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Abstract

We propose a novel approach for activity analysis in
multiple synchronized but uncalibrated static camera views.
We assume that the topology of camera views is unknown
and quite arbitrary, the fields of views covered by these
cameras may have no overlap or any amount of overlap,
and objects may move on different ground planes. Using
low-level cues, objects are tracked in each of the camera
views independently, and the positions and velocities of ob-
jects along trajectories are computed as features. Under a
generative model, our approach jointly learns the distribu-
tion of an activity in the feature spaces of different camera
views. It accomplishes two tasks: (1) grouping trajecto-
ries in different camera views belonging to the same activ-
ity into one cluster; (2) modeling paths commonly taken by
objects across camera views. To our knowledge, no prior
result of co-clustering trajectories in multiple camera views
has been published. Advantages of this approach are that
it does not require first solving the challenging correspon-
dence problem, and the learning is unsupervised. Our ap-
proach is evaluated on two very large data sets with 22, 951
and 14, 985 trajectories.

1. Introduction
In visual surveillance, a key task is to monitor activities

in the scene. In many surveillance systems, especially for
far-field settings, objects are first detected and tracked. The
activity of an object is then treated as sequential movements
along its trajectory. Many approaches [13, 9, 17, 16, 7]
have been proposed to cluster or classify trajectories of ob-
jects into different activities. They used the spatial prox-
imity between a pair of trajectories, measured in different
ways, for clustering. Since activities are often closely re-
lated to the structures of the scene, the models of paths
commonly taken by objects can be learnt from clusters of
trajectories [9, 10, 2, 16, 7].

All these clustering and modeling approaches assumed a
single camera view whose visible area is finite and limited
by the structures of the scene. In order to monitor activities
in a wide area video streams from multiple cameras have
to be used. Because of the structures of the scene, the dis-
tribution and configuration of these cameras could be quite
arbitrary. The camera views may have any combination of
large, little, or even no overlap. The objects in the views
may move on one or more ground planes. Analyzing activi-
ties over such a multi-camera network is quite challenging.
A natural way of doing multi-camera surveillance is to first
infer the topology of camera views [11, 15], solve the corre-
spondence problem [8, 14, 12, 6], stitching the trajectories
of the same object in different camera views into a complete
long trajectory, and then analyze the stitched trajectories
using the same approaches developed for a single camera
view. However both inferring the topology of camera views
and solving the multi-camera correspondence problem are
notoriously difficult especially when the number of cameras
is large and the topology of the cameras is arbitrary.

We propose an approach to group trajectories in differ-
ent camera views and belong to the same activity into one
cluster and to model the paths of objects across camera
views. They are jointly learnt under a generative model,
that is completely unsupervised and does not require the
correspondence problem to be solved in advance. The cam-
eras are static and synchronized but do not have to be cal-
ibrated. The fields of view covered by these cameras may
have no overlap or any amount of overlap. Examples of
multi-camera settings are shown in Figure 1.

We briefly explain several basic concepts used in this pa-
per. There are paths in the physical world. Objects move
along these paths and thus have different moving patterns,
which are called activities. A path may be observed in
multiple camera views and has spatial distributions in these
views. A trajectory, which only records the positions of an
object, is a history of the movement of an object in a camera
view. The points on trajectories are called observations. In
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Figure 1. Camera views and their topology in two data sets, a parking lot scene and a street scene. When the topology of camera views
is plotted, the fields of cameras are represented by different colors: blue (camera 1), red (camera 2), green (camera 3), yellow (camera 4).
However, our approach does not require the knowledge of the topology of the camera views in advance.

this work, trajectories are clustered into different activities,
based on their spatial distributions and moving directions.
A cluster of trajectories is often related to a path. The scene
of a camera view is quantized into small cells. When an ob-
ject moves around, it connects two cells far apart in a cam-
era view by its trajectory. Our generative model is based on
some simple, general assumptions on the spatial and tem-
poral features related to activities: (1) cells located on the
same path are likely to be connected by trajectories; (2) tra-
jectories passing through the same path belong to the same
activity; (3) it is likely for trajectories of the same object
observed in different cameras views to be on the same path
in the real world and belong to the same activity.

