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Abstract

We present an approach to synthesize the subtle 3D re-
lief and texture of oil painting brush strokes from a single
photograph. This task is unique from traditional synthe-
size algorithms due to its mixed modality between the in-
put and output; i.e., our goal is to synthesize surface nor-
mals given an intensity image input. To accomplish this
task, we propose a framework that first applies intrinsic
image decomposition to produce a pair of initial normal
maps. These maps are combined into a conditional random
field (CRF) optimization framework that incorporates addi-
tional information derived from a training set consisting of
normals captured using photometric stereo on oil paintings
with similar brush styles. Additional constraints are incor-
porated into the CRF framework to further ensures smooth-
ness and preserve brush stroke edges. Our results show that
this approach can produce compelling reliefs that are often
indistinguishable from results captured using photometric
stereo.

1. Introduction
One of the aesthetic qualities associated with oil paint-

ings is its dynamic nature to light. This is attributed, in part,
to the 3D relief of the brush strokes. Artists have exploited
the ability of oil paint to produce 3D relief in the form of
thick and distinct brush strokes to enhance the expressive-
ness of the subject matter. This technique is most notable
in the works of Impressionist and post-Impressionist artists.
In addition, oil paintings are often varnished as a final step
resulting in a specular surface that helps to accentuate the
texture and relief of the brush strokes. Not surprisingly,
museums and art galleries take great care when lighting and
positioning oil painting artwork for their patrons’ viewing
experience.

Outside a museum setting, the most common access to
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Figure 1. Left: input image of an oil painting. Bottom: our synthe-
sized normals. Right: zoomed-in region of the reconstructed sur-
face using our synthesized normals with recovered surface albedo.
The four images show the synthesized surface rendered under dif-
ferent lighting directions.

oil painting artwork is through photographs. A photograph
of an oil painting, however, can only capture the object un-
der a static lighting condition and cannot capture the rich
lighting effects attributed to the painting’s relief.

In this paper, we propose a framework to reconstruct the
surface relief of an oil painting from a single photograph
together with a training set of similar oil paintings whose
normals have been estimated using photometric stereo. Our
framework first applies intrinsic image decomposition on
the input to acquire the shading image from which a pair
of base normal maps are estimated. These normals and the
original input are integrated into a conditional random field
(CRF) that is able to combine the learned texture-normal
relation from the training data to produce plausible results
in the inference process. Moreover, long-range priors can
be incorporated into the CRF to take advantage of specific
structures of the painted surface. From this synthesized sur-



face normals a 2.5D height field is generated that can pro-
duce a visually realistic reconstruction that is hard to distin-
guish from that captured by high resolution 3D scans (see
Figure 1).

The remainder of this paper is organized as follows: Sec-
tion 2 discusses related work; Section 3 describes the details
of our framework; Section 4 presents our results. A sum-
mary of this work is presented in Section 5.

2. Related Work
We are unaware of prior work attempting to synthesize

a 2.5D relief of an oil painting from a single photograph,
however, several works related to this task are discussed in
the following.

Shape from shading Shape from shading (SfS) [14] is
a well-known technique that recovers 3D shapes by using
shading information in an image with known lighting di-
rection and surface reflection model. In the case of oil
paintings, directly applying SfS does not produce satis-
factory result. This is due to several reasons. First, one
needs to remove albedo effects before applying SfS by
using techniques such as intrinsic images decomposition
[3, 23]. However, a clean separation of shading and re-
flectance components is usually hard to obtain [12]. Sec-
ond, even with an accurate lighting direction estimation,
one intensity value in the image may correspond to differ-
ent normals, leading SfS to recover a wrong surface [15].
In the case of oil painting surfaces, this one-to-many am-
biguity may wrongly recover a convex stroke as a concave
region. Our method, however, uses an initial normal map
and its mirror reflection estimated from shading as a guid-
ance for searching the best-matched normals in the training
set. This makes our results less sensitive to the mentioned
problems.

