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Abstract

The recent advanced face recognition systems were
built on large Deep Neural Networks (DNNs) or their
ensembles, which have millions of parameters. How-
ever, the expensive computation of DNNs make their
deployment difficult on mobile and embedded devices.
This work addresses model compression for face recog-
nition, where the learned knowledge of a large teach-
er network or its ensemble is utilized as supervision
to train a compact student network. Unlike previous
works that represent the knowledge by the soften label
probabilities, which are difficult to fit, we represent the
knowledge by using the neurons at the higher hidden
layer, which preserve as much information as the label
probabilities, but are more compact. By leveraging
the essential characteristics (domain knowledge) of the
learned face representation, a neuron selection method
is proposed to choose neurons that are most relevant to
face recognition. Using the selected neurons as super-
vision to mimic the single networks of DeepID2+ and
DeepID3, which are the state-of-the-art face recogni-
tion systems, a compact student with simple network
structure achieves better verification accuracy on LFW
than its teachers, respectively. When using an ensemble
of DeepID2+ as teacher, a mimicked student is able to
outperform it and achieves 51.6× compression ratio and
90× speed-up in inference, making this cumbersome
model applicable on portable devices.

Introduction
As the emergence of big training data, Deep Neural Net-
works (DNNs) recently attained great breakthroughs in face
recognition [23, 20, 21, 22, 19, 15, 29, 30, 28] and become
applicable in many commercial platforms such as social net-
works, e-commerce, and search engines. To absorb massive
supervision from big training data, existing works typically
trained a large DNN or a DNN ensemble, where each DNN
consists of millions of parameters. Nevertheless, as face
recognition shifts toward mobile and embedded devices,
large DNNs are computationally expensive, which prevents
them from being deployed to these devices. It motivates
research of using a small network to fit very large training
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data. This work addresses model compression of DNNs
for face recognition, by incorporating domain knowledge of
learning face representation.

There have been several attempts [1, 7, 18] in literature
to compress DNNs, so as to make their deployments easier,
where a single network (i.e. a student) was trained by using
the knowledge learned with a large DNN or a DNN ensem-
ble (i.e. a teacher) as supervision. This knowledge can be
simply represented as the probabilities of label predictions
by employing the softmax function [10]. Compared with the
original 1-of-K hard labels, the label probabilities encode
richer relative similarities among training samples and can
train a DNN more effectively. However, this representation
loses much information because most of the probabilities are
close to zeros after squashed by softmax. To overcome this
problem, Ba and Caruana [1] represented the learned knowl-
edge by using the logits, which are the values before soft-
max activation but zero-meaned, revealing the relationship
between labels as well as the similarities among samples
in the logit space. However, as these unconstrained values
(e.g. the large negatives) may contain noisy information
that overfits the training data, using them as supervision
limits the generalization ability of the student. Recently,
Hinton et al. [7] showed that both the label probabilities and
zero-meaned logits are two extreme outputs of the softmax
functions, where the temperature becomes one and positive
infinity, respectively. To remove target noise, they empir-
ically searched for a suitable temperature in the softmax
function, until it produced soften probabilities that were able
to disclose the similarity structure of data. As these soften
target labels comprise much valuable information, a single
student trained on them is able to mimic the performance of
a cumbersome network ensemble. Despite the successes of
[7], our empirical results show that training on soft targets
is difficult to converge when compressing DNNs for face
recognition. Previous studies [23, 24, 20, 19] have shown
that the face representation learned from classifying larger
amount of identities in the training data (e.g. 250 thousand
in [24]) may have better generalization capacity. In face
recognition, it seems difficult to fit soft targets with high
dimensionality, which makes convergence slow.

