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Abstract

This paper defines an uncertainty description —a discrepancy that is a deviation of a measured value from its ‘true’ value — for three-
dimensional (3D) vector data and proposes an uncertainty measure to quantify the uncertainty description. In an existing research
issue, uncertain 3D spatial features was simulated and compared with the ‘true’ location of the spatial features in order to estimate
an average value of a discrepancy of the spatial features. However, this time-consuming method cannot provide a precise and highly
accurate solution. This study further proposes the development of a numerical uncertainty model for 3D spatial features. The
expected value of the discrepancy is expressed as a multiple integral and solved by a numerical integration technique. Some prelimi-
nary test results from experimental data are summarized and compared with those from the earlier simulation model.

I. INTRODUCTION

A geographical information system (GIS) is a software pack-
age for inputting, storing, analyzing, retrieving and transform-
ing geographical data (Cassettari [5]). It is now widely ap-
plied in different areas including military applications, envi-
ronmental studies and geological exploration (Burrough [2],
Laurini and Thompson [9]). Unfortunately, geographical data
stored in GISs contain errors (Heuvelink [8]). Consequently,
the development of a GIS in a market is depending on how to
handle uncertainty in GIS.

Different uncertainty models have been developed for describ-
ing uncertainty of linear features in two-dimensional (2D) GIS:
(a) error-band models (Caspary and Scheuring [4], Dutton [6]),
(b) confidence region models (Shi [11], Shi and Liu [15]) and
(c) reliability models (Stanfel and Stanfel [16, 17], Easa [7]).
However, few research issues discuss uncertainty modeling
for higher dimensional spatial features. Shi [12, 13] derived a
confidence region model for 3D and N-dimensional linear
features based upon statistical theory. Later on, a reliability
model for simple 3D spatial features (including linear fea-
tures, area features and volumetric features) was developed
using a simulation technique (Shi and Cheung [14]). A weak-
ness of the simulation approach is time-consuming. Hence,
this study further proposes a development of a numerical un-
certainty model in order to describe uncertainty of 3D spatial
features quickly.

In this paper, we develop a numerical uncertainty model for a
3D spatial feature in a vector-based GIS. Here, uncertainty of
a 3D spatial feature is measured by a discrepancy, which is a
deviation of the measured location of the spatial feature away
from the ‘true’ location. An analytical quantity for the dis-
crepancy with uncertainty is expressed as a multiple integral
in this study. Theoretically, the exact solution of the multiple
integral should be derived automatically in GIS given the

measured location and the ‘true’ location of the spatial fea-
ture; then GIS users will be aware of the uncertainty of the
spatial feature from the derived analytical quantity. A research
problem in this analytical model is how to solve the multiple
integral for the analytical quantity, which is unable to be solved
analytically. This paper thus presents a numerical integration
method to solve the multiple integral to describe uncertainty
of 3D spatial features in GIS.

II. SOURCES OF UNCERTAINTY IN GIS

There are different uncertainties in GISs (Burrough and
McDonnell [3]) that are classified into intrinsic uncertainty,
contextual uncertainty and processing uncertainty in this study
(see Figure 1). Intrinsic uncertainty denotes that raw data are
of their own uncertainties. It may be caused by natural spatial
variation because vector data are not capable of representing
a continuous change from one class to another; hence a crisp
boundary is usually defined in vector data to separate classes
in the natural spatial variation. Furthermore, measurement
uncertainty arises in a process of data capture by ground sur-
vey, photogrammetric of remote sensing survey, map digitiz-
ing or scanning, or others. The measurement uncertainty is of
three types: mistakes, systematic errors and random errors.
Mistakes may be introduced through failure in an automatic
recording technique, failure of the equipment (such as read-
ing the fraction on a tape of the wrong side of the zero mark),
or mistakes made by data collector (such as misidentifying an
object of intersect or taking the wrong reading of a scale).
Systematic errors are caused by imperfections in instrument
construction or adjustment, or changing conditions in the sur-
rounding environment. Random errors occur after removing
the mistakes and the systematic errors. Another kind of the
intrinsic uncertainty is model uncertainty due to generaliza-
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tion. Model uncertainty exists during the transfer from both
the measurement of reality to that in the digital database and
the paper map to the digital database. It refers to the deviation
between the ‘true’ function representing a shape of a spatial
object and its approximate linear function in the database. Their
existence is due to inherently complex of spatial objects and
model generalization. In addition to model generalization, the
intrinsic uncertainty is affected by cartographic generaliza-
tion that is a process by which the presence of spatial objects
on a map is reduced or modified in terms of their size, shape
or numbers for display purposes. Existing paper maps are origi-
nally generalized cartographically for display purposes and
their data have generalization effects embedded in them, how-
ever there is no information about their quality on the paper
maps. Also, spatial databases from the paper maps introduce
cartographic generalization effect in a GIS in order to improve
the display quality of a map at a scale smaller than the one it
was compiled from. Consequently, the cartographic generali-
zation in GIS can potentially alter the topology of spatial ob-
jects undergoing unintended transformations of the spatial
objects by shifting and distorting the spatial objects. Spatial
data in GIS may contain different kinds of the intrinsic uncer-
tainty.