Bump mapping and image stylization Bump mapping
is a well established technique used to enhance the light-
ing effect of a 3D surface by permuting surface normals
(e.g., [5, 19]). The map controlling the normal perturba-
tion (i.e., the bump map) can be computed using the gradi-
ents of an input image that has a distinct texture. This ap-
proach typically produces noisy results for oil paintings, as
the content of the painting can be indistinguishable from the
stroke relief. Image stylization techniques (e.g., [13, 18])
are able to impart artist styles onto input images, videos
and renderings of 3D models. These approaches typically
decompose the input into features that can be parameterized
to guide synthetic brush strokes or particles that simulate
brush strokes. These approaches are not designed to simu-
late the 2.5D relief of the strokes themselves. In addition,
the input is assumed to be significantly different than the
desired stylized output. Our goal, however, is not to change
the style of the input, but instead to synthesize a 2.5D sur-

face with a similar look and feel.

Imaging relighting, surface modeling, and manipula-
tion Other related work involves those targeting image re-
lighting (e.g., [6, 28, 27]) and surface modeling and manip-
ulation (e.g., [11, 10]) using surface normals. While sharing
a commonality of working with normals, these interactive
approaches would be impractical for specifying individual
paint strokes. As such, our approach performs surface re-
construction through surface normal synthesis from train-
ing data. Hence, our work is most related to techniques de-
signed for constrained texture synthesis (e.g., [7, 20]), and
learning based super resolution (e.g., [8, 24, 22, 25]). Like
these techniques, our approach exploits a training set of ex-
emplar patches and uses a learning based method. The main
difference is our focus on synthesizing normals versus pixel
values.

3. Framework
This section briefly describes our oil painting surface

synthesis framework. The overview of the framework and
training data collection are described first, followed by the
details of normal synthesis and the surface reconstruction
algorithm. Implementation details are given at the end of
the section.

3.1. Overview

An overview of our framework is shown in Figure 2. The
user provides an image X which will be used to recover the
shading image S and reflection image R through intrinsic
image decomposition. The reflectance R will be used as
texture map on the final rendered surface. The shading im-
age, S, is used to estimate a pair of initial normal maps,
N1 and its reflection N2. We refer to N1, N2 as the base
normals to differentiate from the final synthesized surface
normals N . In addition, to help tune the training data, our
framework requires the lighting direction of the input im-
age, which is estimated from the input image itself with the
user’s help. We then indirectly compute the height field H
by synthesizing the surface normals N . Our normal synthe-
sis is a learning based approach exploiting a training set of
exemplar patches whose placement is guided by X , N1 and
N2. A CRF is formulated to compute the patch placement
onto the output. Through the integration of the synthesized
normals, our method is able to synthesize a convincing 2.5D
geometry that appears smooth and visually plausible.

3.2. Data Collection

Capture Our training data consists of surface normals and
associated albedos obtained from oil paintings (provided by
an art student) that cover the variation of strokes of input
paintings. Note that the training set is not required to have
comparable aesthetic quality with the input. The training
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Figure 2. Overview of our framework.

data is also assumed to be of approximately the same pixel
resolution as the input image. A high-resolution camera [4]
with four light sources is used to perform the photometric
stereo described in [26]. Polarizing filters are placed on the
lighting sources and over the camera lens to eliminate spec-
ular reflections. This procedure generates the surface nor-
mals and albedo from the example paintings. These normal-
albedo pairs are divided in to patches of 32×32 pixels. The
patches serve as the basis for our training data. We typi-
cally choose five to six regions (600×600) per painting that
capture the variations of paintings such as various types of
strokes, stroke sizes, stroke direction, and stroke intersec-
tions. For our implementation, there are a total of 48000
patches in the training data set.

Relighting the training set Our training data represents the
oil painting in a manner that is decoupled from the environ-
ment illumination. However, a photograph of an oil painting
will typically exhibit a noticeable illumination caused by a
directional light. We can therefore tune our training data to
better match the input image by estimating a lighting direc-
tion that matches the illumination in the photograph with
user assistance. Given a rough lighting direction specified
by the user, we estimate the lighting directionL using statis-
tics of the shading image and oil painting surface normals.