In this work, we show that instead of using soft targets
in the output layer, the knowledge of the teacher can also
be obtained from the neurons in the top hidden layer, which



preserve as much information as the soft targets (as the soft
targets are predicted from these neurons) but are more com-
pact, e.g. 512 versus 12,994 according to the net structure
in [21]. As these neurons may contain noise or information
not relevant to face recognition, they are further selected
according to the usefulness of knowledge captured by them.
In particular, the selection is motivated by three original
observations (domain knowledge) of face representation
disclosed in this work, which are naturally generalized to
all DNNs trained by distinguishing massive identities, such
as [19, 23, 24, 22]. (1) Deeply learned face representation by
the face recognition task is a distributed representation [6]
over face attributes, including the identity-related attributes
(IA), such as gender, race, and shapes of facial components,
as well as the identity non-related attributes (NA), such
as expression, lighting, and photo quality. This observation
implies that each attribute concept is explained by having
some neurons being activated while each neuron is involved
in representing more than one attribute, although attribute
labels are not provided during training. (2) However, a cer-
tain amount of neurons are selective to NA or both NA and
IA, implying that the distributed representation is neither
invariant nor completely factorized, because attributes in
NA are variations that should be removed in face recogni-
tion, whereas these two factors (NA and IA) are presented
and coupled in some neurons. (3) Furthermore, a small
amount of neurons are inhibitive to all attributes and server
as noise. With these observations, we cast neuron selection
as inference on a fully-connected graph, where each node
represents attribute-selectiveness of neuron and each edge
represents correlation between neurons. An efficient mean
field algorithm [9] enables us to select neurons that are more
selective or discriminative to IA, but less correlated with
each other. As a result, the features of the selected neurons
are able to maintain the inter-personal discriminativeness
(i.e. distributed and factorized to explain IA), while reducing
intra-personal variations (i.e. invariant to NA). We employ
the features after neuron selection as regression targets to
train the student.

To evaluate neuron selection, we employ DeepID2+ [21]
as a teacher (T1), which achieved state-of-the-art perfor-
mance on LFW benchmark [8]. This work is chosen as
an example because it successfully incorporated multiple
complex components for face recognition, such as local con-
volution [12], ranking loss function [19], deeply supervised
learning [13], and model ensemble [17]. The effectiveness of
all these components in face recognition have been validated
by many existing works [19, 23, 24, 27]. Evaluating neuron
selection on it demonstrates its capacity and generalization
ability on mimicking functions induced by different learning
strategies in face recognition. With neuron selection, a
student with simple network structure is able to outperform a
single network of T1 or its ensemble. Interestingly, this sim-
ple student generalizes well to mimic a deeper teacher (T2),
DeepID3 [22], which is a recent extension of DeepID2+.
Although there are other advanced methods [24, 19] in
face recognition, [21, 22] are more suitable to be taken as
baselines. They outperformed [24] and achieved comparable
result with [19] on LFW with much smaller size of training

data and identities, i.e. 290K images [21] compares to 7.5M
images [24] and 200M images [19]. We cannot compare
with [24, 19] because their data are unavailable.

Three main contributions of this work are summarized as
below. (1) We demonstrate that more compact supervision
converge more efficiently, when compressing DNNs for
face recognition. Soft targets are difficult to fit because
of high dimensionality. Instead, neurons in the top hidden
layers are proper supervision, as they capture as much
information as soft targets but more compact. (2) Three
valuable observations are disclosed from the deeply learned
face representation, identifying the usefulness of knowledge
captured in these neurons. These observations are naturally
generalized to all DNNs trained on face images. (3) With
these observations, an efficient neuron selection method is
proposed for model compression and its effectiveness is
validated on T1 and T2.

Face Model Compression
Training Student via Neuron Selection
The merit behind our method is to select informative neu-
rons in the top hidden layer of a teacher, and adopt the
features (responses) of the chosen neurons as supervision
to train a student, mimicking the teacher’s feature space. We
formulate the objective function of model compression as a
regression problem given a training set D = {Ii, fi}Mi=1,

L(D) =
1

2M

M∑
i=1

‖fi − g(Ii;W)‖22, (1)

where Ii and fi represent the i-th face image and its
corresponding selected features, respectively. fi is obtained
from a well training large DNN, which is the teacher.
When dealing with an ensemble of DNNs, fi is selected
from the top layers of all the DNNs. W denotes a set of
parameters of the student network and g(·) indicates a non-
linear transformation from the input image to the features.
Eqn.(1) is the objective function of training student network,
which can be optimized by the stochastic gradient descent
with standard back-propagation (BP) [10].

