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Abstract

Image re-ranking, as an effective way to improve the re-
sults of web-based image search, has been adopted by cur-
rent commercial search engines. Given a query keyword, a
pool of images are first retrieved by the search engine based
on textual information. By asking the user to select a query
image from the pool, the remaining images are re-ranked
based on their visual similarities with the query image. A
major challenge is that the similarities of visual features do
not well correlate with images’ semantic meanings which
interpret users’ search intention. On the other hand, learn-
ing a universal visual semantic space to characterize highly
diverse images from the web is difficult and inefficient.

In this paper, we propose a novel image re-ranking
framework, which automatically offline learns different vi-
sual semantic spaces for different query keywords through
keyword expansions. The visual features of images are pro-
jected into their related visual semantic spaces to get se-
mantic signatures. At the online stage, images are re-ranked
by comparing their semantic signatures obtained from the
visual semantic space specified by the query keyword. The
new approach significantly improves both the accuracy and
efficiency of image re-ranking. The original visual features
of thousands of dimensions can be projected to the seman-
tic signatures as short as 25 dimensions. Experimental re-
sults show that 20% — 35% relative improvement has been
achieved on re-ranking precisions compared with the state-
of-the-art methods.

1. Introduction

Web-scale image search engines mostly use keywords as
queries and rely on surrounding text to search images. It is
well known that they suffer from the ambiguity of query
keywords. For example, using “apple” as query, the re-
trieved images belong to different categories, such as “red
apple”, “apple logo”, and “apple laptop”. Online image re-
ranking has been shown to be an effective way to improve
the image search results [5, 4, 9]. Major internet image
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Figure 1. The conventional image re-ranking framework.

search engines have since adopted the re-ranking strategy
[5]. Its diagram is shown in Figure 1. Given a query key-
word input by a user, according to a stored word-image in-
dex file, a pool of images relevant to the query keyword
are retrieved by the search engine. By asking a user to se-
lect a query image, which reflects the user’s search inten-
tion, from the pool, the remaining images in the pool are
re-ranked based on their visual similarities with the query
image. The visual features of images are pre-computed of-
fline and stored by the search engine. The main online com-
putational cost of image re-ranking is on comparing visual
features. In order to achieve high efficiency, the visual fea-
ture vectors need to be short and their matching needs to be
fast.

Another major challenge is that the similarities of low-
level visual features may not well correlate with images’
high-level semantic meanings which interpret users’ search
intention. To narrow down this semantic gap, for offline im-
age recognition and retrieval, there have been a number of
studies to map visual features to a set of predefined concepts
or attributes as semantic signature [11, 7, 15]. However,
these approaches are only applicable to closed image sets of
relatively small sizes. They are not suitable for online web-



based image re-ranking. According to our empirical study,
images retrieved by 120 query keywords alone include more
than 1500 concepts. Therefore, it is difficult and inefficient
to design a huge concept dictionary to characterize highly
diverse web images.

1.1. Our Approach

In this paper, a novel framework is proposed for web im-
age re-ranking. Instead of constructing a universal concept
dictionary, it learns different visual semantic spaces for dif-
ferent query keywords individually and automatically. We
believe that the semantic space related to the images to be
re-ranked can be significantly narrowed down by the query
keyword provided by the user. For example, if the query
keyword is “apple”, the semantic concepts of “mountains”
and “Paris” are unlikely to be relevant and can be ignored.
Instead, the semantic concepts of “computers” and “fruit”
will be used to learn the visual semantic space related to
“apple”. The query-specific visual semantic spaces can
more accurately model the images to be re-ranked, since
they have removed other potentially unlimited number of
non-relevant concepts, which serve only as noise and dete-
riorate the performance of re-ranking in terms of both accu-
racy and computational cost. The visual features of images
are then projected into their related visual semantic spaces
to get semantic signatures. At the online stage, images are
re-ranked by comparing their semantic signatures obtained
from the visual semantic space of the query keyword.

