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∗Abstract: Manifold learning concerns the local manifold 
structure of high dimensional data and many related 
algorithms have been developed to improve image 
classification performance. None of them, however, takes 
the relationships among pixels in images and the 
geometrical properties of diversity of images together into 
account during learning the reduced space. In this paper, 
we propose a linear approach, called two-dimensional 
maximum local variation (2DMLV), for face recognition. 
In 2DMLV, we encode the relationships among pixels in 
image by using the image Euclidean distance instead of 
conventional Euclidean distance in estimating the 
variation of values of images, and then incorporate the 
local variation, which characterizes the diversity of images 
and discriminating information, into the objective function 
of dimensionality reduction. Extensive experiments 
demonstrate the effectiveness of our approach. 
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1. Introduction 

In recent years, statistical pattern recognition research has 
witnessed a growing interest in linear dimensionality 
reduction (DR) techniques [1-8].DR aims to seek a low- 
dimension space that best preserves the intrinsic 
geometrical structure embedded in the high-dimensional 
data space. Two of the most popular techniques for this 
purpose are Principal Component Analysis (PCA) [1,9] 
and Linear Discriminant Analysis (LDA) [2,9]. PCA [9] 
seeks to find a projection direction along which the data 
have the maximum variance and unfolds the global 
Euclidean geometrical structure of data. LDA, as a 
supervised approach, searches for the projection axes on 
which the data points of different classes are far from each 
other while requiring data points of the same class to be 
close to each other [9]. Applying PCA and LDA 
techniques into data representation and classification, 
many approaches have been developed in the literature [1, 
2, 10-17]. 

However, most real-life data such as face images 
possibly reside on a linearly inseparable submanifold of 
the observed data space [3,18,19]. Thus, the above- 
mentioned approaches fail in discovering the underlying 
structure of high-dimensional data space because they 
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only capture the global Euclidean structure of data. Kernel 
learning is usually considered effective in discovering the 
geometrical structure of the data manifold [20-22]. The 
basic idea of kernel techniques is to implicitly map the 
observed data into potentially much higher dimensional 
feature space by using a kernel trick and perform linear 
dimensionality reduction techniques, such as PCA and 
LDA, in feature space. However, an open question of 
these approaches is how to preserve the geometrical 
relationship embedded in the training data. 

Recently, geometrically motivated approaches (also 
called manifold learning approaches), which are 
straightforward in discovering the geometric structure of 
the data manifold, have been shown to be successful in 
improving the recognition performance of image 
classification [3-5, 23-36]. Two of the most prevalent 
linear approaches are Locality Preserving Projection (LPP) 
[3] and Isometric Projection (IsoP) [36]. LPP maps nearby 
points in the high-dimensional data space to nearby points 
with the low-dimensional representation. Motivated by 
LPP, many linear approaches have been developed in 
many areas [23-36]. Although their motivations are 
different, both of them can be unified within a 
graph-embedding framework [4] and preserve the intrinsic 
geometrical structure by minimizing the sum of distances, 
i.e. variance between nearby data points. In the ideal case, 
the nearby data points are mapped to a single point in the 
reduced space. Thus, these methods ignore the variation, 
which characterizes the different geometrical properties, 
i.e. diversity of data, and do not unfold the manifold 
structure of data [29, 37-38]. Another limitation is that 
they may impair the local topology of data, leading to 
unstable intrinsic structure representation [39-40]. 

IsoP, which is a linear approximation of Isomap [18], 
discovers the intrinsic geometrical structure of data by 
preserving all the pairwise distances. Motivated by Isop 
and PCA, Weinberger and Saul proposed maximum 
variance unfolding (MVU) method for nonlinear DR [38]. 
MVU unfolds the manifold structure and preserves the 
diversity of patterns by maximizing the sum total of their 
pairwise distances with preserving the distances between 
nearby points. However, some limitations are exposed 
when MVU is applied to image recognition. The first 
limitation is the out-of-sample problem. The second 
limitation is that it may impair the diversity among nearby 
images and does not well unfold the local manifold 
structure that is important for image recognition, because 
the objective function of MVU emphasizes the large 
distance pair points and deemphasizes the small distance 
pair points. The third limitation is that MVU does not well 
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detect the local discriminating information. The fourth 
limitation is that MVU does not take into account the 
spatial relationships among pixels in images. Therefore, it 
is sensitive to the perturbation of images [41-42]. 