Here, we introduce how to obtain the features fi in Eqn.(1)
by selecting informative neurons. We formulate neuron
selection as an inference problem on a fully-connected
graph, where each node represents a neuron and each edge
represents the correlation between a pair of neurons. Each
node is associated with a binary latent variable, yi ∈ {0, 1},
indicating whether neuron i has been chosen. Given a set of
variables ofN neurons, y = {yi}Ni=1, the graph is optimized
by minimizing the following energy function

E(y) =

N∑
i=1

Φ(yi) + λ

N∑
i=1

N∑
j=1,j 6=i

Ψ(yi, yj), (2)

where Φ(yi) and Ψ(yi, yj) denote the unary and pairwise
costs of selecting neuron i and both neurons i and j,
respectively. λ is a constant weight. The first cost function is
defined as Φ(yi) = f(xi), where f(·) is a penalty function
and xi is a vector measuring the attribute discriminativeness
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Figure 1: Attribute classification accuracies of single neurons in T1 are compared with the accuracies of single features from HOG and LBP.
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Figure 2: (a) visualizes several neurons in the top hidden layer of T1, where the top one or two most dominative attributes for each neuron are
outlined in yellow. For each neurons, images with low, medium, and high responses are grouped and averaged for visualization. (b) shows four
different patterns of neuron activations. From left to right: neurons that are discriminative or selective to IA, NA, NA+IA, and the inhibitive
neurons, respectively. Larger intensity indicates higher classification accuracy.

of neuron i. The second one measures the similarity between
neurons, penalizing large correlation between them, i.e.
Ψ(yi, yj) = exp{− 1

2‖xi − xj‖22}. These two terms demon-
strate that we select neurons, which are more discriminative
but less correlated. The representation of x is discussed in
the next section. The graphical model in Eqn.(2) can be
solved by using the mean field algorithm [9].

Attribute Discriminativeness of Neurons
We determine the values of xi for each neuron i, according
to its selectiveness with respect to face attributes, which
are implicitly captured by the learned face representation.
To show this, we take the features of T1 (outputs of top
hidden layer) as an example. Nevertheless, the following
observations are naturally generalized to all DNNs trained
to distinguish faces.
• Firstly, deeply learned face representation is a distribut-

ed representation over face attributes. This observation is
inspired by [21], which showed that specific neurons at
the higher layer are discriminative to 13 binary attributes
that are closely related to face identity, such as gender and
race. To further characterize the features, we employ the
CelebA dataset [14] as a validation set, which contains 20
thousand face images and each image is annotated with 40
attributes. These attributes can mostly describe a face image
as suggested by [11]. As shown in Fig.1, they include both
identity-related attributes (IA) and non-related attributes
(NA), plotted in black and gray respectively. We define each
element j in vector xi as the mean classification accuracy of
the j-th attribute, i.e. ∀xi ∈ R1×40 and xi(j) =

TPj+TNj

2 ,
where TPj and TNj represent the true positive and neg-
ative rates of attribute j, respectively. Fig.1 compares the

maximum classification accuracy for each attribute achieved
by using the neurons in T1 with the hand-crafted face
descriptors like LBP [5] and HOG1 [4], showing that deep
features are automatically learned to distinguish not only the
attributes of IA but also NA, although these concepts are
not provided during training. However, LBP and HOG are
not selective to neither of them. In this case, each identity
is essentially represented by having a few neurons turned
on (i.e. a distributed representation over attributes), while
each neuron may be involved in representing more than one
attribute as shown in Fig.2 (a), where several neurons are
visualized by averaging face images of high, medium, and
low responses.
• Secondly, this distributed representation is neither in-