In our approach, a network is first built by connecting
trajectories that are in different camera views and whose
temporal extents are close. Then a generative model, in
which different kinds of activities have distributions in low-
level feature spaces of different camera views, is built. A
trajectory is treated as a set of observations that belong to
different activities. The smoothness constraint of the tra-
jectory network requires that two neighboring trajectories
connected by an edge have similar distributions over activ-
ities. Trajectories are clustered according to the assigned
major activities among their observations. The distribu-
tions of activities over feature spaces in different camera
views model the semantic regions of paths across camera
views. We show results on two data sets, each of which has
four cameras. The views and topology of these cameras are
shown in Figure 1.

2. Related Work

Many similarity-based trajectory clustering methods
have been proposed. A comparison of different similarity
measures can be found in [17]. The spatial extents can be
estimated from trajectory clusters [2, 9, 16, 7]. They as-
sumed that all of the trajectories are observed in a single
camera view. In order to extend these approaches to multi-
ple camera views, trajectories observed in different camera
views have to be stitched together.

Considerable work has been done to solve the challeng-
ing correspondence problem in multiple camera views. Lee
et al. [8] and Stauffer and Tieu [14] calibrated multiple cam-
era views using tracking data from moving objects. They
assumed that camera views had significant overlap and that
objects moved on the same ground plane. Lee et al. [8]
assumed that the topological arrangement of cameras was
known. Stauffer and Tieu [14] could automatically infer it,
but with high complexity (O(N2) where N is the number
of cameras).

When the camera views are disjointed or their overlap
is small, the appearance of objects is often used as a cue to
correspondence [5, 6, 4]. This is a very challenging problem
and not well solved yet. The appearance of objects may sig-
nificantly change because of different cameras’ settings and
different poses of objects. Many objects, such as cars or per-
sons, have similar appearance, confusing correspondence.
In far-field settings, objects may only cover a few pixels,
making comparison difficult. Other approaches [11, 15] in-
ferred the topology of disjoint camera views using the tran-
sition time between cameras.



Figure 2. An example of building a network connecting trajectories in multiple cameras. (a) Trajectories in three camera views. (b) The
temporal extents of trajectories 1 and 2. (c) The temporal extents of trajectories 3 and 4. (d) The trajectory network. See text for details.

Even given similarities between trajectories observed in
different camera views, solving the correspondence prob-
lem is still difficult because of the large search space, es-
pecially when there are many trajectories and cameras. In
general, if there are more than two cameras, the problem is
NP hard in the number of trajectories [3].

Our approach does not require a solution to the corre-
spondence problem. It has fewer constraints on the topol-
ogy of camera views and the number of cameras.

3. Feature Space
Objects are tracked in each camera view independently

using the Stauffer-Grimson tracker [13]. A trajectory is
treated as a set of observations. The locations and mov-
ing directions of observations are computed as features and
quantized to visual words according to a codebook of its
camera view. In each camera view, the space of the view is
uniformly quantized into small cells and the velocity of ob-
jects is quantized into several directions. A global codebook
concatenates the codebooks of all the cameras. Thus the
word value of an observation i is indexed by (ci, xi, yi, di)
in the global codebook. ci is the camera in which i is ob-
served. (xi, yi) and di are the quantized coordinates and
moving direction of observation i in camera ci. The set of
visual words on the trajectory are modeled as exchangeable
(i.e., the distribution is invariant to a permutation of the ob-
servations). Although quite simple, the position and veloc-
ity features can distinguish many different activity patterns
especially in far-field settings.