Our experiments show that the semantic space of a query
keyword can be described by just 20 — 30 concepts (also
referred as “reference classes” in our paper). Therefore
the semantic signatures are very short and online image re-
ranking becomes extremely efficient. Because of the large
number of keywords and the dynamic variations of the web,
the visual semantic spaces of query keywords need to be au-
tomatically learned. Instead of manually defined, under our
framework this is done through keyword expansions.

Another contribution of the paper is to introduce a large
scale benchmark database' with manually labeled ground
truth for the performance evaluation of image re-ranking.
It includes 120, 000 labeled images of around 1500 cate-
gories (which are defined by semantic concepts) retrieved
by the Bing Image Search using 120 query keywords. Ex-
periments on this benchmark database show that 20%—35%
relative improvement has been achieved on re-ranking pre-
cisions with much faster speed by our approach, compared
with the state-of-the-art methods.

1.2. Related Work

Content-based image retrieval uses visual features to cal-
culate image similarity. Relevance feedback [13, 16, 14]
was widely used to learn visual similarity metrics to capture

Uhttp://mmlab.ie.cuhk.edu.hk/CUHKSR/Dataset.htm
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users’ search intention. However, it required more users’
effort to select multiple relevant and irrelevant image ex-
amples and often needs online training. For a web-scale
commercial system, users’ feedback has to be limited to the
minimum with no online training. Cui et al. [5, 4] proposed
an image re-ranking approach which limited users’ effort to
just one-click feedback. Such simple image re-ranking ap-
proach has been adopted by popular web-scale image search
engines such as Bing and Google recently, as the "find sim-
ilar images” function.

The key component of image re-ranking is to compute
the visual similarities between images. Many image fea-
tures [8, 6, 2, 10] have been developed in recent years. How-
ever, for different query images, low-level visual features
that are effective for one image category may not work well
for another. To address this, Cui et al. [5, 4] classified the
query images into eight predefined intention categories and
gave different feature weighting schemes to different types
of query images. However, it was difficult for only eight
weighting schemes to cover the large diversity of all the web
images. It was also likely for a query image to be classified
to a wrong category.

Recently, for general image recognition and matching,
there have been a number of works on using predefined con-
cepts or attributes as image signature. Rasiwasia et al. [11]
mapped visual features to a universal concept dictionary.
Lampert et al. [7] used predefined attributes with semantic
meanings to detect novel object classes. Some approaches
[1, 15, 12] transferred knowledge between object classes
by measuring the similarities between novel object classes
and known object classes (called reference classes). All
these concepts/attributes/reference-classes were universally
applied to all the images and their training data was manu-
ally selected. They are more suitable for offline databases
with lower diversity (such as animal databases [7, 12] and
face databases [15]) such that object classes better share
similarities. To model all the web images, a huge set of
concepts or reference classes are required, which is imprac-
tical and ineffective for online image re-ranking.

2. Approach Overview

The diagram of our approach is shown in Figure 2. At
the offline stage, the reference classes (which represent dif-
ferent semantic concepts) of query keywords are automat-
ically discovered. For a query keyword (e.g. “apple”), a
set of most relevant keyword expansions (such as “red ap-
ple”, “apple macbook”, and “apple iphone”) are automati-
cally selected considering both textual and visual informa-
tion. This set of keyword expansions defines the reference
classes for the query keyword. In order to automatically ob-
tain the training examples of a reference class, the keyword
expansion (e.g. “red apple”) is used to retrieve images by
the search engine. Images retrieved by the keyword expan-
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Figure 2. Diagram of our new image re-ranking framework.

sion (“red apple”) are much less diverse than those retrieved
by the original keyword (“apple”). After automatically re-
moving outliers, the retrieved top images are used as the
training examples of the reference class. Some reference
classes (such as “apple laptop” and “apple macbook’) have
similar semantic meanings and their training sets are visu-
ally similar. In order to improve the efficiency of online
image re-ranking, redundant reference classes are removed.

