arXiv:1409.3505v1 [cs.CV] 11 Sep 2014

DeeplD-Net: multi-stage and deformable deep convolutioraneural networks
for object detection

Wanli Ouyang, Ping Luo, Xingyu Zeng, Shi Qiu, Yonglong Tidtgngsheng Li, Shuo Yang,
Zhe Wang, Yuanjun Xiong, Chen Qian, Zhenyao Zhu, Ruohui Wang
Chen-Change Loy, Xiaogang Wang, Xiaoou Tang
the Chinese University of Hong Kong
w ouyang, xgwang@e. cuhk. edu. hk

Abstract formation models should handle the deformation of object
parts, e.g. torso, head, and legs of human. The state-of-the
In this paper, we propose multi-stage and deformable art deformable part-based model (DPM) iit] allows ob-
deep convolutional neural networks for object detection. ject parts to deform with geometric constraint and penalty.
This new deep learning object detection diagram has in- Finally, a classifier decides whether a candidate window
novations in multiple aspects. In the proposed new deepshall be detected as enclosing an object. S\AM [atent
architecture, a new deformation constrained pooling (def- SVM [2(], multi-kernel classifierst{7], generative model
pooling) layer models the deformation of object parts with [35], random forests14], and their variations are widely
geometric constraint and penalty. With the proposed multi- used.

stage training strategy, multiple classifiers are jointigtie In this paper, we propose multi-stage deformable DEEP
mized to process samples at different difficulty levels.vA ne generic object Detection convolutional neural NETwork
pre-training strategy is proposed to learn feature represe  (DeeplD-Net). In DeeplD-Net, we learn the following key
tations more suitable for the object detection task and with components: 1) feature representations for a large number
good generalization capability. By changing the net struc- of object categories, 2) deformation models of object parts
tures, training strategies, adding and removing some key 3) contextual information for objects in an image. We also
components in the detection pipeline, a set of models withjnyestigate many aspects in effectively and efficientljntra
large diversity are obtained, which significantly improves ng and aggregating the deep models, including bounding
the effectiveness of modeling averaging. The proposed aphox rejection, training schemes, objective function of the
proach ranked #2 in ILSVRC 2014. It improves the mean deep model, and model averaging. The proposed new di-
averaged precision obtained by RCNN, which is the state- 3gram significantly advances the state-of-the-art for deep

of-the-art of object detection, froBi% to 45%. Detailed  |earning based generic object detection, such as the well
component-wise analysis is also provided through extensiv known RCNN P 3 framework. With this new pipeline, our
experimental evaluation. method ranks #2 in object detection on the ImageNet Large

Scale Visual Recognition Challenge (ILSVRC) 2014. This
_ paper also provides detailed component-wise experimental
1. Introduction results on how our approach can improve the mean Aver-

i o aged Precision (AP) obtained by RCNRI from 31.0%
Object detection is a one of the fundamental challenges; " 1 \can AP 45% step-by-step on the ImageNet object de-
in computer vision. It has attracted a great deal of research[ection challenge validation 2 dataset

interest P, 48, 2(]. The main challenges of this task are
caused by the intra-class variation in appearance, lightin
backgrounds, and deformation. In order to handle thesel. A new deep learning diagram for object detection. It ef-
challenges, a group of interdependent components in the fectively integrates feature representation learningt pa
pipeline of object detection are important. First, feasure deformation learning, sub-box feature extraction, con-
should capture the most discriminative information of ob-  text modeling, model averaging, and bounding box lo-
ject classes. Well-known features include hand-craftad fe cation refinement into the detection system.

tures such as Haar-like featuress], SIFT [37], HOG [9], 2. A new scheme for pretraining the deep CNN model.
and learned deep CNN featuress] 29, 23]. Second, de- We propose to pretrain the deep model on the ImageNet

The contributions of this paper are as follows:
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image classification dataset with 1000-class object-levelers to capture geometric deformation at all the information
annotations instead of with image-level annotations, abstraction levels. All different from3[], the def-pooling
which are commonly used in existing deep learning ob- layer in this paper can be used for replacing all the pooling
ject detection?3). Then the deep model is fine-tuned on layers. In B€], it was assumed that a pedestrian only has
the ImageNet object detection dataset with 200 classespne instance of a body part, so each part filter only has one
which are the targeting object classes of the ImageNetoptimal response in a detection window. In this work, it is
object detection challenge. assumed that an object has multiple instances of a body part