Combining the aforementioned insight into the 
dimensionality reduction, and motivated by MVU and 
two-dimensional techniques, such as 2DPCA [11] that 
avoids transforming image matrix into image vector and 
has better recognition accuracy, we propose a novel linear 
approach, namely two-dimensional maximum local 
variation (2DMLV), to detect the geometrical properties of 
diversity of images in this paper. In 2DMLV, we first 
define the local variation of vector-valued variables, which 
may characterizes both the diversity and discriminating 
information of images, and then encode the spatial 
relationships among pixels by employing image Euclidean 
distance instead of conventional Euclidean distance in 
measuring the local variation. Thus, by maximizing local 
variation, we obtain a low-dimensional space that well 
encodes the discriminating information of images and 
preserves the intrinsic geometrical structure that 
characterizes the diversity of images and is not sensitive to 
the perturbation of images. Extensive experiments 
demonstrate the effectiveness of our approach. 

The rest of this paper is organized as follows. Section 2 
introduces some related work. Section 3 presents the 
motivation and formulation of 2DMLV. Section 4 presents 
2DMLV+2DPCA approach to further reduce the 
dimensionality. Section 5 provides a discussion of 
2DMLV in detail. Section 6 shows the experimental 
results. Some conclusions are drawn in Section 7. 

2. Related work 

During the past decade, lots of manifold learning 
approaches have been developed to preserve the local 
intrinsic structure of data, among which two of the popular 
techniques are LPP and MVU. LPP seeks to preserve the 
intrinsic geometry of the data and the local structures. 
Given training data matrix [ ]NX xxx  21=  and a k 
nearest neighbor graph { }SXG ,=  with weight matrix 
S , the objective function of LPP is as follows[3]: 

( )∑ −
ji

ijji Syy
,

2min
y

              (1) 

where iy  is the low dimensional representation of ix , 

the elements ijS are defined as in [3]. 
In the ideal case, the objective function (1) maps nearby 

data points to be a single point in the reduced space. Thus, 
Eq. (1) ignores the variation, which characterizes the 
diversity of data, and does not unfold the manifold 
structure. Moreover, Eq. (1) emphasizes the pair points 
with large distance and does not guarantee that the larger 
the distance between nearby two points is, the further they 
are embedded in the low-dimensional space. Thus, Eq.(1) 
may impairs the local topology of data [29]. 

MVU aims at finding low-dimensional representations 
that can pull the data points apart with the locally 
distance-preserving constraint [37, 38]. Let iy  is the low 
dimensional representation of ix . The optimal maps can 
be obtained by solving the following maximization 
problem. 
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where 1=ijη  means that ix  and jx  are k-nearest 
neighbors. 

Comparing the objective function (2) with the objective 
function (1), we can see that, different from LPP, which 
preserves the local intrinsic structure of data by 
minimizing the variance of data, MVU maximizes the 
variance of data to preserve the intrinsic structure and 
helps to unfolding the manifold structure and 
characterizing the diversity of data [38]. However, the 
objective function (2) has the aforementioned limitations 
due to the facts that it ignores the relationships among 
pixels in faces,and faces in a local neighborhood usually 
come from different classes. 

3. Two-dimensional Maximum local variance 

3.1 Motivation 
Given an arbitrary image matrix nmRA ×∈ , our objective 
is to find a lower dimensional feature vector mR∈y  by 
applying linear transformation αy A= , where α  is the 
projection vector. The problem addressed in the paper is 
how to estimate α  such that both the local intrinsic 
structure, which characterizes the diversity of images, and 
discriminating information are preserved well. As 
aforementioned analysis, local diversity and intrinsic 
structure can be preserved by maximizing the variance of 
data in the local neighborhoods [35, 37, 38, 40]. Moreover, 
image Euclidean distance considers the relationships 
among pixels in images and is insensitive to the 
perturbation of images [41, 42]. Figure 1 shows 3 nearby 
images, where (a) and (b) belong to the same person, and 
(c) belongs to another person. Computing the Euclidean 
distance yields ( ) 2.1489, =bad  and ( ) 5.1334, =cad  
while the image Euclidean distance between them are 
respectively ( ) 9583.4, =badIED  and ( ) 9269.5, =cadIED . 
Therefore, maximizing the image Euclidean distance helps 
to encoding the local discriminating information. In the 
following section, we first present the definition of 
variation of the vector-valued variables and then encode 
the relationships among pixels in images into the variation 
of a vector-valued variables. 

 

(a) (b) (c)  
Figure 1. Three nearby images from different persons. 