For each query keyword, a multi-class classifier on low-
level visual features is trained from the training sets of its
reference classes and stored offline. If there are K types
of visual features, one could combine them to train a single
classifier. It is also possible to train a separate classifier for
each type of features. Our experiments show that the latter
choice can increase the re-ranking accuracy but will also
increase storage and reduce the online matching efficiency
because of the increased size of semantic signatures.

An image may be relevant to multiple query keywords.
Therefore it could have several semantic signatures ob-
tained in different semantic spaces. According to the word-
image index file, each image in the database is associated
with a few relevant keywords. For each relevant keyword, a
semantic signature of the image is extracted by computing
the visual similarities between the image and the reference
classes of the keyword using the classifiers trained in the
previous step. The reference classes form the basis of the
semantic space of the keyword. If an image has NV relevant
keywords, then it has NV semantic signatures to be computed
and stored offline.

At the online stage, a pool of images are retrieved by
the search engine according to the query keyword input by

a user. Since all the images in the pool are relevant to the
query keyword, they all have pre-computed semantic signa-
tures in the semantic space of the query keyword. Once the
user chooses a query image, all the images are re-ranked by
comparing similarities of the semantic signatures.

2.1. Discussion on Computational Cost and Storage

Compared with the conventional image re-ranking dia-
gram shown in Figure 1, our approach is much more effi-
cient at the online stage, because the main computational
cost of online image re-ranking is on comparing visual fea-
tures or semantic signatures and the lengths of semantic sig-
natures are much shorter than those of low-level visual fea-
tures. For example, the visual features used in [5] are of
more than 1,700 dimensions. Based on our experimental
results, each keyword has 25 reference classes on average.
If only one classifier is trained combining all types of visual
features, the semantic signatures are of 25 dimensions on
average. If separate classifiers are trained for different types
of visual features, the semantic signatures are of 100 — 200
dimensions®>. However, our approach needs extra offline
computation and storage. According to our experimental
study, it takes 20 hours to learn the semantic spaces of 120
keywords using a machine with Intel Xeon W5580 3.2G
CPU. The total cost linearly increases with the number of

2In our experiments, 120 query keywords are considered. However,
the keyword expansions, which define the reference classes, are from a
very large dictionary used by the web search engine. They could be any
words and are not limited to the 120 ones. Different query keywords are
processed independently. Therefore, even if more query keywords are con-
sidered, the averaged dimensions of semantic signatures of each query key-
word will not increase.
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query keywords, which can be processed in parallel. Given
1000 CPUs, we will be able to process 100,000 query key-
words in one day. With the fast growth of GPUs, which
achieve hundreds of times of speedup than CPU, it is fea-
sible to process the industrial scale queries. The extra stor-
age of classifiers and semantic signatures are comparable
or even smaller than the storage of visual features of im-
ages. In order to periodically update the semantic spaces,
one could repeat the offline steps. However, a more effi-
cient way is to adopt the framework of incremental learning
[3]. This will be left to the future work.

3. Discovery of Reference Classes
3.1. Keyword Expansion

For a keyword g, we automatically define its reference
classes through finding a set of keyword expansions E(q)
most relevant to ¢. To achieve this, a set of images S(q)
are retrieved by the search engine using ¢ as query based on
textual information. Keyword expansions are found from
the words extracted from the images in S(q)*. A keyword
expansion e € E, is expected to frequently appear in S(g).
In order for reference classes to well capture the visual con-
tent of images, we require that there is a subset of images
which all contain e and have similar visual content. Based
on these considerations, keyword expansions are found in a
search-and-rank way as follows.

For each image I € S(q), all the images in S(g) are re-
ranked according to their visual similarities (defined in [5])
to I. The T most frequent words W; = {w},w?, - ,wl}
among top D re-ranked images are found. If a word w is
among the top ranked image, it has a ranking score r(w)
according to its ranking order; otherwise r(w) = 0,

{

The overall score of a word w is its accumulated ranking
scores over all the images,

r(w) = Zrl(w).
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The P words with highest scores are selected and com-
bined with the original keyword ¢ to form keyword expan-
sions, which define the reference classes. In our experiment,
T=3,D=16,and P = 30.