Contextual uncertainty emphasizes the requirement that un-
certainty of GIS data must be considered within the context of
the task at hand. It includes age of data, map scale and resolu-
tion, and density of observations. Existing data in GIS may be
out-dated and even be unsuitable to associate with other data
collected at different time to complete a certain application.
This leads to a fact that age of data is an important consider-
ation in performing spatial analyses in GIS. The second re-
quirement we should consider to complete the application is
map scale and resolution. Many survey organizations provided
geographical data in a form of paper maps or digital maps at a
range of scales. A larger scale map is more completeness than
a smaller scale one. Also, the representation of a larger scale

map is more accurate than that of a smaller scale map
(Quattrochi and Goodchild [10]). However, the large-scale map
contains much information unrelated to the application and
performing analyses on these maps in GIS increases computer-
processing time to some extents. Thus, which scale map should
be used depends on which is most appropriate to the applica-
tion in hand. Furthermore, a spatial sample is a common way
to investigate a continuous spatial pattern (such as tempera-
ture or soil type) in a study area in a form of a sample spatial
distribution. Observations at a finite number of point samples
that are believed to be representative of a distribution of the
spatial pattern are made. Hence, the density of the point
samples should be chosen to resolve the spatial pattern of in-
terest. For an identical set of GIS data, we may accept the
contextual uncertainty for a certain spatial analysis but reject
for another spatial analysis. Thus, the contextual uncertainty
plays an important role in data quality for the derived result
from spatial analyses.

Processing uncertainty refers to those uncertainties of raw data
propagated through a GIS process and those uncertainties aris-
ing from the process. When raw data is collected and stored in
GIS, there exists the instinct uncertainty: the uncertainty due
to natural spatial variation, the measurement uncertainty and
the model uncertainty. During analyzing the raw data for deci-
sion-making, the intrinsic uncertainty would propagate through
spatial processes (such as spatial queries, buffer analysis, over-
lay operations and others). In other words, the intrinsic uncer-
tainty of raw data will be transferred to the resulted data via
GIS operations. Uncertainties arising from GIS processes also
exist. For example, we derive a mathematical model to de-
scribe a particular GIS process. A deviation between the true
process and the mathematical model we derive for the pro-
cess may occur. This deviation is secondary uncertainties in
GIS. Since a mathematical model for an error propagation
problem for a particular spatial analysis is derived according
to an empirical relationship among different source data, it is

Uncertainty

Intrinsic Uncertainty

Contextual Uncertainty

Processing Uncertainty

e  Natural spatial o  Ageof data
variation e  Map scale and resolution
e Measurement e  Map projection
uncertainty e  Density of observations
e  Model uncertainty e  Data format and data
e  Cartographic exchange
generalization e  Cost

Figure 1. Types of uncertainties in GIS
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difficult to provide a general model for all GIS analyses. In-
stead, each GIS analysis has its own error propagation model
to describe the propagation of the intrinsic uncertainty and
the secondary uncertainty.

Among different kinds of uncertainty, the measurement un-
certainty commonly exists in GIS databases. In this paper, we
study the measurement uncertainty of 3D spatial features. A
discrepancy is defined as a measure of the uncertainty for dif-
ferent kinds of the 3D spatial features and elaborated in the
next session.