3.2 Variation of vector-valued variable 
Variance is the mean of the squared deviation of that 
variable from its mean and characterizes the amount of 
variation of the values of that variable. For a vector-valued 
random variable mR∈y , each element jy  in y  can be 
viewed as a random variable, thus the sum total of the 
amount of variation of the values of each element jy  in 
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y  effectively characterizes the amount of variation of the 
values of vector y . Thus, the variation of random vector 

nR∈y  is 
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where jy  is a random variable and denotes the j th 

element in y . jy  is the mean of random variable jy . 

y  denotes the mean of random variable y . ( )Tyy −  is 

the transpose of ( )yy − . 

Given N random vectors m
i R∈y , Eq. (3) becomes: 
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where ∑= =
N
i iN 11 yy  is the mean of N  vectors. 

By simple algebraic formulation, we see that 
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3.3 Local variation 

Given training images nm
i RA ×∈ ( Ni ,,1  = ). Let 

m
i R∈y  be the low-dimensional representations of iA . 

According to Eq. (5), the variation of the low- dimensional 
representations in the local neighborhood k

iΩ  can be 
defined as follows: 
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where 
( ) ( ){ }jiijj

k
i AorAofneighborsnearestkamongisAorA|y=Ω Thus, 

the total local variation of the low-dimensional 
representations is 
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Let 1=jlV  if jA  is among k  nearest neighbors of 

lA  or lA  is among k nearest neighbors of jA , 
otherwise 0=jlV . Substituting jlV  into Eq. (7), Eq. (7) 
becomes 
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In real-world applications, images in the neighborhood 
may come from different classes, and the variation of 
images from the same class reflects the geometrical 

properties of diversity of images, while the variation of 
images from different classes characterizes the 
discriminating information of images. Thus, we divide Eq. 
(8) into two parts. One is called the local within-class 
variation wS  that characterizes the diversity of data; 
another is called the local between-class variation bS  
that characterizes the discriminating information. They 
can be defined respectively as follows: 
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where w
jlV  and b

jlV  are defined as follows 
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where jτ  denotes the class label of image jA . 

Eq. (9) and Eq. (10) implicitly considers that all 
low-dimensional representations are equally important in 
estimating the amount of variation of images. This impairs 
the recognition accuracy of the algorithm. In order to well 
preserve the diversity of images, we should guarantee that 
the larger the distance between nearby two images is, the 
further they are embedded in the low-dimensional space. 
If they are embedded close to each other, we should assign 
larger penalty weight to separate them. It means that the 
weight is proportional to the distance between them. Thus, 
the elements w

jlV  in wV  and elements b
jlV  in bV  are 

respectively defined 
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where 0≥t  is a parameter, 
Flj AA −  denotes the 

Frobenius norm of matrix lj AA − . 

Now consider the problem of mapping training images 
to a line so that, if the variation among nearby images in 
the original data space is large, then the variation among 
the corresponding low-dimensional representations should 
be large. As it happens, two reasonable objective functions 
are as follows: 
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The objective functions (14) and (15) are formally 
similar, but their motivations are different. Eq. (14) 
characterizes the diversity of data and helps to unfolding 
the manifold structure while Eq. (15) encodes the local 
discriminating information of data. 
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3.4 Encode relationships among pixels 
Motivated by [41] and [42], we integrate the 

relationships among pixels into the objective functions (14) 
and (15) by employing image Euclidean distance instead 
of the conventional Euclidean distance. 

Definition 1 [41, 42] (Image Euclidean Distance, IED)  
Given two images nm

j RA ×∈  and nm
l RA ×∈ , the image 

Euclidean distance between them is 
( ) ( ) ( )lj

T
ljljIED AAVecGAAVecAAd −−=,  

where ( ) ( ) ( ) ( )[ ]TTjl
m

TjlTjl
lj AAVec aaa  21=− , jl

ia  
denotes the i th row of ( )lj AA − . The elements jjiiG ,  in 

symmetric matrix LLLLRG ×∈  ( nmLL ×= ) can be 
defined as follows: 

( ) ( ) )2][exp(
2
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π

 

where ( ) qnpii +−= 1 , ( ) '1' qnpjj +−= , mpp ,,2,1', = ,      
nqq ,,2,1',  = .  

Figure 2 shows an 22×  image A that denotes the 
difference between two images and matrix G . The ith row 
in G  shows the relationships between the ith pixel in A 
and all pixels. From G , we can see that the closer the 
location between two pixels is, the larger the value of the 
corresponding location in G  is, it means that they have a 
large relationship. Obviously, the pixel and itself have the 
largest relationship than other pixels, so the value of 
diagonal elements in G  is the largest. Thus, G  
characterizes the relationships among pixels in images. If 
G  becomes identity matrix I , then IED becomes 
Euclidean distance. 
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Figure 2. Difference images and symmetrical matrix G. 
In image recognition, it is very difficult to directly 

calculate the matrix G  due to the large size. Motivated by 
theorem 1, we give the matrix version of IED without 
calculating G . 