3.2. Training Images of Reference Classes

In order to automatically obtain the training images of
reference classes, each keyword expansion e is used to re-
trieve images from the search engine and top K images are

3Words are extracted from filenames, ALT tags and surrounding text of
images. They are stemmed and stop words are removed.
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kept. Since the keyword expansion e has less semantic am-
biguity than the original keyword ¢, the images retrieved
by e are much less diverse than those retrieved by q. After
removing outliers by k-means clustering, these images are
used as the training examples of the reference class. In our
approaches, the cluster number of k-means is set as 20 and
clusters of sizes smaller than 5 are removed as outliers.

3.3. Redundant Reference Classes

Some keyword expansions, e.g. “apple laptop” and “ap-
ple macbook™, are pair-wisely similar in both semantics
and visual appearances. In order to reduce computational
cost we need to remove some redundant reference classes,
which cannot increase the discriminative power of the se-
mantic space. To compute similarity between two reference
classes, we use half of the data in both classes to train a
SVM classifier to classify the other half data of the two
classes. If they can be easily separated, then the two classes
are considered not similar.

Suppose n reference classes are obtained from the pre-
vious steps. The training images of reference class ¢ are
split into two sets, A} and A?. In order to measure the dis-
tinctness D(4,j) between two reference classes ¢ and j, a
two-class SVM is trained from A} and Aj. For each image
in A2, the SVM classifier output a score indicating its prob-
ability of belonging to class 7. Assume the averaging score
over A? is p;. Similarly, the averaging score p; over A? is
also computed. Then D(¢, j) = h((p; + p;)/2), where h is
a monotonically increasing function. In our approach, it is
defined as

h(p) =1 — e PlPme), 3)

where 8 and « are two constants. When (p; + p;)/2 goes
below the threshold «, h(p) decreases very quickly so as to
penalize pair-wisely similar reference classes. We empiri-
cally choose oo = 0.6 and 8 = 30.

3.4. Reference Class Selection

We finally select a set of reference classes from the n
candidates. The keyword expansions of the selected refer-
ence classes are most revelant to the query keyword g. The
relevance is defined by Eq (2) in Section 3.1. Meanwhile,
we require that the selected reference classes are dissimilar
with each other such that they are diverse enough to charac-
terize different aspects of its keyword. The distinctiveness
is measured by the n x n matrix D defined in Section 3.3.
The two criterions are simultaneously satisfied by solving
the following optimization problem.

We introduce an indicator vector y € {0,1}" such that
y; = 1 indicates reference class ¢ is selected and y; = 0
indicates it is removed. y is estimated by solving,

ARy +y Dy} .
g I, ARy Dy}

“)



Let e; be the keyword expansion of reference class i. R =
(r(e1),...,r(en)), where r(e;) is defined in Eq (2). A is
the scaling factor used to modulate the two criterions. Since
integer quadratic programming is NP hard, we relax y to be
in R™ and select reference classes 7 whose y; > 0.5.

4. Semantic Signatures

Given M reference classes for keyword ¢ and their train-
ing images automatically retrieved, a multi-class classifier
on the visual features of images is trained and it outputs an
M -dimensional vector p, indicating the probabilities of a
new image I belonging to different reference classes. Then
p is used as semantic signature of /. The distance between
two images I and I® are measured as the L,-distance be-
tween their semantic signatures p® and p?,

d(1,1°) = [|p* =", - (5)

4.1. Combined Features vs Separate Features

In order to train the SVM classifier, we adopt six types
of visual features used in [5]: attention guided color sig-
nature, color spatialet, wavelet, multi-layer rotation invari-
ant edge orientation histogram, histogram of gradients, and
GIST. They characterize images from different perspectives
of color, shape, and texture. The combined features have
around 1, 700 dimensions in total.