variant nor well factorized, implying that some neurons are
selective to NA or both IA and NA. As shown in Fig.2 (b),
we randomly choose 80 neurons and partition them into four
groups referring to their attribute-selectiveness, where larger
intensity indicates higher accuracy. Most of the neurons are
selective to IA, because they are trained to classify identities,
but a quarter of neurons are sensitive to NA or IA+NA,
implying that they are over-fitting the training data, since the
attributes in NA such as ‘smiling’, ‘earrings’, and ‘lipstick’
belong to intra-personal variations to be removed in face
recognition, while some neurons are not able to disentangle
these factors.
• Thirdly, as illustrated at the rightmost side of Fig.2 (b),

a small amount of neurons are inhibitive to all attributes,
capturing no knowledge related to face and serving as noise.

1Each one-dimensional single feature of LBP or HOG is con-
sidered as an attribute classifier. The highest accuracy for each
attribute achieved with a best single feature is reported.



(a) Teacher-1 [21] (T1): 55×47×3 input image; 1×12K output labels
1 2∗ 3 4∗ 5 6∗ 7 8∗

layer
neuron

filter–stride
#channel

size
#param

conv
relu

4-1
128

52×44
6K

max
−
2-2
128

26×22
37M, 6M

conv
relu

3-1
128

24×20
262K

max
−
2-2
128

12×10
8M, 6M

lconv
relu

3-1
128
10×8
12M

max
−
2-2
128
5×4

1M, 6M

lconv
relu

2-1
128
4×3
2M

2×fc
relu

−
1

512, 12K
1M, 6M

(b) Teacher-2 [22] (T2): 112×96×3 input image; 1×12K output labels
1 2 3 4∗ 5 6∗ 7 8∗ 9 10∗

2×conv
relu

3-1
64

112×96
39K

max
−
2-2
64

56×48
0

2×conv
relu

3-1
96

56×48
138K

max
−
2-2
96

28×24
17M, 3M

2×conv
relu

3-1
192

28×24
498K

max
−
2-2
192

14×12
8M, 3M

2×conv
relu

3-1
256

14×12
1M

max
−
2-2
256
7×6

3M, 3M

2×lconv
relu

3-1
256

5×4, 3×2
12M, 4M

2×fc
relu

−
1

512, 12K
1M, 6M

(c) Student (S): 55×47×3 input image; 1×N output
1 2 3 4 5 6 7 8∗

layer
neuron

filter–stride
#channel

size
#param

conv
relu

4-1
128

52×44
6K

max
−
2-2
128

26×22
0

conv
relu

3-1
128

24×20
262K

max
−
2-2
128

12×10
0

conv
relu

3-1
128
10×8
262K

max
−
2-2
128
5×4

0

fc
relu

−
1

500
1M

2×fc
relu

−
1

512, N
256K, 512×N

Table 1: Comparisons among the network architectures of T1, T2, and the student model. Each table contains seven rows, representing
the ‘type of layer’, ‘type of neuron’, ‘size of filter’−‘stride’, ‘number of channels’, ‘size of response map’, and ‘number of parameters’,
respectively. Furthermore, ‘conv’, ‘lconv’,‘max’, and ‘fc’ represent the convolution, local convolution, max pooling, and fully-connected
layers respectively, while ‘relu’ indicates the rectified linear unit [16]. For simplicity, thousand and million are denoted as ‘K’ and ‘M’.

As a good face representation should be both invariant
and factorized to explain identity-related concepts, we select
neurons discriminative to IA. To this end, the unary term
can be written as f(xi) =

max{xi(j)}∀j∈NA−avg{xi(j)}∀j∈NA

max{xi(j)}∀j∈IA−avg{xi(j)}∀j∈IA
,

where max{·} and avg{·} look for the maximum and
averaged values, respectively. If a neuron is more selective to
NA compared to IA, f(·) produces large penalty, implying
neurons discriminative to IA are more likely to be selected.
Furthermore, the chosen neurons should have small correla-
tions so as to explain different concepts. This constraint is
modeled by the similarity between neurons as defined in the
previous section. With the above definitions, we are able to
select neurons by solving Eqn.(2).