4. Trajectory Network
A network is built connecting trajectories observed in

multiple camera views based on their temporal extents.
Each trajectory is a node in the network. Let tsi and tei
be the starting and ending time of trajectory i. Let T be a
positive temporal threshold. If trajectories a and b are in

different camera views and their temporal extents are close,

(tsa ≤ tsb ≤ tea + T ) ∨ (tsb ≤ tsa ≤ teb + T ), (1)

then a and b will be connected by an edge in the network.
This means that a and b are likely to be the same object.
There is no edge between two trajectories observed in the
same camera view. An example can be found in Figure 2.
As shown in (a), the views of cameras 1 and 2 overlap and
are disjoint with the view of camera 3. Trajectories 1 and
2 observed by cameras 1 and 2 correspond to the same ob-
ject moving across camera views. Their temporal extents
overlap as shown in (b), so they are connected by an edge in
the network as shown in (d). Trajectories 3 and 4 observed
in cameras 1 and 3 correspond to an object crossing disjoint
views. Their temporal extents have no overlap but the gap is
smaller than T as shown in (c), so they are also connected.
Trajectories 3 and 6, 5 and 7 do not correspond to the same
objects, but their temporal extents are close, so they are also
connected in the network. A single trajectory 3 can be con-
nected to two trajectories (4 and 6) in other cameras.

5. Generative Model
In this section, we will describe our generative model

which clusters trajectories in different camera views into
activities. Our work is related to topic models, such as
LDA [1], which was used for word-document analysis.
These topic models assume that a document is a mixture
of topics and cluster words that often co-occur in the same
documents into one topic. In our domain, documents are
trajectories, words are observations, and topics are activi-
ties. Each activity has a distribution over locations and mov-
ing directions in different camera views, and models a path
commonly taken by objects. If two word values, which are
indices of locations and moving directions, often co-occur
on the same trajectories, they are on the same path. Trajec-
tories passing through the same paths belong to the same



activities. In previous topic models, documents are gener-
ated independently. However, we assume that if two trajec-
tories in different camera views are connected by an edge
on the network, which means that they may correspond to
the same object, they tend to have a similar distribution over
activities. Thus the distributions of an activity (the path of
objects) in different camera views can be jointly modeled.

Let M be the number of trajectories in the data set. Each
trajectory j has Nj observations. Each observation i on tra-
jectory j has a visual word value wji which is a index of
the global codebook. Observations will be clustered to one
of the K activity categories. Let zji be the activity label of
observation i in trajectory j. Each activity k has a multino-
mial distribution φk over the global codebook, which is a
concatenation of codebooks of multiple camera views. So
an activity is modeled as distributions over space and mov-
ing directions in multiple camera views. Each trajectory has
a random variable θj which is the parameter of a multino-
mial distribution over K activities.

The joint distribution of these variables is given by

p({φk}, {θj}, {zji}, {wji}|α, β, γ)
=p({θ}, {zji}|α, γ)p({φk}|β)p({wji}|{zji}, {φk})

∝
M∏
j=1

K∏
k=1

(θjk)α−1
∏

{j1,j2}∈E

K∏
k=1

(θj1k)γ·nj2k(θj2k)γ·nj1k

K∏
k=1

Dir(φk;β)
M∏
j=1

Nj∏
i=1

(
θjzji · φzjiwji

)
(2)

=
M∏
j=1

[ ∏K
k=1 Γ(α+ γ

∑
j′∈Ωj

nj′k)

Γ(K · α+ γ
∑
j′∈Ωj

∑K
k=1 nj′k)

Dir(θj ;α+ γ
∑
j′∈Ωj

nj′1, . . . , α+ γ
∑
j′∈Ωj

nj′K)
]

K∏
k=1

Dir(φk;β)
M∏
j=1

Nj∏
i=1

(
θjzji

· φzjiwji

)
(3)

Dir(·; ·) is a Dirichlet distribution. If two trajectories are
connected by an edge on the network, they are neighbors.
E is the set of pairs of neighboring trajectories. Ωj is the
set of trajectories that are neighbors of j. In this generative
model, observation i in trajectory j samples its activity la-
bel zji from a discrete distribution parameterized by θj of
trajectory j. Then it samples its word value wji from a dis-
crete distribution specified by the parameter φzji

of activity
zji. φk is sampled from a Dirichlet prior Dir(·;β) with a
flat hyperparameter β.