A natural idea is to combine all types of visual features
to train a single powerful SVM classifier which better dis-
tinguish different reference classes. However, the purpose
of using semantic signatures is to capture the visual content
of an image, which may belong to none of the reference
classes, instead of classifying it into one of the reference
classes. If there are IV types of independent visual features,
it is actually more effective to train separate SVM classi-
fiers on different types of features and to combine the NV
semantic signatures {p" }_, from the outputs of N classi-
fiers. The N semantic signatures describe the visual con-
tent of an image from different aspects (e.g. color, texture,
and shape) and can better characterize images outside the
reference classes. For example, in Figure 3, “red apple”
and “apple tree” are two reference classes. A new image
of “green apple” can be well characterized by two semantic
signatures from two classifiers trained on color features and
shape features separately, since “green apple” is similar to
“red apple” in shape and similar to “apple tree” in color.

Then the distance between two images I* and bis,

N
A1, 1% =" w, [Jp" = p""|, 6)
n=1

where w,, is the weight on different semantic signatures and
it is specified by the query image I selected by the user. w,,
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Figure 3. Describe “green apple” using reference classes. Its shape
is captured by shape classifier of “red apple* and its color is cap-
tured by color classifier of “apple tree”.
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is decided by the entropy of p*™,

1
Wn = 1+ cH(p*m)’ (7N
M
H(p®")==> p{"Inpy™". ®)
=1

If p®™ uniformly distributes over reference classes, the nth
type of visual features of the query image cannot be well
characterized by any of the reference classes and we assign
a low weight to this semantic signature.

S. Experimental Results

The images for testing the performance of re-ranking
and the images of reference classes can be collected at dif-
ferent time* and from different search engines. Given a
query keyword, 1000 images are retrieved from the whole
web using certain search engine. As summarized in Ta-
ble 1, we create three data sets to evaluate the perfor-
mance of our approach in different scenarios. In data set I,
120, 000 testing images for re-ranking were collected from
the Bing Image Search using 120 query keywords in July
2010. These query keywords cover diverse topics includ-
ing animal, plant, food, place, people, event, object, scene,
etc. The images of reference classes were also collected
from the Bing Image Search around the same time. Data
set IT use the same testing images for re-ranking as in data
set I. However, its images of reference classes were col-
lected from the Google Image Search also in July 2010. In
data set III, both testing images and images of reference
classes were collected from the Bing Image Search but at
different time (eleven months apart)>. All testing images
for re-ranking are manually labeled, while images of refer-
ence classes, whose number is much larger, are not labeled.

4The update of reference classes may be delayed.

51t would be closer to the scenario of real applications if the testing
images were collected later than the images of reference classes. However,
such data set is not available for now. Although data set III is smaller than
data set I, it is comparable with the data set used in [5].
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Figure 4. (a)-(c): comparisons of averaged top m precisions on data set I, II, III. (d)-(e): histograms of improvements of averaged top 10
precisions on data sets I and II by comparing QSVSS_Multiple with Adaptive Weighting. (f): improvements of averaged top 10 precisions
of the 10 query keywords on data set III by comparing QSVSS_Multiple with Adaptive Weighting.

5.1. Re-ranking precisions

We invited five labelers to manually label testing images
under each query keywords into different categories accord-
ing to their semantic meanings. Image categories were care-
fully defined by the five labelers through inspecting all the
testing images under a query keyword. Each image was la-
beled by at least three labelers and its label was decided by
voting. A small portion of the images are labeled as out-
liers and not assigned to any category (e.g., some images
are irrelevant to the query keywords).

Averaged top m precision is used as the evaluation crite-
rion. Top m precision is defined as the proportion of rele-
vant images among top m re-ranked images. Relevant im-
ages are those in the same category as the query image. Av-
eraged top m precision is obtained by averaging top m pre-
cision for every query image (excluding outliers). We adopt
this criterion instead of the precision-recall curve since in
image re-ranking, the users are more concerned about the
qualities of top retrieved images instead of number of rele-
vant images returned in the whole result set.