Network Structures of Teachers and Student
This section introduces the structures of T1, T2, and a simple
structure to mimic them.

Teachers The architectures of T1 and T2 are summarized
in Table 1 (a) and (b) respectively, where the first two rows
represent the types of layer and neuron, while ‘x-y’ in the
third row represents the filter size and the stride of convolu-
tion. The last three rows represent number of channels, size
of response maps, and number of parameters, respectively.
As listed in Table 1 (a), T1 learns 512-dimensions face fea-
tures by classifying 12K identities with images of 55×47×3
as input. It contains four convolutional layers, three max-
pooling layers, and two fully-connected layers. These layers
can be partitioned into eight groups, each of which covers
one or more homogenous layers. The superscript (‘∗’) over
the group index indicates supervisory signals are propagated

to this group. For instance, the second pooling layer is also
connected to two ‘fc’ layers, which have the same hyper-
parameters as group-8, leading to two large weight matrixes
of 128 × 26 × 22 × 512 ≈ 37M and 512 × 12K≈ 6M
parameters, respectively. Similarly, the supervision is also
propagated into group-4 and 6 respectively. In other words,
T1 was trained in a deeply supervised manner, leading to
more discriminative low- and middle-level representations.
As a result, T1 has 85M parameters. T2 contains smaller
number of parameters but deeper structure compared to T1.
As listed in Table 1 (b), it has 62M parameters and 16-layers
depth.

Student As shown in Table 1 (c), the structure of the
student network (S) is simply derived from T1, where the
local convolutional layers (‘lconv’) in group-5 and 7 are
replaced by a convolutional layer and a fully-connected
layer respectively, reducing the number of parameters by 11
times. All the supervision evaluated in our experiments are
trained with S. For the soft targets [7] and the logits [1], S is
learned to minimize the cross-entropy and squared losses,
respectively. Thus, the output dimension N equals 12K.
For neuron selection, S predicts the features by minimizing
Eqn.(1). In this case, N is typically smaller than 512, and
therefore the student only contains about 2M parameters
compared to the parameters of 85M in T1 and 62M in T2.

Experiments
MNIST We first evaluate the effectiveness of targeting the

features in the top hidden layer as a learning objective for
model compression. To this end, we test on MNIST similar



networks #target length AUC

T1 [21] (single) 12,294 97.83
S-1-of-K

12,294

91.23
S-soft target (t=1) [7] 94.42
S-soft target (t=10) [7] 97.15
S-soft target (t→ +∞) [1] 96.75
S-neurons 512 97.73
S-selection 422 98.18

Figure 3: Mimicking a single network of T1.

networks #target length AUC

T2 [22] (single) 12,294 98.27
S-soft target (t=1) [7]

12,294
91.88

S-soft target (t=10) [7] 97.27
S-soft target (t→ +∞) [1] 96.77
S-neurons 512 97.90
S-selection 377 98.12
S-selection† (unsupervised) 377 98.37

Figure 4: Mimicking a single network of T2.

networks #target length AUC

T1 [21] (an ensemble of 6 networks) 12,294 98.37
S-soft target (t=1) [7]

12,294

91.88
S-soft target (t=5) [7] 96.57
S-soft target (t=10) [7] 96.07
S-soft target (t=15) [7] 96.33
S-soft target (t→ +∞) [1] 96.65
S-neurons 3,072 98.07
S-selection 960 98.25
S-selection† (unsupervised) 960 98.43

Figure 5: Mimicking an ensemble of T1.
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Figure 6: Comparisons of convergence rates.

to [7] by distilling the learned knowledge of a teacher (T)
with 1200 neurons to a student (S) with 800 neurons. As a
result, T and S achieve 63 and 168 test errors2 respectively,
when both of them are trained using 1-of-K as targets. Since
it is difficult to employ domain knowledge on MNIST, we
select features to train S by simply removing the inhibitive
neurons of T. In this case, S achieves 82 errors, which
outperforms all soft targets when the temperature t = 1,
2, 5, 10, 20, and t = +∞ (i.e. the logits). Their errors are
124, 104, 111, 119, 120, and 92 respectively.