Specifically, we compute the distributions of normals
p(nx, ny) from the training data. Our experiments suggest
that even very distinct oil paintings exhibit consistent dis-
tribution of surface normals. Given the input photograph
X , we can compute the distribution of its shading p(S)
from the shading image S (see next section for how to com-
pute S). Computing I/ρ = L · (nx, ny, nz)T with the cor-

rect lighting direction L should yield shading direction that
resembles p(S). We divide our solution space (the hemi-
sphere of unit circle) into four equal parts (quadrants), top
left, top right, bottom left, and bottom right. The user only
needs to specify which quadrant the lighting direction be-
longs to based on shading cues in the painting. We then es-
timate L by dividing the specified quadrant in the solution
space into 900 bins and find the best bin. Our experiments
show a less than 5 degrees’ error on average in lighting es-
timation if the user provides the right quadrant.

From L we reconstruct a new training image patch P ′ ,
such that P ′(i) = ρL ·n, where ρ and n are the correspond-
ing albedo and normal at pixel i.

3.3. Obtaining Intrinsic Images and Base Normals

Base normals are estimated as follows. We first recover
the shading image using intrinsic image decomposition. We
then estimate a normal map and its reflection.

Intrinsic image decomposition We obtain the intrinsic im-
ages from the input image X by adopting the scheme pro-
posed by Tappen et al. [23], which takes advantage of both
the color information and gray-scale pattern. In particular,
by using color and pattern features, we first find and classify
edges in the input image into those caused by shading and
those caused by albedo change. A Markov random field
(MRF) is then used to propagate the information over the
entire image. We briefly describe our procedures here; for
details, see [23].

To classify edges in the input image, we use two types of
features, color and pattern features. Color features are ex-
tracted based on the observation that the intensity changes



due to shading should affect three color channels propor-
tionally. Specifically, by normalizing the (R,G,B) triplet
at each pixel to unit vector c, we can define the color feature
as Fc = arccos (c · ĉ), where ĉ is the average color vector
in neighborhood of c. In our implementation, we use five
scales of neighborhoods sizes, generating five features.

Pattern features are extracted to capture the fact that
shading edges exhibit different shading patterns from
albedo edges. We define the pattern features as Fg = Ie∗w,
where Ie is the patch centered at the edge e, and w is a local
linear filter. In other words, pattern features are extracted
by applying a set of linear filters to the neighborhood of an
edge. In our implementation, we use Gabor filters with ten
orientations and five scales. We found that stroke structures
in the oil painting are well captured using these filters. In
total, 50 pattern features are generated.

We then classify the edges into two classes, associated
with shading or associated with albedo, by employing the
above 55 features (5 color + 50 patterns) as weak classi-
fiers in AdaBoost [9]. After the classification, each edge is
treated as a node in an MRF with two possible states, corre-
sponding to the two classes. Finally, we learn the potential
between edges and propagate evidence along the network.
For an oil painting, the patterns of the two edge classes are
very consistent, yielding a classification accuracy of more
than 90%. Given the labels of all the edges, the intrinsic
images, both shading component S and reflectance compo-
nent R can be recovered. See Figure 3 for an example of
intrinsic images.

Estimating base normals The shading image S is used
to estimate the base normal map N1 and its reflection N2.
Specifically, by using the gradients of tS as an approxima-
tion of he surface gradient field of the input image, we con-
struct surfaceM from this gradient field using the technique
in [1]. The base normal maps N1, N2 are then obtained
from M and its mirror reflection (yeilding N2) with respect
to the plane perpendicular to lighting direction L. Both base
normals, N1 and N2, are in the CRF likelihood formulation
to help guide the synthesis process as discussed in the next
section. See Figure 3 for an example of the base normal
maps.