3. A new deformation constrained pooling (def-pooling) (e.g. a car has many wheels), so each part filter is allowed to
layer, which enriches the deep model by learning the de-have multiple response peaks in a detection window. This
formation of visual patterns of parts. The def-pooling new model is more suitable for general object detection.
layer can be used for replacing the max-pooling layer  Since some objects have non-rigid deformation, the abil-
and learning the deformation properties of parts at any ity to handle deformation improves detection performance.
information abstraction level. Deformable part-based models were usedin 5, 41, 39

4. We show the effectiveness of the multi-stage training for handling translational movement of parts. To handle
scheme in generic object detection. With the proposedmore complex articulations, size change and rotation of
deep architecture, the classifier at each stage handleparts were modeled ir2]l], and mixture of part appearance
samples at a different difficult level. All the classifiers and articulation types were modeled i) §0, 10]. In these
at multiple stages are jointly optimized. The proposed approaches, features are manually designed, Deformation
new stage-by-stage training procedure adds regulariza-and features are not jointly learned.
tion constraints to parameters and better solves the over- The widely used classification approaches include vari-
fitting problem compared with the standard BP. ous boosting classifiersd {, 15, 5€], linear SVM [9], his-

5. A new model averaging strategy. Different from exist- togram intersection kernel SVM3{], latent SVM [2(],
ing works of combining deep models learned with the multiple kernel SVM (3], structural SVM [5], and prob-
same structure and training strategy, we obtain multiple abilistic models §, 3€]. In these approaches, classifiers are
models by using different network structures and train- adapted to training data, but features are designed manuall
ing strategies, adding or removing different types of lay- If useful information has been lost at feature extraction, i
ers and some key components in the detection pipeline.cannot be recovered during classification. Ideally, classi
Deep models learned in this way have large diversity on fiers should guide feature learning.
the 200 object classes in the detection challenge, which Researches on visual cognition, computer vision and
makes model averaging more effective. It is observed cognitive neuroscience have shown that the ability of hu-
that different deep models varies a lot across different man and computer vision systems in recognizing objects is
object categories. It motivates us to select and com- affected by the contextual information like non-target ob-
bine models differently for each individual class, which jects and contextual scenes. The context information inves

is also different from existing work$p, 46, 25] of using tigated in previous works includes regions surrounding ob-
the same model combination for all the object classes. jects P, 12, 27], object-scene interactiori ], and the pres-
ence, location, orientation and size relationship amonrg ob
2. Related Work jects B, 57,58, 11,41, 22,49, 13,61, 12,59, 40, 10, 45, 51].

) In this paper, we utilize the image classification resulbfro
It has been proved that deep models are potentially morey, o deep model as the contextual information
capable than shallow models in handling complex tagks [ '

Deep models have achieved spectacular progress in com
puter vision £0 2/, %5 26, 96 91, 23, 03 935 96, 16, . of these components and is an important step towards joint
Because of its power in I_earnlng feature _representa'gpn,leaming of them for object detection.

deep models have been widely used for object recognition
and object detection in the recent yeats, [62, 25, 47, 67,

, 31, 23]. In existing deep CNN models, max pooling
and average pooling are useful in handling deformation but The ImageNet Large Scale Visual Recognition Chal-
cannot learn the deformation penalty and geometric modellenge (ILSVRC) 201444] contains two different datasets:
of object parts. The deformation layer was first proposed in 1) the classification and localization dataset and 2) the de-
our earlier work B¢ for pedestrian detection. In this pa- tection dataset.
per, we extend it to general object detection on ImageNet. The classification and localization (Cls-Loc) dataset is
In [38)], the deformation layer was constrained to be placed split into three subsets, train, validation (val), and tksg.
after the last convolutional layer, while in this work thé-de ~ The train data contains 1.2 million images with labels of
pooling layer can be placed after all the convolutional lay- 1,000 categories. The val and test data consistidf, 000

In summary, previous works treat the components in-
dividually or sequentially. This paper takes a global view