Face Data For face model compression, we train all
the students using data the same as [21, 22], which com-
bined two face databases for training, CelebFaces+ [20] and
WDRef [3], resulting in a training set of 290 thousands
face images of 12,294 identities. In test, we evaluate all
the models on LFW [8], which is the most well known
benchmark for face recognition, containing 13,233 face
images of 5,749 identities collected from the Internet. Note
that the identities in training and test are exclusive. The face
verification performance on LFW is reported as the Area
under ROC curve (AUC) with respect to 3,000 positive and
3,000 negative face pairs.

For face verification, feature vectors in the top hidden
layers are first extracted from a pair of face images and
then the Euclidean distance3 between them is calculated
for face verification. Unlike [23, 21] trained SVM or Joint
Bayesian [3] for face verification, the Euclidean distance is
used throughout the experiments to directly show the benefit
from better supervision utilized to train students, other than

2The test error indicates how many test samples are misclassi-
fied.

3If the Euclidean distance between features extracted from
a pair of face images exceeds a threshold, it is negative pair;
otherwise, it is positive. The threshold is determined by cross-
validation on LFW following [8].

strong classifiers with additional supervision.
Compressing a Single Model of T1 We train many

students (S) with different targets to compress T1. Note that
the structures of different S’s are the same except the last
output layers. The architectures of S and T1 are given in
Table 1. As shown in Fig.3, a student trained with knowledge
distilled from selected neurons (‘S-selection’) achieves the
best performance. It even outperforms its teacher T1, show-
ing that selected neurons can preserve similarities among
samples as well as remove noisy information in the features
of T1. However, students supervised by the other targets
have different losses in accuracy. Specifically, S is merely
dropped by 0.68% compared to T1 when being trained with
soft targets (t = 10), but dropped by 6.6% with hard labels
(‘1-of-K’). Small networks cannot be well trained with hard
labels. We examine different temperatures for soft targets.
Note that when t = 1 and t = +∞, soft targets turn into
label probabilities (after softmax) and logits, respectively.
The best performance of soft targets is achieved when t =
10. ‘S-neurons’ directly mimics the features of neurons in
the top hidden layer of T1, and with 0.1% drop in the
verification accuracy compared with T1. Neuron selection
increases the accuracy by 0.35%. Furthermore, to verify the
improvement is come from better targets, we train ‘S-1-of-
K’ with attributes as additional supervision. The accuracy is
91%, showing that predicting identities and attributes jointly
does not help face recognition, because attributes can be
implicitly learned by classifying identities.

Fig.6 compares the training losses of T1 and different
students. Several valuable facts can be observed. First, when
using hard labels as targets, a larger network converges faster
(e.g. comparing T1 and ‘S-1-of-K’), since it has larger fitting
capability. Second, S’s trained with compact and informative
targets converge faster than long targets, e.g. ‘S-neurons’
and ‘S-selection’ have 512 and 422 dimensional targets
respectively, while ‘S-soft target’ has 12,294 dimensional
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Figure 7: (a) Comparisons of running times (milliseconds per
image). (b) Comparisons of number of parameters (millions).

targets. With these targets, a small student is able to learn
the knowledge of a large teacher with a smaller amount of
training time compared to that used to train the teacher.
For example, ‘S-selection’ outperforms T1 with 42 times
fewer parameters and learns at least 5 times faster. Third,
convergence rate increases when the temperature of soft
target increases. To the extreme, training with logits (i.e.
t = +∞) is easy, but training with 1-of-K labels is the most
difficult, because the hard label vector has high dimension-
ality (e.g. 12K identities) and only one of its entries is non-
zero. So the mimic network may produce wrong prediction
at many iterations and converge slowly. In contrast, when
temperature increases, the soft targets contain more non-
zero values and become more informative.