We compare with two benchmark image re-ranking ap-
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proaches used in [5]. They directly compare visual fea-
tures. (1) Global Weighting. Predefined fixed weights are
adopted to fuse the distances of different low-level visual
features. (2) Adaptive Weighting. [5] proposed adaptive
weights for query images to fuse the distances of differ-
ent low-level visual features. It is adopted by Bing Image
Search.

For our new approaches, two different ways of comput-
ing semantic signatures as discussed in Section 4.1 are com-
pared.

e Query-specific visual semantic space using single sig-
natures (QSVSS_Single). For an image, a single se-
mantic signature is computed from one SVM classifier
trained by combining all types of visual features.

e Query-specific visual semantic space using multiple
signatures (QSVSS_Multiple). For an image, multiple
semantic signatures are computed from multiple SVM
classifiers, each of which is trained on one type of vi-
sual features separately.

Some parameters used in our approach as mentioned in Sec-



tions 3 and 4 are tuned in a small separate data set and they
are fixed in all the experiments.

The averaged top m precisions on data sets I-III
are shown in Figure 4 (a)-(c). Our approach signifi-
cantly outperforms Global Weighting and Adaptive Weight-
ing, which directly compare visual features. On data
set I, our approach enhances the averaged top 10 pre-
cision from 44.41% (Adaptive Weighting) to 55.12%
(QSVSS_Multiple). 24.1% relative improvement has been
achieved. Figure 4 (d) and (e) show the histograms
of improvements of averaged top 10 precision of the
120 query keywords on data set I and II by comparing
QSVSS_Multiple with Adaptive Weighting. Figure 4 (f)
shows the improvements of averaged top 10 precision of
the 10 query keywords on data set III.

In our approach, computing multiple semantic signa-
tures from separate visual features has higher precisions
than computing a single semantic signature from combined
features. However, it costs more online computation since
the dimensionality of multiple semantic signatures is higher.
Comparing Figure 4 (a) and Figure 4 (b), if the testing
images for re-ranking and images of reference classes are
collected from different search engines, the performance is
slightly lower than the case when they are collected from the
same search engine. However, it is still much higher than di-
rectly comparing visual features. This indicates that we can
utilize images from various sources to learn query-specific
semantic spaces. As shown in Figure 4 (c), even if the test-
ing images and images of reference classes are collected at
different times (eleven months apart), query specific seman-
tic spaces still can effectively improve re-ranking. Com-
pared with Adaptive Weighting, the averaged top 10 preci-
sion has been improved by 6.6% and the averaged top 100
precision has been improved by 9.3%. This indicates that
once the query-specific semantic spaces are learned, they
can remain effective for a long time and do not have to be
updated frequently.

5.2. Online efficiency

The online computational cost of image re-ranking de-
pends on the length of visual feature (if directly compar-
ing visual features) or semantic signatures (if using our ap-
proach). In our experiments, the visual features have around
1,700 dimensions, and the averaged number of reference
classes per query is 25. Therefore the length of the sin-
gle semantic signature (QSVSS_Single) is 25 on average.
Since six types of visual features are used, the length of
the multiple semantic signatures (QSVSS_Multiple) is 150.
It takes 12ms to re-rank 1000 images matching the visual
features, while QSVSS_Multiple and QSVSS_Single only
need 1.14ms and 0.2ms respectively. Given the large im-
provement of precisions our approach has achieved, it also
improves the efficiency by around 10 to 60 times compared
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Figure 5. Comparisons of averaged top m precisions of re-ranking
images outside reference classes and using universal semantic
space on data set III.

with matching visual features.