III. MEASUREMENT UNCERTAINTY MODEL

Uncertainty of 3D spatial features is measured by a discrep-
ancy, which is the deviation of the measured location of the
spatial features away from the ‘true’ one. However, the ‘true’
location of the spatial features is not known. From a statistical
point of view, a mean of any variable X is close to its actual
value. Thus, the ‘true’ locations of the nodes of a spatial fea-
ture refer to their associated mean locations in this paper.

We will consider the discrepancy for different 3D spatial fea-
tures including a linear feature, an areal feature and a volu-
metric feature.

Discrepancy of a linear feature

For a line segment of two nodes, its discrepancy is defined as
the region bounded by the measured location of the line seg-
ment and its ‘true’ (or expected) location. This region is shaded
in Figure 2.

In Figure 2, the solid line segment is the expected location of
t&i line segmgnt of expected nodes !\'1"uv1"uzl) and

o My ,Uzj while the dashed line segment is the corre-
spoﬁding_meaéured location of measured nodes (x;, y;, z;) and
(x5, y2, 7). Here, there is no intersection between the mea-
sured and the expected locations of the line segment. Figure 3
shows a case where the measured and the expected locations
of the line segment intersect at a point (x5, Y15, Z12)-

Measured line segment

@ 9, 2) l

"'l’u."l’/'til) T

Expected line segment

(X, ¥,» 2,)

RTINS

Figure 2. The discrepancy of a line segment in a case where
the measured location of the line segment does not intersect

with the associated expected location

An area of the discrepancy in a generic case is determined
differently depending on the relationship between the mea-
sured nodes and the expected nodes of the line segment. There
are three possible cases: (a) the measured locations of the nodes
and their associated expected locations are on a flat plane but
the measured and the expected locations of the line segment
do not meet; (b) the measured and the expected locations of
the line segment intersect with each other; and (c) neither case
(a) or case (b) is a possibility. Figure 2 shows an example of
case (a) or (c) while Figure 3 shows that of case (b).

In case (a), an area of the discrepancy (such as the shaded
region of Figure 2 when the measured locations and the ex-
pected locations of the nodes of the line segment are on a flat
plate) can be denoted as area_guad:
area_quad = 0.5 * (the magnitude of (A x B)

+ the magnitude of (C x D)) (D)

where, A = (xl - nuxl » Vi _'u.\'; >4~ fu:l )’
B= (’u-"z _’u-"l”u,"z _'u,"x”u:z —'lel)’

C= (0~ v~ 1,5~ I,

D= (’Yz “H s Yy T M T ] ), and
A x B and C x D are vector products of A and B, as well as C
and D respectively.

In case (b), an area of the discrepancy — the shaded area of
Figure 3 — is denoted as area_triangle and given by

area_triangle = 0.5 * (the magnitude of (A’ x B’)
+ the magnitude of (C’ x D)) 2)

where A’ = (xl —H> Y Hy 5 - ),

B’

(x12 —H Yo~ My 20— 1 )
C = (xlz —He s Y2 =My, 2~ |, ), and
D = (xz —H Y~ ‘U_\,z 1%y T luzl )

It is also possible that both the measured and the expected

Measured line segment

(X ¥ 2))
Boa. _(X12, Y12) .\~1’/1y2’“z1)
(Jll.\*l’:u‘yl’uzl) T ~~“~_
Expected line segment (%55 V5. 2,)

Figure 3. The discrepancy of a line segment in a case where
the measured location of the line segment and the associated
expected location intersect with each other
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locations of the nodes are neither on a flat plane nor intersect
(case ¢). Under these circumstances, an area of the discrep-
ancy is unable to obtain exactly since we cannot define a plane
containing the measured and expected nodes of the line seg-
ment without any further information about that plane. To sim-
plify and quantify such a case, the approximate area of the
shaded region in Figure 2 is described by Equation (1). Given
,I.t,\,l 5 u_‘,l 5 /.t:l 5 ,LL_\.E 5 ,uy2 and ,uzz , area_quad and
area_triangle become a function of xj, y,, z;, X, ¥, and z,.
Then, the expected discrepant area E(discrepancy) of the un-
certain line segment is computed as per Equation (3).

