value would become the preferred starting point.
In principle, this starting point would yield the smallest set of
optimum points given a specified tolerance for generalizing
curves of any length.

IV. EMPIRICAL RESULTS

Three sets of empirical data were used to test the performance
of the proposed optimum algorithm in line simplification. The
first data set comprises a mathematical curve of the Sine
function defined with 40 digitized points (Figure 4a). The
second set of data represents a closed curve comprising of 82
digitized points (Figure 5a). A natural curve of 84 digitized
points is the third data set (Figure 6a). The performance of
the optimum algorithm against the split and merge algorithms
for all three data sets is presented in Table 1.

A visual examination of Figures 4-6 reveals that the split
algorithm preserves many more twists and turns at the expense
of smoothness in lines, as evident from jagged edges and
pointed corners of the simplified lines. By contrast, the merge
and optimum algorithms tend to yield generalized curves that
project a smoother appearance. Table 1 concurs that the merge
and optimum algorithms are quite effective because the
maximum deviation values D, for the simplification process
approach the tolerance values in all cases. As a comparison,
the split algorithm has maximum deviation values much smaller
than the specified tolerances, indicating that there is room for
further reduction in the number of significant points. The
optimum algorithm surpasses the merge algorithm as it yields
generalized curves resembling those of the merge algorithms
but in fewer points (3 vs. 8, 14 vs. 20, and 11 vs. 14).

The absolute average deviation ID,,. ] and average deviation
D,,.. values are additional measures for assessing performance.
A larger absolute average deviation would indicate that the
simplified curve maximizes the spread of the original points
within the bounds of the specified tolerance. An average
deviation of zero would indicate that the simplified curve winds
through the set of original points such that an almost equal
number of points exists on both sides of the curve. As a side
note and because the sample size of the test data sets might be
too small to reveal a difference, execution times for the
simplification procedures were not measured.

V. CONCLUSION

The authors argue that the conventional algorithms for the
simplification of a curve do not yield an optimum solution

Pi

Figure 3. Defining wide corner points
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Figure 4. Empirical results of a convoluting curve. (a)
Digitized points for a curve, number of points n = 40; (b)
simplified curve by the split method, n = 8; (c) simplified curve
by the merge method, n = 8; and (d) simplified curve by the
optimum method, n = 3. m = 6 in all cases

because the resultant points are not necessarily true significant
points. A method is thus devised to extract an optimum group
of significant points. In the selection of a significant point,
the optimum algorithm aims at controlling the deformation of
a curve by considering the immediate directional orientation
on both sides of a candidate point. The algorithm also aims at
minimizing the number of significant points that describe the
shape of a long or closed curve through the identification of
an optimum starting point.

The empirical evidence reassures the presence of an optimum
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Figure 5. Simplification of a closed curve. (a) Digitized points
of a closed curve, number of points n = 82; (b) simplified
curve by the split method, n = 20; (c) simplified curve by the
merge method, n =20; and (d) simplified curve by the optimum
method, n = 14.

solution for line simplification. The findings suggest that the
number of significant points derived by the optimum method
is fewer than other methods, given the same criteria. The set
of optimum points is superior in preserving the shape of the
original curve even with fewer number of points. The
consideration of the totality of a section along a curve during
the simplification process means that the optimum algorithm
preempts the occurrence of undesirable effects like spikes,
knots and crisscross lines.
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