The first term of Eq 3 adds a smoothness constraint
to θj through a Dirichlet distribution. Let nj′k be the
number of observations assigned to activity k on trajec-
tory j′. Then (

∑
j′∈Ωj

nj′1, . . . ,
∑
j′∈Ωj

nj′K) is the his-
togram of observations assigned to K activity categories on

the neighboring trajectories of j. It is used as the Dirich-
let parameter for θj , after being weighted by a positive
scalar γ and added to a flat prior α. Let ρk = α + γ ·∑
j′∈Ωj

nj′k. According to the properties of the Dirichlet
distribution, if θj ∼ Dir(ρ1, . . . , ρK), the expectation of θj
is (ρ1/

∑
ρk, . . . , ρK/

∑
ρk) and its variation is small if∑

ρk is large. Notice that zji is sampled from θj and θj
has a constraint added by zj′i′ on its neighboring trajecto-
ries. So trajectory j tends to have a similar distribution over
activities as its neighboring trajectories, which means that
they are smooth. A large γ puts a stronger constraint on the
smoothness. If two trajectories are connected by an edge
in the network, they are more likely to correspond to the
same object. So trajectories of the same object tend to have
similar distributions over activities.

5.1. Inference

We do inference by Gibbs sampling. It turns out that
{θj} and {φk} can be integrated out during the Gibbs sam-
pling procedure.

p({zji}, {wji}|α, β, γ)

=
∫
{φk},{φj}

∫
{θk}

p({θj}, {zji}, {wji}|α, β, γ)d{θk}d{φk}, {φj}

∝
∫
{φj}

∫
{θk}

∏
kw

(φkw)β+mkw−1
d{θk}d{φj}∏

j

∏
k

(θjk)α+njk+γ·
∑

j′∈Ωj
nj′k−1

=
∏
k

∏
w Γ(β +mkw)

Γ(W · β +mk·)

∏
j

∏
k Γ
(
α+ njk + γ ·

∑
j′∈Ωj

nj′k

)
Γ
(
K · α+ nj· + γ ·

∑
j′∈Ωj

nj′·

) , (4)

where Γ(·) is the Gamma function, W is the size of the
global codebook, mkw is the number of observations as-
signed to activity k with value w, mk· is the total number
of observations assigned to activity k, njk is the number of
observations assigned to activity k on trajectory j, and nj·
is the total number of observations on trajectory j. Then the
conditional distribution of zji given all the other activity la-
bels z−ji is

p(zji = k|z−ji, {wji}, α, β, γ)

=
β +m−jik,wji

W · β +m−jik,·
·

α+ n−jijk + γ
∑
j′∈Ωj

nj′k

K · α+ n−jij· + γ
∑
j′∈Ωj

nj′·
, (5)

where m−jikwji
, m−jik· , n−jijk , and n−jij· are the same statistics

as mkwji
, mk·, njk, and nj· except that they have excluded

observation i on trajectory j. To have a large posterior in



Eq 5, the first term requires that the value of observation i
should fit the model of activity k, and the second term re-
quires that its activity label is consistent with those of obser-
vations on the same trajectory and neighboring trajectories,
with γ controlling the weight of neighboring trajectories.
The models of activities are not explicitly learnt during the
Gibbs sampling procedure, but they can be estimated from
any single sample of {zji},

φ̂kw =
β + nkw

W · β + nk·
(6)