Expected linear feature

A

z

(X1, ¥4, 22) (L2, Hya, Hz2) l (. Hys, Hz3)
¥ /_«‘i"/xz, Y2, Z2) (s s, 2)

£ Measured linear feature

S -

(Hx1, My, Hz)
Figure 4. The discrepancy of a linear feature of three nodes

E(discrepancy) = _[ f(xp Y5215 %25 Y252 )X area_ (]”ad(“\l s Y1585 X35 Y25 2o )dzzdyzdx2dzldyldxl

R

3)

+ J.f(‘xl’ V15215 X925 Y254y )Xarea_triangle(xl > Y15 215 X5 Y25 2y )dzzd)’zdxzdzldyldxi

R’)
where, R, is an integral region so that cases (a) and (c) occur,
R, is an integral region for case (b), and
S,y 2,5 X, 9,5 2,) is @ multivariate probability den-

sity function of Xio P s Xp Vs and z,.
If S Vs 205 X5 Vs 2,) is multivariate normal distributed, its
mathematical expression will become

‘f("‘l’ yl’ Z]? '\‘2’ yzv Zza L) ’\_N9 )’N, ZN) =

1 _1 =1 _
WGXP[T(X —py ) ETX -y )}
“)

where, N is the total number of the expected nodes that is
equal to two in a case of a line segment, »' is the covariance

matrix of.\‘l, Vis. Tip. vess X Zii in the form of

w Iw

RIRT| o i o 4% NN Y% < N
N o'.\'l.\'l a4 NN Inn N
Rt Nz 24 NG G.‘\\'Zl iNg
>
XXy YiXy Gz] Xy XyXy YNXN Iy Xy
RIB Y YiIYN QYN G~‘}\' Y ININ ININ
Rty Yizn 4y NN YNIN iy |
X'=[x,y,2,..4X,Y,2],and
1 1 1 N N N

ST _ .
X' = -"1"uﬂ"1"u?'l"”’u-‘]\"#)l\"‘u%\'J

Joining several line segments acyclically yields a polyline,
which is a broad linear feature. Uncertainty of the polyline is
measured by a discrepancy of the measured location of the

polyline away from the corresponding expected location. Fig-
ure 4 shows an instance for the discrepancy of a linear feature
of three nodes.

Let area(x, y,, 2,,..+ Xy, Yy» 2,) denote a function used to
estimate the discrepant area of a linear feature of N nodes.
Then, the expected discrepant area is presented in Equation
(5) (see bottom).

Discrepancy of an areal feature

Uncertainty of an areal feature (or polygon) can be appraised
by the discrepancy of the measured location of the areal fea-
ture away from the associated expected location. However, it
is distinct from the discrepancy of a linear feature. According
to the definition of the discrepancy of a linear feature, the
discrepancy of the boundary of an areal feature should be the
surface area bounded by the measured and the expected loca-
tions of the boundary. On the other hand, the discrepancy of
the areal feature refers to a volume of the region bounded by
the measured and the expected locations of the areal feature.
Figures 5 and 6 illustrate this difference in conformity with
respect to surface area and volume.

Figure 5 shows a case where the discrepancy of the boundary
of an areal feature based on surface area and Figure 6 a case
where the discrepancy of the areal feature based on volume.
The solid and the dashed lines are the boundary of the ex-
pected areal feature and of the measured areal feature respec-
tively. Both an area of the shaded region of Figure 5 and a
volume of the shaded region of Figure 6 represent the dis-
crepancy related to the areal feature. Since discrepancy is the
difference between reality and users’ representation of reality,
using the volume of the shaded region to describe the discrep-
ancy of the areal feature is satisfactory.

E(discrepancy) =j f(xp VisZpseeosXys Yy 2y )X area (x| s V1o Zpseees Xy Yoy )dZNdyNd‘xN -+dzdydx; (5)
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Expected linear feature

=SS

Measured areal feature

Figure 5. The discrepancy of the boundary of an areal feature
of three nodes defined by surface area

Let volume(x,, y,, Z,5--» X, ¥» Z,) denote a function used to
estimate the discrepant volume of an uncertain areal feature
of N nodes nodes (s Yis Z9)h o5 Yy L) The expected
discrepant volume of the areal feature can be given as Equa-
tion (6) (see bottom).

