image

J. Yu

Financial market trends prediction is a technique to forecast market trend changes, which assists financial market participants to spot arbitrage opportunities for investment. Currently, most existing reported data mining studies for trend prediction focused on the time-series perspectives. However, there are numerous social factors that contribute to financial market trends prediction, but cannot be obtained from or represented in time-series data. First, in order to effectively predict market trends, one main objective of this project is to develop new data mining techniques that deal with two different types of data, namely financial data (time-series data or simply data) and news articles (textual data or simply text) concurrently. Second, stock market traders need to monitor tens of thousands of data/text sources coming as open-ended data/text streams in an on-line fashion, and need to analyse and make decisions based on the data/text streams they have received as soon as they can. We will study trend predictions by investigating the above two interrelated issues and finding associations among multiple data/text streams.

Department of Systems Engineering and Engineering Management, CUHK