A trajectory is labeled as activity k, if most of its obser-
vations are assigned to k. The activity label of an observa-
tion can be obtained during the Gibbs sampling procedure
based on Eq. 5. However, there may be an over smooth-
ing effect, since in some cases most of the trajectories being
the neighbors of trajectory j do not correspond the same
object as j. In this work, we adopt an alternative label-
ing approach which actually achieves better performance
in experiments. As shown by the experimental results in
Section 6, the activity models learnt from Gibbs sampling
are distinctive enough to label trajectories. After the activ-
ity models have been learnt and fixed at the of Gibbs sam-
pling which uses Eq. 5 and 6, we ignore the smoothness
constraint among trajectories and label the observation as
zji = arg maxk φ̂kwji .

6. Experimental Results
We evaluate our approach on two data sets, a parking

lot scene and a street scene. There are tracking errors in
both of the two data sets. For example, a track may break
into fragments because of occlusions. As observed from
experiments, our algorithm is robust to tracking errors.

6.1. Parking Lot Scene

The parking lot data set has 22, 951 trajectories, col-
lected from 10 hours during the day time over 3 days. In-
spection shows that it is a fairly busy scene. The topology of
its four cameras is shown in Figure 1 (a). The view of cam-
era 1 has no overlap with other camera views. However, the
gap between views of cameras 1 and 2 is small. The views
of cameras 2 and 3 have small overlap. The views of cam-
eras 3 and 4 have large overlap. Our approach does not re-
quire knowledge of the topology of the cameras. Fourteen
different activities are learnt from this data set. Because
of space limitations, only six activities are shown in Fig-
ure 3. For each activity, we plot its distribution over space
and moving directions in the four cameras and the trajec-
tories clustered into this activity. When visualizing activity
models, moving directions are represented by different col-
ors, and the density of distributions over space and moving
directions is proportion to the brightness of colors. When

plotting trajectories, random colors are used to distinguish
individual trajectories.

In Figure 3, activity 1 is vehicles and pedestrians enter-
ing the parking lot. It has a large extent in space and is
observed by all of the four cameras. In activities 3 and 4,
pedestrians are walking in the same direction but on dif-
ferent paths. From the distributions of their models, it is
observed that the two paths are side by side but well sepa-
rated in space. The path of activity 5 occupies almost the
same region as that of activity 4. However, pedestrians are
moving in opposite directions in these two activities, so the
distributions of their models are plotted in different colors.

6.2. Street Scene

The topology of the four camera views of the street scene
is shown in Figure 1 (b). Camera 1 has a distant view of the
street. Camera 2 zooms in on the top-right part in the view
of camera 1. The view of camera 3 has overlap with the
views of cameras 1 and 2. It extends the top-right part of
the view in camera 1 along the street. The view of camera
4 partially overlaps with the bottom region of the view in
camera 1. There are 14, 985 trajectories in this data set, col-
lected from 30 hours during day time in four days. Seven-
teen activities are learnt in this scene. Again, we only show
the results of 6 activities in Figure 4. Activity 1 is vehicles
moving on the road. It is observed by all four cameras. Ve-
hicles first move from the top-right corner to the bottom-left
corner of the view in camera 4. Then they enter the bottom
region of the view in camera 1 and move upward. Some ve-
hicles disappear at the exit points observed in the views of
cameras 2 and 3, and some move further beyond the view
of camera 3. In activities 2, 4 and 5, pedestrians first walk
along the sidewalk in the view of camera 1, and then cross
the street as observed by camera 4. The paths of activities
2 and 5 occupy similar regions in the view of camera 1, but
their paths diverge in the view of camera 4.

As shown in Figure 3 and 4, the models of activities re-
veal some structures, such as paths commonly taken by ob-
jects, and entrance and exit points in the scene. Some paths
are less related to the appearance of the scene. For exam-
ple, some paths cross the street outside the crosswalk in the
street scene. Usually paths have spatial extents in multiple
cameras, which we call semantic regions. Semantic regions
across cameras can be detected by simply thresholding the
density of the distributions of activities (φk in Eq 3).