Theorem 1 [43]. Suppose 1B  and 2B  are pm×  

and qn×  matrices, T
ih ( pi ,,2,1= ) denotes the ith row 

of qpRH ×∈ , and ( ) [ ]TT
p

TTHVec hhh  21= . If 

( ) ( ) ( )HVecBBZVec 21 ⊗==z , then THBBZ 21= . 

According to theorem 1, we have the corollary 1. 
Corollary 1 (Matrix version of IED) For two images 
jA  and lA , the matrix version of image Euclidean 

distance between two images is 

( ) ( )
F

ljljIED AAAAd ˆˆ, −=                (16) 

where ( )Tjj GAGA 21
2

21
1

ˆ = . The elements ( )',1 ppG  

and ( )',2 qqG  in symmetric matrixes mmRG ×∈1  and 
nnRG ×∈2  can be respectively calculated as follows: 

( ) }2)(exp{21)',( 2'2/1
1 ppppG −−= π  nqq ,,1', =   

( ) }2)(exp{21),( 2'2/1'
2 qqqqG −−= π  mpp ,,1', =  

The proof of Corollary 1 is given in the appendix. 

Let m
i R∈ŷ  be the low-dimensional representations 

of iÂ . We can incorporate the relationships among pixels 
in images into the objective functions (14) and (15) by 
using iŷ  instead of iy . Thus, the objective functions 
(14) and (15) become respectively 
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3.5 Optimal linear embedding 
Denote by α  the projection direction, substituting 

αy ii Âˆ =  into Eq. (17). By the simple algebra formulation, 
we see that 
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where w
w VDL −= , D  is a diagonal matrix whose 

entries jjD ,  are row (or column since wV  is symmetric) 

sum of wV , i.e. ∑∑=
l

w
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jljj VorVD , . ⊗  denotes the 

Kronecker product. mI  is an mm×  identity matrix. 
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Likewise, substituting αy ii Âˆ =  into Eq. (18), we see 
that 
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where b
b VFL −= , F  is a diagonal matrix whose 

entries jjF ,  are row (or column since bV  is symmetric) 

sum of bV , i.e. ∑∑=
l

b
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Finally, the optimal problem reduces to finding 
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where wbd aLLL += , parameter a controls the balance 
between diversity and discriminating information. 

The projection vector α  that maximizes (21) is given 
by the maximum eigenvalue λ  solution to the 
generalized eigenvalue problem: 

( ) αα λ=⊗ AILA md
T ˆˆ                       (22) 

Let the column vector dααα ,,, 21   be the solutions of 
equation (22), ordered according to their eigenvalues, 

dλλλ >>>  21 . Thus, the embedding is as follows: 
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4. 2DMLV+2DPCA 

Previous works have demonstrated that the 
low-dimensional representations dm

i RY ×∈  ( Ni ,,1= ) 
contain many redundancies [44,45]. Moreover, the size of 

iY  is still large, thus, the large storage space is required to 
save these low-dimensional representations. In this section, 
we introduce an effective approach, called 
2DMLV+2DPCA, to further reduce the dimensionality of 
features. To be specific, we perform 2DPCA [10, 11] on 
the column vectors of iY . 

Denote by ∑= =
N
j jYNY 11  the global mean of 

iY ( Ni ,,2,1  = ), the projective matrix [ ]pvvvV  21=  
of 2DPCA is found by computing the p  eigenvectors 
corresponding to the p  largest eigenvalues of the 
covariance matrix pS  that can be defined as follows: 

( )( )∑ −−=
=

N

i

T
iip YYYY

N
S

1

1                    (24) 

Suppose W  is the dn×  projection matrix of 
2DMLV. Projecting training faces iA (i=1,…,n) onto W  
and V  together, yielding the p  by d  feature matrices 

WAVZ i
T

i ××=  Ni ,,1  =                 (25) 

Given a test face image *A , first using Eq. (25) to get 
the feature matrix WAVZ T ** = , then a nearest neighbor 
classifier can be used for classification, i.e., if 
( ) ( ){ }iik ZZdZZd ,min, ** = , then the probe image *A  

can be classified as the class to which training sample kA  

belongs. ( )iZZd ,* , which denotes the Euclidean distance 

between *Z and iZ , and can be defined as 

( ) ( ) ( )∑ −=
=

d

j
ii jZjZZZd

1 2

** :,:,,  Ni ,,1  =    (26) 

where ( )jZ :,*  and ( )jZ i :,  denote the j th column 

of *Z  and iZ , respectively. 