3. Dataset overview



photographs, collected from flickr and other search enginesjés

hand labeled with the presence or absencg 660 object

categories. The, 000 object categories contain both inter- |y

nal nodes and leaf nodes of ImageNet, but do not overlap

with each other. A random subset &, 000 of the images ) ; o ] !

with labels are used as val data and released with labels of 9ure 1. Overview of RCNN in{3]. Selective searchif] is used

the 1,000 categories. The remaining)0, 000 images are  ©F Proposing candidate bounding boxes that may contaieatt;
. lexNet is used to extract features from the cropped bowndox

used as the test data and are released without labels at teéi . d h dqf ) J toleleci

i The val and test data does not have overlap with thereglon-’5 . Base on the extracted features, SVM 's used taelec]

t|m_€. P the existence of objects. Bounding box regression is usesfite

traindata. _ _ bounding box location and reduce localization errors.

The detection (Det) dataset contains 200 object cate- _

gories and is split into three subsets, train, validatiai)(v ~ 4.2. Overview of the proposed approach

and test dé.lta’ which separately contaiib, 918, .20’ 121 An overview of our proposed approach is shown in Fig.

and40, 152 images. The manually annotated object bound- 2 In this model:

ing boxes on the train and val data are released, while those " The selectivé search i is used for obtaining candi-

on the test data are not. The train data is drawn from the™" date bounding boxes betails are given in Sectidh

t(ills'lc‘:?_csdféaé l(;' ihe I?etr\‘/ al a?: t$3t SL:bssts,tlr_natgeslfromz An existing detector is used for rejecting bounding boxes
© . ataset where the target object 1S 100 1arge 4t 5re most likely to be background. Details are given

(greater than 50% of the image area) are excluded. There- in Sectiond 4.

{_c')re, the Ichet (;/_alt %mi. teStde‘;’“?th?‘V? s:jr};rllar dt"?‘mbuf['rc]m' 3. The remaining bounding boxes are cropped and warped
owever, the aistribution of et frain 1S difierent from the into 227 x 227 images. The27 x 227 cropped image

?ASt:'bqt'%nst OL Det V?I and tet§t. For a g“t/r?nt gb]eCt CI?SS’ goes through the DeeplID-Net in order to obtain 200 de-
€ train data has extra negative Images that does not €on- . i,y scores. Each detection score measures the confi-

tain anyo.bjec'F of this class. These extra negativ_e img@s a' " dence on the cropped image containing one specific ob-

not used in this Paper. We follow the_ RCNR in s_pI|_t— ject class, e.g. person. Details are given in Seciion

ting the val_datamto valand van_. Va_ll is used for training 4. The 1000-class image classification scores of a deep

models while valis used for validating the per_folrmance of model on the whole image are used as the contextual in-

models. The valval splitis the same as that ia§. formation for refining the 200 detection scores of each
candidate bounding box. Details are given in Section

4. Method 5.7

4.1. The RCNN approach 5. Average of multi.ple deep model oquuts is gsed_to im-
prove the detection accuracy. Details are given in Sec-

A brief description of the RCNN approach is provided tion 6.
for giving the context of our approach. RCNN uses the 6. The bounding box regressionin RCNN is used to reduce
selective search in4f] for obtaining candidate bounding localization errors.
boxes from both training and testing images. An overview
of this approach is shown in Fig.

At the testing stage, the AlexNet in’{] is used for Many approaches have been proposed to generate class-
extracting features from bounding boxes, then 200 one-independent bounding box proposals. The recent ap-
versus-all linear classifiers are used for deciding the-exis proaches include objectnesd,[selective searchif], cat-
tence of object in these bounding boxes. Each classifieregory independent object proposals]| constrained para-
provides the classification score on whether a bounding boxmetric min-cuts [], combinatorial grouping4], binarized
contains a specific object class or not, e.g. person or nonnormed gradients3], deep learning[7], and edge boxes
person. The bounding box locations are refined using the[66]. The selective search approach it] is adopted in
AlexNet in order to reduce localization errors. order to have fair comparison with the RCNN in3]. We