6.3. Perplexity

Perplexity is a measure commonly used to evaluate the
performance of clustering algorithms. It is the number of
bits required to encode the data and is proportional to the
negative log likelihood of the data. It measures how unseen
testing data fits the model learnt from training data. Two
hundred randomly sampled trajectories from each camera



Activity 1 Activity 2 Activity 3

Activity 4 Activity 5 Activity 6

Figure 3. Distributions of activity models and clusters of trajectories of the parking lot scene. When plotting the distributions of activity
models (in the four red windows on the top), different colors are used represent different moving directions:→ (red),← (cyan), ↑ (blue), ↓
(magenta). When plotting trajectories clustered into different activities (in the four green windows at the bottom), random colors are used
to distinguish individual trajectories.

serve as the test set; the remaining trajectories are used for
training. To compare models with different trajectory net-
works, the activity models {φk} are learnt with the smooth-

ness constraint added by the trajectory network. Once {φk}
are learnt and fixed, the perplexity is computed on the test
data ignoring the smoothness constraint.



Activity 1 Activity 2 Activity 3

Activity 4 Activity 5 Activity 6

Figure 4. Distributions of activity models and clusters of trajectories of the street scene. The meaning of colors is the same as Figure 3.
See text for details. Because of space limitations only six activities are shown.

First, we compare our approach with two alternatives:
(1) unconnected network; (2) network with random corre-
spondences1. The former completely abandons the smooth-

1First find correspondence candidates using Eq 1. Instead of fully
connecting these candidates as in our model, a trajectory is randomly con-

ing constraint, so it cannot jointly model the distributions
of a single activity in multiple camera views. The latter
simulates the case when correspondence is poor. Both al-
ternatives result in higher perplexity as shown in Table 1.

nected with only one of the candidates in a different camera view.



Our approach Unconnected Random
Parking Lot 130.3 200.3 176.8
Street 85.7 228.8 135.2

Table 1. Perplexity under our approach and two alternative trajec-
tory networks.

1 2 3 4 Random
Parking Lot 120.9 121.3 122.8 123.3 425
Street 40.0 41.5 44.9 42.2 168

Table 2. Perplexity with models trained on a variable number of
cameras. The test data is 200 trajectories from a single camera.
The activity models in that camera are jointly learnt with different
number of cameras (from 1 to 4). The last column is a baseline
model trained on randomly assigned data.

We also compare against models learned with trajecto-
ries from a single to all of the cameras. Models learned
from a subset of the cameras will necessarily have lower
perplexity for trajectories within those cameras; however,
they are limited to modeling joint activities only in a subset
of the cameras. Our model captures joint activities in all
cameras simultaneously, and only exhibits a small increase
in perplexity as shown in Table 2.

6.4. Temporal Threshold

The temporal threshold T in Eq 1 determines the connec-
tivity in the trajectory network. If a camera view A is dis-
joint from other views and it takes objects more than T sec-
onds to cross the smallest gap between A and other views,
then there is no way to extend the path in A to other views.
If T is large and the scene is busy, there will be too many
connected trajectories in the network even though they do
not correspond to the same activities. Under-smoothing
could lead to the same activity separated into different clus-
ters, while over-smoothing could lead to different activities
joined into the same cluster. Empirically, we achieved sim-
ilar results with a wide range of values for T : for the street
scene data set, good results are achieved when T varies be-
tween 0 and 30 seconds; for the parking lot data set, the
range of good values of T is roughly from 3 to 15 seconds
because the parking lot scene is busier and the view of cam-
era 1 is disjoint from other camera views.

7. Conlusion

We propose a framework to model activities and cluster
trajectories over a multi-camera network. It is unsupervised
and does not require first solving the challenging multi-
camera correspondence problem. Experiments on two data
sets including a very large number of trajectories explain
the effectiveness of this approach.
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