5.  Theoretical analysis of 2DMLV 
5.1 Advantages of 2DMLV 
Although our approach and LPP mainly preserve the 

local geometrical structure of data, their motivations are 
essentially different. LPP preserves the local geometrical 
structure of data by minimizing the distance among nearby 
data, i.e. variation of data. Thus, LPP mainly characterizes 
the similarity of data and does not unfold the structure of 
data. Moreover, LPP neglects the local discriminating 
information of data. In contrast to LPP, our approach 
preserves the local geometrical structure by maximizing 
the variation among nearby data. Thus, it mainly 
characterizes the diversity of data and helps to unfold the 
manifold structure [37-40]. Moreover, data points in a 
local neighborhood usually come from different classes, so 
we can encode the local discriminating information 
embedded in nearby data by our approach. 
Different from LPP and our approach, PCA preserves the 

global geometrical structure of data by maximizing the 
global variation of data. Although PCA characterizes the 
diversity of data, it emphasizes the data points with large 
distance and deemphasizes the data points with small 
distance, resulting in the impairment of local topology and 
local discriminant structure of data. Taking the two- 
dimensional data points, which are randomly selected, in 
Figure 3 as an example, we show the projection directions 
of LPP, PCA and our approach, and their one-dimensional 
embedded results. For a reasonable comparison, we set the 
parameter a as 1 in our approach. From Figure 3, it is easy 
to see that our approach effectively preserves both the 
local diversity and local discriminating information of data, 
and separates these points. Note that, the points with the 
same shape belong to the same class. 
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Figure 3. Difference between LPP, PCA and our 
approach.(a) one-dimensional embedding spaces obtained 
by LPP, PCA and Our approach, respectively; (b) One- 
dimensional embedded results obtained by LPP; (c) One- 
dimensional embedded results obtained by PCA; (d) One- 
dimensional embedded results obtained by our approach. 

5.2 Parameter analysis 

In this section, we discuss the effect of parameters k and t 
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on the recognition accuracy of our approach, respectively. 
In the Yale database (please see Section 6.1 for details), 
we select the first 6 images per person for training and the 
remaining images for testing. 
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Figure 4. 2DMLV vs. parameter k (t=0 and a=1) on the 

Yale database. 

Parameter k determines the size of neighborhood, if the 
value of k is very small, then the variation of data in the 
local neighborhood can not effectively characterize the 
diversity of data. In this case, nearby data points mainly 
characterize the geometrical properties of similarity. If the 
value of k is very large, then data points in the local 
neighborhood do not satisfy the Gaussian distribution, 
thus the variation of data may impair both the local 
intrinsic structure of data and local discriminating 
information. Thus, our approach is not good when k is 
very small or very large. Figure 4 shows the recognition 
accuracy of 2DMLV vs. parameter k ( 0=t and 1=a ). 
From Figure 4, it can be seen that the above-mentioned 
analysis is correct. 

Parameter t determines the role of data in characterizing 
the variation. If the value of t is very small, then all points 
are equally important in estimating the variation of data. If 
the value of t is very large, our approach will emphasize 
the variation between few data points with the large 
distance, and may impair the intrinsic structure of data and 
discriminating information. Thus, the diversity and 
discriminating information can not be detected well when 
t is very large or very small. Figure 5 plots the recognition 
accuracy of 2DMLV vs. parameter t  when k ( 6=k ) 
and 1=a are fixed. From Figure 5, it can be seen that 
2DMLV is obviously deteriorating when the value of t 
becomes very large or small. It is consistent with above 
analysis. 
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Figure 5. 2DMLV vs. parameter t (k=6 and a=1) on the 

Yale database. 

6. Experiments and analysis 

In this Section, we evaluate the performance of 2DMLV 
and 2DMLV+2DPCA on face recognition and compare 
with some classical linear dimensionality reduction 
approaches including 2DPCA [11], 2DLDA[12], 2DEFM 
(Two-dimensional form of EFM [14]), 2DLPP[31], 
DVPE[17], 2DMFA [4], and 2DSLSDP [35]. In 2DLPP, 
2DMFA, 2DSLSDP, 2DMLV, and 2DMLV+2DPCA, the 
open problem is how to select the suitable parameters for 
dimension reduction. We therefore empirically set the 
parameters of these methods in the following experiments. 
To be specific, we sampled several values of parameters 
and chose the values with the best performance for all 
approaches. In our experiments, parameter a  was set 1. 
6.1 Face recognition 
In this section, we used four face databases (Yale, AR, PIE 
and FERET) to show the effectiveness of our approach. 
The Yale face database [46] contains 165 grayscale images 
of 15 individuals (each person providing 11 different 
images) under various in facial expressions, lighting 
conditions, and with/without glasses. In the experiments, 
each image was manually cropped and resized to 3232×  
pixels [3]. We respectively selected 3, 6, and 9 images per 
person as training, and the corresponding remaining 
images for testing. Thus, we have three training subsets, 
which include 45, 90, and 135, and the corresponding 
three testing subsets including 120, 75, and 30 images, 
respectively. Table 1 lists the top recognition accuracy of 
these approaches and the corresponding number of 
features. Figure 6 plots the recognition accuracy of these 
nine methods versus the number of projected vectors when 
9 images per person are selected as training images. 
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Figure 6. Recognition accuracy vs. the number of 