3.4. Normal Synthesis through CRF Formulation

We formulate the synthesis of the normals map N as an
inference of a CRF (see Figure 4(a) for our graphic model).
The input imageX is broken into a set of regularly sampled
overlapping patches Xp. Since 3D structure of an oil paint-
ing is mostly related to painting strokes, we generate small
regions of the input image, referred to as sub-stroke, us-
ing the superpixel technique [21]. We use both patches and
sub-strokes as neighborhood structures for CRF. A typical
sub-stroke may contain hundreds of patches. Our algorithm
infers the conditional probability distribution over the patch
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Reflectance Shading

N1 N2

Figure 3. Top row: input image. Middle row: reflectance image
(left) and shading image (right). Bottom row: base normals N1

(left) and its reflection N2 (right). Zoomed-in regions are also
shown.

label assignment from the training data given the observed
X .

We formulate our potential function for minimization
based on the following considerations: 1) the synthesized
normals should be similar to corresponding normals from
the training data when their relit images are similar; 2)
sub-stroke regions of the reconstructed surface should be
less concave; 3) the synthesized normal should be smooth
within and at the boundary of brush strokes. Figure 4 (b)
shows an example of patches and sub-strokes. Our formu-
lation ensures that sub-stroke a and b in Figure 4 (b) are
compatible with each other and all the patches along the
boundary, such as patch p in Figure 4, are smooth.

Our potential function is formulated as follows (note the
dependency on the observationX is omitted for simplicity):

Ψ(Y, Z) =
∑
p

φp(Yp) + λ1

∑
p

∑
q∈Ωp

ψp,q(Yp, Yq)

+ λ2

∑
s

ζs(Zs) + λ3

∑
s

∑
t∈Γs

ηs,t(Zs, Zt)

+ λ4

∑
s

∑
t∈Γs

θs,t(Zs, Zt, {Ys,t}),

(1)
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Figure 4. (a) Graphic model of our framework. (b) Top: a portion
of an input image. Bottom: color squares are examples of patches
and color coded regions are examples of sub-strokes obtained us-
ing super-pixel technique.

where φp and ζs are the data costs, ψp,q , ηs,t and θs,t are the
smoothness costs, and λi (i ∈ {1, 2, 3, 4}) are weighting
factors. The details of our formulation are described in the
following.

Patch and sub-stroke labels In our formulation, the terms
p, q represent patch locations, s, t are sub-stroke locations,
and Ωp is the 4-connection neighborhood of p. The term
Γs is the set of neighboring sub-stroke locations of s. The
term Yp is the patch label at p. The goal of our method is to
paste a set of candidate patches onto the output that satisfies
all the constraints. Hence, the label space for Y is the set
of all the patches in the training data. The term Zs is the
binary label at s indicating whether the region satisfies base
normals N1 or N2:

Zs =

 1 if normal is from N1

0 if normal is from N2.
(2)

The terms Yq and Zt are defined similarly.

Data cost The term φp measures how good a patch label
assignment is and is defined as follows:

φp(Yp) = ‖∇X ′
p −∇Xp‖2 + µ‖N ′

p −Np‖2, (3)

where ∇Xp is the gradient of the input image at patch lo-
cation p, ∇X ′

p is the gradient of the relit image component
of a candidate training patch in the training data, N ′

p is the
normal component of the candidate patch, and Np is nor-
mals from the base normals at p and is ether from N1 or N2

depending on the Z label of the sub-stroke containing the
patch location. The scalar µ is a weighting factor.

The term ζs measures the concavity of the sub-stroke lo-
cated at s. We observe that the sub-strokes are mostly con-
vex or flat in general (see Figure 4(b)). This is because the

natural of how oil paint is applied to a flat canvas resulting
in more convex shapes than concave. As a result, the less
concave the region is, the more likely the normals of the
region is correct. The term ζs is defined as follows:

ζs(Zs) =

 −C(M1) if Zs = 1

−C(M2) if Zs = 0,
(4)

where M1,M2 are the 3D meshes at sub-stroke s integrated
from N1, N2, and C(·) is the concavity feature adopted by
[17].

For mesh M , we compute its convex hull HM and find
the bridges and pockets of M . Bridges are convex hull
facets that connect non-adjacent vertices of M ; pockets
are the portion of the boundary M that is not on the con-
vex hull boundary HM . See [17] for the detailed defi-
nition of bridges and pockets. We associate each pocket
x with a unique bridge βx, and define concavity measure
concave(x) = dist(x, βx), which is the distance between
them. C(M1) is the sum of such measures for all pockets in
M1 divided by its area. C(M2) is defined similarly.