Compressing a Deeper Teacher (T2) Fig.4 shows that
the student (S) with shallow structure generalizes well to
compress a deep teacher (T2), where T2 is 2× deeper than
S. In this case, ‘S-selection†’ outperforms T2 by 0.1%. It is
obtained by fine-tuning ‘S-selection’ with ten-folds cross-
validation on LFW [8]. This is done in an unsupervised
manner without leveraging the identity labels of LFW, but
using the selected features of T2. Without fine-tuning, the
accuracy of ‘S-selection’ decreases by 0.15% compared
to T2, indicating that deeper teacher is more difficult to
fit. However, fine-tuning on more unsupervised data can
improve performance. When compressing T2, S trained with
neuron selection also outperforms those trained with the
other supervision.

Compressing an Ensemble of T1 As listed in Fig.5, S is
employed to compress an ensemble of six T1 networks, each
of which was trained on different face regions, including two
eyes, nose, two mouth corners, and the entire face region.
This ensemble outperforms the best single network of T1
by 0.54%. For each student trained with soft targets, the su-
pervision is obtained by averaging the soft targets of all the
networks in this ensemble. When training ‘S-selection’ with
the same data as T1 ensemble, its performance decreases
by 0.12%. This result is similar to that of compressing T2,
implying that not only deep teacher, an ensemble of teachers
is also difficult to mimic. However, the performance can still
be improved by unsupervised fine-tuning, e.g. ‘S-selection’
is increased by 0.18% after fine-tuning, outperforming T1
ensemble.

Complexity and Efficiency Fig.7 compare the efficien-
cies and complexities between T1, T2, T1 ensemble, and
the student network (S). Efficiency is measured with im-
plementation on a Intel Core 2.0GHz CPU. To simulate the

environment of embedded or portable devices, the runtime is
evaluated on CPU instead of GPU. As shown in Fig.7 (a), S
achieves 90× speed-up compared to T1 ensemble. The mod-
el complexities are measured by the numbers of parameters
during training and testing, respectively. The former indi-
cates learning capacity, while the latter indicates complexity
in inference. As shown in Fig.7 (b), if we compare S with
T1 ensemble, S reduces the inference complexity by 51.6×
and increases the performance by 0.06%, using a network
structure with much smaller learning capacity, i.e. 1/255.
In general, with neuron selection, the student S is able to
outperform its corresponding teacher models by using much
fewer parameters and process much faster. Specifically, it
occupies 4 megabytes storage and processes face images
with 250 frames per second, making T1 ensemble applicable
on embedded or portable devices.

Conclusions and Discussions

This work demonstrates several interesting results towards
model compression for face recognition. (1) In face recog-
nition, both hard and soft labels are difficult to fit because
of high dimensionality in the output layer, as well as the
zero entries they contain. Instead, neurons in the top hidden
layer are more suitable supervision because they capture
as much information as soft targets, but are more com-
pact. Experiments validate its effectiveness and its superior
convergence rate. (2) Valuable observations show that the
deeply learned face representation is neither invariant nor
well factorized. Therefore, employing all the features as
targets is not a beneficial solution because they may contain
noise or knowledge that is not relevant to face recognition.
A neuron selection method is proposed to select neurons, so
as to obtain a face representation that maintains the inter-
personal discriminativeness, while reduces intra-personal
variations. This is the goal of all the face recognition
algorithms [25, 2, 26, 19, 21]. (3) As more informative and
compact representation can be obtained by neuron selection,
a mimic student trained on the selected features outperform
its teacher, by using much smaller number of parameters
and shallower network structure (e.g. comparing T2 and
S-selection), making the student easy to be parallelized or
distributed. Similarly, [1] trained shallow student with logits,
but our experiments show that students trained in this way
cannot outperform their teachers for face recognition. In
contrast, [18] trained deeper and thinner student to improve
the teacher, but sacrificed distributed processing because a
deep network has to be processed sequentially through each
of its layer. (4) When using an ensemble as teacher, a small
student is also able to outperform this teacher. This result
has not been disclosed in previous works [1, 7, 18].
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