Discrepancy of a volumetric feature

In a 3D GIS, another important unit is volumetric features.
The difference between the measured location and the expected
location of a volumetric feature is a measure of the uncer-
tainty of the volumetric feature. This discrepancy can be
viewed as a union of surfaces’ discrepancies. For instance, a
volumetric feature contains five nodes and therefore five sur-
faces. For each surface, its corresponding discrepancy is com-
puted. The discrepancy of the volumetric feature is computed
by the union of all of the surfaces’ discrepancies and is shaded
in Figure 7.

Let u_volume(x,, y,, 2,,.., X\» ¥,» Z,) denote a function used
to estimate the discrepant volume of an uncertain volumetric
feature of N nodes (x,, ¥, 2,), ..., (x,, ¥,» 2,). The expected
discrepant volume of the volumetric feature is illustrated in
Equation (7) (see bottom).

IV. NUMERICAL INTEGRATION METHOD

The analytical expression of the discrepancy for spatial fea-
tures has been derived as multiple integrals, however it is dif-
ficult to get an exact solution of the multiple integrals, which
is too complex, using a traditional integration technique.
Gaussian quadrature — a numerical integration technique — is
adopted to approximate the multiple integrals by integrating
the linear function that joins points of the function’s graph

(Burden and Faires [1]). For example, an integral _[g (X )C]X
is approximated by Z w;, 8 (Xi ) where the nodes x,, x,, .,
i

x, and coefficients W, W,,., w_are chosen to minimize the

Expected linear feature

Measured areal feature

Figure 6. The discrepancy of an areal feature of three nodes
defined by volume

expected error between the integral and the approximation.
This technique can be modified in a straightforward manner
for use in the approximation of multiple integrals. Hence, this
Gaussian quadrature is implemented to calculate the multiple
integrals in Equations (3), (5), (6) and (7).

Results and discussions

The analytical model for the uncertainty of 3D spatial fea-
tures is applied to the example data of Shi and Cheung [14].
For a line segment, expected locations of its two nodes are
assigned to be (0, 0, 0) and (1000, 0, 0) and the covariance

matrix  of X, Yp 2% X, y, and z, s
[61.993 0 0 0 0 0 |
0 121.506 0 0 0 0
0 0 91.749° 0 0 0
0 0 0 18.598” 0 0
0 0 0 0 483547 0

0 0 0 0 0 55.794° |

The expected value of the discrepant area of this line segment
is 62145.0.For a linear feature of three expected nodes (0, 0,

Measured volumetric
feature

Expected volumetric feature

Figure 7. The discrepancy of a volumetric feature of five nodes

E(discrepancy) =J.f(x1, VisZpneeos Xnys Vs 2y JXVOLUIE(X,, Y13 2y s Xgs Yigs 2y )2y Xy -+~ dz,dly,dx, (6)

E(discrepancy) =J. f(xl > Y15 Zpsee s Xys Vs Ty )X u_ "Olume(xl s Yo Zpaee s Xys Yo Ly )dZNdyNde ~edzdydx; (7)
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0), (500, 500, 707.1) and (1500, 500, 707.1), it is considered
that the covariance matrix is diagonal and the entities of the
main diagonal are 61.9932%, 121.506%, 91.7492, 18.5982,
48.3542,55.7942,61.993%, 121.506% and 91.7492. The expected
value of the discrepant area of the linear feature is 85553.6.
Using the three expected nodes of the linear feature for the
areal feature results in an expected discrepant volume equal
to 15209871.4. For the example of a volumetric feature, an
additional node (to the existing three) is considered that is (x,,
¥,»2,) = (500, 707.1, 500). Variances of x,, y, and z, are 18.5987,
48.354 and 55.794° respectively. This addition now specifies
a volumetric feature. The expected discrepant volume of the
volumetric feature is 37688986.2.