projected vectors on the Yale database. 

 

(n) (o) (p) (q) (r) (s) (t)  

Figure 7. Some sample images of one subject in the AR 
database. 
 
The AR face database[47] is established by Purdue 

University, which contains over 4000 color face images of 
126 people (70 men and 56 women) including frontal 
views of faces with different facial expressions, lighting 
conditions, and occlusions. The pictures of most persons 
were taken in two sessions (separated by two weeks). 
Each session contained 13 color images and 120 
individuals (65men and 55 women) participate in both 
sessions. In the experiments, the facial portion of each 
image was manually cropped and then normalized to the 
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size of 50×40 [11]. The images from the first session with 
(a) “neutral expression”, (b) “smile”, (c) “anger”, (d) 
“scream”, (e) “left light on”, (f) “right light on” and (g) 
“both side light on” were selected for training images, and 
the corresponding remain images from the second session, 
i.e. (n)-(t), for testing images. Figure 7 shows the training 
images and the corresponding testing images of one 
subject, respectively. Table 2 lists the top recognition 
accuracy and the corresponding dimension. Figure 8 plots 
the curves of recognition accuracy of nine approaches 
versus the number of projected vectors. 
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Figure 8. Recognition accuracy versus the number of 

projected vs. on the AR database. 
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Figure 9. Recognition accuracy versus the number of 

projected vectors on the PIE database. 

The CMU-PIE database [48] contains 68 subjects with 
41368 face images as a whole. The face images were 
captured by 13 synchronized cameras and 21 flashes, 
under varying pose, illumination and expression. We 
selected pose-29 images as gallery, which includes 24 
samples for each individual in the experiments. Each 
image was manually cropped and resized to 6464×  pixels 
[3]. The first 12 samples per person were used for training 
and the remaining 12 images for testing. Table 3 lists the 
top recognition accuracy and the corresponding dimension. 
Figure 9 shows a plot of recognition accuracy of nine 
approaches versus the number of projected vectors. 

bd be bf bg  
Figure 10. Some sample images of one subject in the 

FERET database. 
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Figure 11. Recognition accuracy vs. the number of 

projected vectors on FERET database. 

The proposed approach was also tested on a subset of the 
FERET database [49]. This subset includes 800 images of 
200 individuals (each with four images). All the images 
were cropped and resized to 8080×  pixels based on the 
location of the two eyes. The images of one person are 
shown in Figure 10. In the experiment, we chose two 
images per person, which are labeled by be and bd in 
database, for training, and used the remaining two images, 
which are labeled bf and bg, for testing. Table 4 shows the 
experimental results of different algorithms, and Figure 11 
shows the recognition accuracy versus the number of 
projected vectors. 

In order to effectively evaluate the performance of our 
approach, we randomly selected 12 images per person for 
training and the corresponding remaining images for 
testing on the PIE database, and then repeated this process 
10 times. Table 5 list the average recognition accuracy of 
these approaches and the corresponding standard deviation 
on PIE database. Moreover, in order to demonstrate the 
effectiveness of the image Euclidean distance and evaluate 
the role of parameter a in our approach, we compared 
2DPCA, 2DMLV with Euclidean distance (2DMLV-ED) 
and 2DMLV with 1=a and 1≠a  on the above- 
mentioned four databases. The top recognition accuracy 
and the corresponding dimension are listed in Table 6. 
Note that, 1=a  means that our approach belongs to 
unsupervised approach. 1≠a  means that our approach 
belongs to supervised approach. From Table 6, it is easy to 
see that 2DMLV (a=1) overall outperforms 2DMLV-ED 
(a=1) in all cases, and 2DMLV achieves the best 
recognition accuracy under 1≠a . 
We also compared the computation time of these 

approaches on the PIE database. Table 7 lists the training 
time and classification time of all approaches when they 
achieved the top recognition accuracy as in table 3. It can 
be seen that our approach needs the more time for training. 