Smoothness cost The term ψp,q captures how well the nor-
mals of two patches agree with each other, and is defined as
follows:

ψp,q(Yp, Yq) = ‖N ′
p −N ′

q‖2, (5)

where N ′
p, N

′
q are the normals components of the two can-

didate training patches at location p, q. This term penalizes
the incompatibility of the normals between two neighboring
patches.

The term ηs,t captures how well the relit images of two
patches agree with each other directionally, and is defined
as follows:

ηs,t(Zs, Zt) =

‖T (X ′
s)− T (X ′

t)‖2, if Zs = Zt

0, otherwise,
(6)

where X ′
s, X

′
t are relit image component of the candidate

sub-strokes located at s, t. The candidate sub-stroke is
formed by candidate patches that are located within the sub-
stroke region. The 2D structure tensor direction of a sub-
stroke region is defined as the eigenvectors of the structure
tenser matrix, which is in the form of:

T (·) =
∑
i∈s

 g2
x gxgy

gxgy g2
y

, (7)

where gx, gy are 2D image gradients of each pixel in a
sub-stroke. This term penalizes directional discontinuity of
neighboring sub-strokes which share the same Z label.



Algorithm 1 Minimizing potential Ψ

Initialization: set all Z label to 0. For each patch p, set Yp to the
patch in the training data returned by 1 Nearest Neighbor search
using Np.
Till convergence:

1. Minimize

Ψ1(Y | Z) =
∑
p

φp + λ1

∑
p

∑
q∈Ωp

ψp,q

+ λ4

∑
s

∑
t∈Γs

θs,t,

conditioned on X and Z using Loopy Belief Propagation.

2. Minimize

Ψ2(Z | Y ) = λ2

∑
s

ζs + λ3

∑
s

∑
t∈Γs

ηs,t

+ λ4

∑
s

∑
t∈Γs

θs,t,

conditioned on X and Y using Loopy Belief Propagation.

Return: Labels Yp. A best cut (see Section 3.5) at each overlap-
ping region is found between patches to ensure smoothness.

The term θs,t captures how well the normals of two sub-
strokes agree with each other, and is defined as follows:

Dp = min (‖N ′
p −N1p‖2, ‖N ′

p −N2p‖2) (8)

θs,t(Zs, Zt, {Ys,t}) =


∑

p∈{Ys,t}Dp, if Zs 6= Zt

0, otherwise,
(9)

where {Ys,t} is the collection of patches that belong to both
sub-stroke s and t, andN1p,N2p are two base normals at p.
This term is used to smooth normals between neighboring
sub-strokes. The idea is that the patches at the sub-stroke
boundaries should share the same Z label and should be
similar to N1 or N2.

Optimization To minimize our potential function shown
in Equation 1, we find the label assignments for patches
and sub-strokes by alternatively minimizing the two poten-
tial functions using Loopy Belief Propagation [29], as stated
in Algorithm 1. Typically in our experiments, convergence
is obtained after 3 to 4 iterations.

3.5. Implementation Details

We use K nearest neighbor search (KNN) to find patch
candidates in the training data where K is chosen to be 40.
We employ PatchMatch [2] to speed up the KNN search,
since in our case, both the input image and the training set
contain densely sampled patches. As a result, each KNN
search takes 0.02s on our training set. For a 2000 × 2000
image, it takes 15 minutes in searching and 5 minutes in

inference. Graphcut [16] is used to find the best cut in the
overlapping region between neighboring patches. However,
in our case, we use normals instead of using intensity or
colors. As the last step of our framework, the height field is
reconstructed from the synthesized normals using the tech-
nique presented in [27].