Since the accuracy of the numerical result and the simulated
result are uncertain, their results are compared to check their
accuracy. In Table 1, the expected values of the discrepancy
of the spatial features are listed for both the numerical inte-
gration and the simulation techniques. The ratio of the results
from the numerical model to that from the simulation model is
in the range of 0.819 to 1.047. In an ideal situation, this ratio
should be one. A ratio varying from one is due to the approxi-
mation of the expected discrepancy for both techniques (nu-
merical integration and simulation techniques).

In the simulation model, the accuracy of the result depends on
the number of simulation. The larger the number of simula-
tion, the higher the precision of the result. On the other hand,
the accuracy of the approximation in the numerical model is
related to the number of nodes chosen in the integral region.
The oscillatory nature of the integral function affects the ap-
proximation. Here, it is impossible to determine which method
provides a highly accurate result, since the true expected dis-
crepancy is unknown. And the numerical and the simulated
results are not identical. However, both of them are close to
each other. Therefore, the error indicator (discrepancy) of the
spatial features reflects the uncertainty to a certain extent.

Moreover, it is difficult to say which method dominates. The
calculation for the numerical solution is much faster than that
for the simulated solution for a line segment or linear feature
of few nodes. For a 3D spatial feature of more nodes, the inte-
gral function becomes more complex so that much computa-
tion time is required to solve the analytical expression of the
discrepancy. The simulation technique is our choice to esti-
mate the expected discrepancy in this case. That is, which

Table 1. The expected discrepant area of spatial features

The expected Ratio =
. . discrepancy analytical  result
Spatial feature Numerical | Simulated [gimulated  result
result result
Line segment 62145 59344.1 1.047
Linear 85553.6 89036.1 0.961
Areal 15209871 | 18570274 0.819
Volumetric | 37688986 | 44339984 0.849

method we should use to estimate the discrepancy of a 3D
spatial feature depends on the number of nodes of the spatial
feature.

The above four examples considered the discrepancy of the
spatial features in a case where there is no correlation of nodal
errors. This numerical model can also be implemented to esti-
mate the discrepancy in a generic case where the covariance
matrix of Equation (4) is non-diagonal.

V. CONCLUSIONS

A newly developed numerical model to measure the uncer-
tainty of a spatial feature in 3D GIS was presented in this
paper. The uncertainty is measured by the discrepancy of the
spatial feature based on the ‘true’ location and the measured
location of the spatial feature. The discrepancy was expressed
as a mathematical function of which the measured location
and the ‘true’ location of the spatial feature were variables.
Given the measured location of the spatial feature, the dis-
crepancy could be obtained. In general, the measured loca-
tion may be in the vicinity of the ‘true’ location. Based on the
assumption of error of a spatial feature, a number of possible
measured locations were considered in our proposed model
rather than one measured location of the spatial feature. There-
fore, the expected discrepancy was in the form of a multiple
integral. Since this multiple integral could be solved analyti-
cally, the Gaussian quadrature, a numerical integration, was
implemented to provide an approximate solution for the ana-
lytical model. The estimated expected discrepancy was finally
compared to the simulated solution.

In the previous uncertainty model for 3D spatial features, the
uncertainty model of 3D spatial features was studied using
the simulation technique. This simulation model was gener-
ated some possible measured locations of a spatial feature
based on the same assumption of error of the spatial feature as
stated in this paper, and computed the expected discrepancy.
The simulation model only sampled a certain number of the
possible measured locations of the spatial feature instead of
all possible measured locations of the spatial feature. The ac-
curacy of the expected discrepancy is questioned although
more simulations can provide a more precise result. More-
over, the simulation model is quite time-consuming. Thus, we
proposed the analytical model by taking all possible measured
locations of the spatial feature into account, in order to pro-
vide the expected discrepancy with great accuracy in real time.

In this paper, an analytical model was provided to validate the
simulation model. The numerical results obtained from the
analytical model and the simulated results given in the previ-
ous study can approximate a similar value of the discrepancy.
We can determine which method (numerical or simulation tech-
nique) of estimating the expected discrepancy depending on
the number of nodes of a 3D spatial feature. The numerical
integration technique derived in this study is considered the
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preferred approach in studying the uncertainty of 3D spatial
features of few nodes (such as a line segment).
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