6.2 Analysis 
Experiments have been performed on four face databases. 

These experiments reveal a number of interesting points: 
(1) Our 2DMLV approach markedly outperforms 2DPCA. 

This is probably because that 2DPCA weakens or even 
impairs the local variation of face images. Moreover, 
2DPCA does not encode the discriminating 
information. Another limitation of 2DPCA is that it is 
sensitive to the perturbation of face images. 

(2) 2DMLV is superior to 2DLPP. This is probably because 
that 2DLPP ignores the most important geometrical 
properties of diversity of images. This may result in 
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unstable intrinsic structure representation of images. 
Another reason may be that 2DLPP does not well 
encode the discriminating information of face images. 

(3) 2DMLV is overall superior to discriminant approaches 
DVPE, 2DLDA, 2DEFM, and 2DMFA. This is 
probably because that these discriminant approaches 
ignore the geometrical properties of diversity of faces 
from the same class in learning the within-class 
compactness. This leads to instability of geometrical 
structure representation and over-fitting. 

(4) The top recognition of 2DMLV outperforms 2DSLSDP. 
This is probably due to the fact that 2DSLSDP 
considers within-class variation and between-class 
variation equally important, while the distance 
between nearby data from the same class is usually 
larger than that of data points from different classes 
in face recognition. Thus, 2DSLSDP can not well 
encode the local discriminating information. Another 
reason may be that 2DSLSDP ignores the 
relationships among pixels in images. It reduces the 
flexibility of algorithm. 

(5) The top recognition accuracy of 2DMLV+2DPCA 
overall outperforms that of 2DMLV. This is probably 
because that 2DPCA can effectively reduce the 
redundancy embedded in 2DMLV. The top 
recognition accuracy of 2DMLV and 2DMLV+ 
2DPCA is overall superior to other methods. This is 
probably because that they well unfold the local 
manifold structure and detect both the diversity of 
images and discriminating information. 

(6)  2DMLV is superior to 2DMLV-ED when a is 1. This 
is probably because that image Euclidean distance 
considers the relationship among pixels in image, 
which helps to improving the stability of the 
algorithm to the perturbation of images. 2DMLV with 
a=1 overall superiors to 2DMLV-ED with a≠1. And, 
compared with the performance with a=1, the top 
recognition accuracy of 2DMLV can not be improved 
significantly with a≠1. This is probably because that 
image Euclidean distance helps to well encoding the 
local discriminating information of images. 

(7) Compared with the other approaches, 2DMLV needs 
the more time for calculating the projection matrix. 
This is probably because that 2DMLV spends more 
time to calculate the image Euclidean distance, but it 
has no effect for the classification time. All 
approaches need different time for classifying all 
testing image. This is due to the fact that each 
approach achieves the top recognition accuracy with 
different dimensionality of features. 

7. Conclusion 
We introduce a novel linear dimensionality reduction 

approach called two-dimensional maximum local variation 
(2DMLV). Our approach 2DMLV preserves intrinsic 
structure by maximizing the variation of the images. Our 
method differs in that we measure the variation of images, 
which characterizes the diversity of images, by using 
image Euclidean distance instead of the traditional 
Euclidean distance. Image Euclidean distance considers 
the relationships among pixels in images and helps to well 
encoding discriminating information of images. 

Experimental results on four face databases demonstrate 
that our approach 2DMLV is overall superior to other 
two-dimensional dimensionality reduction approaches. 
Experiments also indicate that the accuracy can be further 
improved by combining 2DMLV and 2DPCA together. 
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Appendix 

Proof of Corollary 1 
By simple algebra formulation, symmetric matrix G  

can be rewritten as 
21 GGG ⊗=               (a-1) 

where 1G  and 2G  are of the size mm×  and nn×  
matrices, respectively. The elements ( )',1 iiG  and 

( )',2 jjG  can be defined as follows 

( ) }2)(exp{21)',( 2'2/1
1 iiiiG −−= π    mii ,,1', =  

( ) }2)(exp{21),( 2'2/1'
2 jjjjG −−= π   njj ,,1', =  
Image Euclidean distance 
( ) ( ) ( )lj

T
ljljIED AAVecGAAVecAAd −−=,  can be 

rewritten as 
( ) ( ) ( )

( )( ) ( )( )lj
T

lj

lj
T

ljljIED

AAVecGAAVecG

AAVecGGAAVecAAd

−−=

−−=

2121

2121,
(a-2) 

Denote by ( ) ( ) ( )lj AAVecGGZVecz −⊗== 21
21 , 

according to theorem 1, we have 
     ( )( )( )T

lj GAAGZ 21
2

21
1 −=         (a-3) 

Substituting (a-3) into (a-2), we see that 
 ( )

F
ljF

T
ljIED AAZzzAAd ˆˆ, −===      (a-4) 

Where ( )Tjj GAGA 21
2

21
1

ˆ = , 
F

•  denotes the Frobenius 
norm of matrix. 
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Table 1. The top classification accuracy (%) on the Yale database and the corresponding dimension (Shown in 
parentheses). 