4. Results
Results from our framework are shown in Figure 5, Fig-

ure 6, and Figure 7. Figure 5 shows our results for an
oil painting that has also been captured using photometric
stereo. We show two zoomed-in regions of the input image,
surface normals obtained from photometric stereo, our syn-
thesized surface normals, and zoomed-in regions of the re-
constructed surface height maps. We also show a zoomed-in
region of reconstructed surface (with texture map) rendered
under different lighting conditions. The input image and
surface normals from photometric stereo of this example
are captured in the same way as described in Section 3.2.
We are able to synthesize plausible normal map that creates
very convincing texture-mapped results.

To numerically evaluate the synthesized normals, we cal-
culate the mean square root error (MSE) between normals
from photometric stereo and our result as well as the base
normals N1, N2. The MSE of our recovered result is 0.07,
implying a less than 5 degrees’ error on average, whereas
the MSE of base normal maps N1, N2 are 0.37 and 0.52
respectively, implying a more than 20 degrees’ error on av-
erage for the rough approximation made directly from the
shading image S.

We also relight region A and B in Figure 5 to evaluate
errors from lighting estimation. We use 18 different light-
ing directions at least 30 degrees away from frontal light.
The MSE of the recovered normals is below 6 degrees’ er-
ror on average. For lighting directions as far as 60 degrees
from frontal, average MSE is below 9 degrees. Our algo-
rithm works in a copy-and-paste manner and thus is able to
tolerate moderate lighting estimation errors.

Figure 6 shows our results obtained from an input im-
age of Van Gogh’s work. We show the input image, our
synthesized normals and reconstructed surface height map
with color coding. We also show several zoomed-in regions
of reconstructed surface rendered with/without texture map
(the reflectance image R). As shown by this example, our
framework is able to produce very plausible surface from a
single photograph, making it possible to simulate the aes-
thetics of the painting outside a museum setting. With the
painting relief produced by our technique, users can change
the illumination and viewing directions.

Finally, Figure 7 shows our reconstructed surface from
the image of a lost artwork, Van Gogh’s A Painter on His
Way to Work. This enables the user, especially artists, to
enjoy the 3D relief by viewing the artwork under different



B

A

A

B

25

10

15

20

5

20

15

10

25

5

Input Image

Surface Rendered under Different Lighting Conditions Input Image Photometric Stereo Normals Synthesized Normals Reconstructed Height Map

Figure 5. Example: house. Top left: input photograph. Bottom left: reconstructed surface from our synthesized normals texture mapped
with recovered reflectance image and rendered under different lighting conditions. Right: two zoomed-in regions (A and B), from left to
right: input image, normals from photometric stereo, our synthesized normals, and reconstructed surface height map with color coding.

A

B

A B

2

4

66

8

10

12

Input Image Zoomed-in Image Synthesized Normals Reconstructed Height Map

Zoomed-in Reconstruction Surfaces with/without Texture Mapping
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of the input image, our synthesized normals, and reconstructed surface height map with color coding. Bottom: two zoomed-in regions of
reconstructed surface with/without texture mapping under different lighting directions.

viewing angles and illumination. For the large amount of
paintings that are hard or even impossible to get physical
access (e.g., those destroyed or kept in private), such 3D ef-
fect would be impossible to achieve without our technique.

5. Conclusion and Discussion

We have presented a technique to synthesize the 2.5D
relief of an oil painting from a single photograph. We use
a learning based approach to infer the normal field using a
conditional random field based from the original 2D input
image. Our approach relies on a training set of surface nor-
mals captured from real oil paintings that can be tuned to

match the input image’s lighting condition. Our approach is
able to produce visually plausible synthesis of oil paintings.

As with existing synthesis techniques, the quality of our
results is related to the similarity of the training data, thus it
is important to provide a large database of styles to choose
from for the use in a real world setting. In addition, though
we try to minimize the inherent shading in texture maps us-
ing a recovered reflectance image, the reflectance is not per-
fectly decoupled. This is currently a challenging problem
that is slated for future work.
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Figure 7. Example: destroyed artwork: Van Gogh’s A Painter on
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sized normals with two zoomed-in regions (right). Bottom: two
zoomed-in regions of reconstructed surface with/without texture
mapping under different lighting directions.
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