5.3. Re-ranking images outside the reference classes

It is interesting to know whether the learned query-
specific semantic spaces are effective for query images
which are outside the reference classes. To answer this
question, if the category of an query image corresponds
to a reference class, we deliberately delete this reference
class and use the remaining reference classes to train SVM
classifiers and to compute semantic signatures when com-
paring this query image with other images. We repeat
this for every image and calculate the average top m pre-
cisions. This evaluation is denoted as RmCategoryRef
and is done on data set ITI°. Multiple semantic signatures
(QSVSS_Multiple) are used. The results are shown in Fig-
ure 5. It still greatly outperforms the approaches of directly
comparing visual features. This result can be explained
from two aspects. (1) As discussed in Section 4.1, the multi-
ple semantic signatures obtained from different types of vi-
sual features separately have the capability to characterize
the visual content of images outside the reference classes.
(2) Many negative examples (images belonging to different
categories than the query image) are well modeled by the
reference classes and are therefore pushed backward on the
ranking list.

5.4. Query-specific semantic space vs. universal

semantic space

In previous works [11, 7, 1, 15, 12], a universal set of
reference classes or concepts were used to map visual fea-
tures to a semantic space for object recognition or image
retrieval on closed databases. In this experiment, we evalu-
ate whether this approach is applicable to web-based image
re-ranking and compare it with our approach. We randomly
select M reference classes from the whole set of reference
classes of all the 120 query keywords in data set I. The M

6We did not do this evaluation on the larger data set I or IT because it is
very time consuming. For every query image, the SVM classifiers have to
be re-trained.



selected reference classes are used to train a universal se-
mantic space in a way similar to Section 4.1. Multiple se-
mantic signatures are obtained from different types of fea-
tures separately. This universal semantic space is applied to
data set III for image re-ranking. The averaged top m pre-
cisions are shown in Figure 5. M is chosen as 25, 80, 120
and 1607. This method is denoted as UnivM Classes. When
the universal semantic space chooses the same number (25)
of reference classes as our query-specific semantic spaces,
its precisions are no better than visual features. Its preci-
sions increase when a larger number of reference classes
are selected. However, the gain increases very slowly when
M is larger than 80. Its best precisions (when M = 160)
are much lower than QSVSS_Multiple and even lower than
RmCategoryRef, even though the length of its semantic sig-
natures is five times larger than ours.

5.5. User study

User experience is critical for web-based image search.
In order to fully reflect the extent of users’ satisfaction, user
study is conducted to compare the results of our approach
(QSVSS_Multiple) compared with Adaptive Weighting on
data set I. Twenty users are invited. Eight of them are fa-
miliar with image search and the other twelve are not. To
avoid bias on the evaluation, we ensure that all the par-
ticipants do not have any knowledge about the current ap-
proaches for image re-ranking, and they are not told which
results are from which methods. Each user is assigned
20 queries and is asked to randomly select 30 images per
query. Each selected image is used as a query image and
the re-ranking results of Adaptive Weighting and our ap-
proach are shown to the user. The user is required to indi-
cate whether our re-ranking result is “Much Better”, “Bet-
ter”, “Similar”, “Worse”, or “Much Worse” than that of
Adaptive Weighting. 12,000 user comparison results are
collected. The comparison results are shown in Figure 6.
In over 55% cases our approach delivers better results than
Adaptive Weighting and only in less than 18% cases ours
is worse, which are often the noisy cases with few images
relevant to the query image exists.

Please find examples of search results of different re-
ranking methods from the project web page 8.

6. Conclusion

We propose a novel image re-ranking framework, which
learns query-specific semantic spaces to significantly im-
prove the effectiveness and efficiency of online image re-
ranking. The visual features of images are projected into
their related visual semantic spaces automatically learned

7We stop evaluating larger M because training a multi-class SVM clas-
sifier on hundreds of classes is time consuming.
Shttp://mmlab.ie.cuhk.edu.hk/CUHKSR/Project.htm
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Figure 6. Comparison results of user study on data set I.

through keyword expansions at the offline stage. The ex-
tracted semantic signatures can be 70 times shorter than the
original visual feature on average, while achieve 20% —35%
relative improvement on re-ranking precisions over state-of-
the-art methods.
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