Training/Testing number DVPE 2DPCA 2DLPP 2DLDA 2DEFM 2DMFA 2DSLSDP 2DMLV 2DMLV+2DPCA

45/120 
68.85 

(10) 

61.67 

(32*4) 

65.00

(32*4)

56.67

(32*3)

61.67

(32*3)

52.50

(32*3)

68.33 

(32*4)

71.67 

(32*2) 

71.67 

(28*2) 

90/75 
82.67 

(9) 

68.00 

(32*1) 

77.33

(32*2)

73.33

(32*4)

76.00

(32*4)

74.67

(32*2)

80.00 

(32*2)

80.00 

(32*2) 

81.33 

(11*2) 

135/30 
96.67 

(12) 

86.67 

(32*3) 

96.67

(32*2)

86.67

(32*3)

90.00

(32*3)

93.33

(32*3)

96.67 

(32*6)

100.00 

(32*4) 

100.00 

(11*4) 

Table 2. Top recognition accuracy (%) on the AR database and the corresponding dimension 
Methods DVPE 2DPCA 2DLPP 2DLDA 2DEFM 2DMFA 2DSLSDP 2DMLV 2DMLV+2DPCA

Recognition accuracy 66.67 67.74 67.14 58.57 61.90 62.14 64.29 70.00 70.36 

Dimension 117 50*13 50*13 50*26 50*9 50*16 50*11 50*12 15*12 

Table 3. Top recognition accuracy (%) on the PIE database and the corresponding dimension 
Methods DVPE 2DPCA 2DLPP 2DLDA 2DEFM 2DMFA 2DSLSDP 2DMLV 2DMLV+2DPCA

Recognition Accuracy 77.70 81.62 87.87 65.93 76.84 71.08 88.11 89.34 89.71 

Dimension 51 64*13 64*21 64*47 64*12 64*22 64*22 64*35 24*35 

Table 4. Top recognition accuracy (%) on the FERET database and the corresponding dimension 
Methods DVPE 2DPCA 2DLPP 2DLDA 2DEFM 2DMFA 2DSLSDP 2DMLV 2DMLV+2DPCA

Recognition Accuracy 41.25 68.75 40.00 44.25 61.25 42.75 60.00 79. 50 80.75 

Dimension 13 80*1 80*3 80*2 80*1 80*1 80*1 80*1 19*1 

Table 5. The average accuracy (%) of nine approaches on the PIE database and the corresponding standard deviation. 
Methods DVPE 2DPCA 2DLPP 2DLDA 2DEFM 2DMFA 2DSLSDP 2DMLV 2DMLV+2DPCA

Average Accuracy 93.81 94.30 90.36 91.26 93.31 90.22 94.03 95.22 95.40 

Standard Deviation ±6.24 ±5.16 ±5.41 ±9.65 ±9.59 ±8.02 ±4.09 ±3.49 ±3.29 

Table 6. Top recognition accuracy (%) of four approaches and the corresponding dimension (shown in parentheses) 
Yale 

Database 
45/120 90/75 135/30 

AR PIE FERET 

a=1 70.83(32*3) 78.67(32*2) 100(32*4) 69.52(50*19) 87.87(64*36) 76.25(80*1)
2DMLV-ED 

a≠1 71.67(32*3) 80.00(32*2) 100(32*4) 69.64(50*7) 89.22(64*46) 79.00(80*1)

a=1 71.67(32*3) 80.00(32*2) 100(32*4) 70.00(50*12) 89.34(64*35) 79.50(80*1)
2DMLV 

a≠1 71.67(32*2) 81.33(32*2) 100(32*4) 70.00(50*12) 89.34(64*35) 79.75(80*1)

Table 7. Training time and testing time (seconds) of nine approaches on the PIE database. 

Approaches DVPE 2DPCA 2DMFA 2DEFM 2DLPP 2DLDA 2DSLISP 2DMLV 2DMLV+2DPCA 

Training 8.8594 10.0625 37.8125 37.8281 21.7813 11.2188 21.7188 560.9375 595.578 

Testing 10.2344 13.7813 33.7813 12.8906 33.2188 112.8438 33.7813 90.875 89.980 

 