At the training stage, the ImageNet Cls-Loc dataset with strictly followed the RCNN in using the selective search,
1,000 object classes is used to pretrain the AlexNet, then where selective search was run in fast mode on each im-
the ImageNet Det dataset witld0 object classes is used age in val, val, and test, and each image was resized to
to fine-tune the AlexNet. The features extracted by the a fixed width (500 pixels) before running selective search.
AlexNet are then used for learning 200 one-versus-all SVM In this way, selective search resulted in an average of 2403
classifiers for 200 classes. Based on the features extractedounding box proposals per image with a 91.6% recall of all
by the AlexNet, a linear regressor is learned to refine bound-ground-truth bounding boxes by choosing Intersection over
ing box location. Union (IoV) threshold as 0.5.

b wor S
REay P =
=87 A

Propsed

A (R s
Refined
bounding boxes results bounding boxes

Image

4.3. Bounding box proposal by selective search



.. Deeo et [ _ age on Titan GPU, about/9 of the 10.24 seconds per im-
i \qm age required for the 100% bounding boxes. In terms of de-

\ tection accuracy, bound boxing rejection can improve the
mean AP by aroundl%.
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5. Bounding box classification by DeeplD-Net
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e \ S N i 5.1. Overview of DeeplID-Net

Figure 2. Overview of DeeplD-Net. Selective search is used f An overview of _the DeeplD-Netis given in Fig. This
proposing candidate bounding boxes that may contain abject deep model C_O”ta'”s four parts: . . . )
Then RCNN is used for rejectirgi% candidate bounding boxes. (&) The baseline deep model. The input is the image region
Each remaining bounding box goes through the DeeplD-Netino ~ cropped by a candidate bounding box. The input image
der to obtain 200 detection scores. Each score measuresrihe ¢ region is warped t@27 x 227. The Clarifai-fastin $7] is
fidence on whether the bounding box contains a specific object used as the baseline deep model in our best-performing

class, e.g. person, or not. After that, context is used fionirg single model. The Clarifai-fast model contains 5 con-
the 200 scores of each bounding box. Model averaging andboun  yolutional layers (conv1-conv5) and two fully connected
ing box regression are then used to improve the accuracys Fex layers (fc6 and fc7). convl is the result of convolving

red highlights the steps that are not present in RCRJL[ its previous layer, the input image, with learned filters.

Similarly for conv2-conv5, fc6, and fc7. Max pooling
layers, which are not shown in Fig3, are used after
On the val data, selective search generates 2403 bound- convl, conv2 and convs.
ing boxes per image. On average, 10.24 seconds per imadle) Fully connected layers learned by the multi-stage train
are required using the Titan GPU (about 12 seconds perim- ing scheme, which is detailed in Sectiér8. The in-
age using GTX670) for extracting features from bounding  put of these layers is the pooling layer after conv5 of the
boxes. Features in val and test should be extracted fortrain  baseline model.
ing SVM or validating performance. This feature extraction(c) Layers with def-pooling layer. The input of these layers
takes around 2.4 days on the val dataset and around 4.7 days is the conv5 of the baseline model. The conv5 layer is
on the test dataset. The feature extraction procedureés tim  convolved by filters with variable sizes and then the pro-
consuming and slows down the training and testing of new  posed def-pooling layer in Secti@n4.2is used for learn-
models. In order to speed up the feature extraction for new ing the deformation constraint of these part filters. Parts

4.4. Bounding box rejection

models, we use an existing approach, RCNN][in our (a)-(c) outputs the 200-class object detection scores. For

implementation, for rejecting bounding boxes that are most  the example in Fig3, ideal output will have a high score

likely to be background. Denote by the detection scores for the object class horse but low scores for other classes

for 200 classes of thé&th bounding box. Théth bounding for the cropped image region that contains a horse.

box is rejected if the following rejection condition is sati  (d) The deep model (Clarifai-fast) for obtaining the image

fied: classification scores of 1000 classes. The input is the
l|silloe < T, (1) whole image. The image classification scores are used

where||s;|loc = max;{s;;}, s;; is thejth element ins; as contextual information for refining the scores of the
illoo = 194,57 Sy 9t,] it . . . .

Since the elements is; are SVM scores, negative sam- bounding boxes. Detail are given in Section.

ples with scores smaller thanl are not support vectors Farts (2)-(d) are learned by back-propagation (BP).

for SVM. When||s;||cc < —1, the scores are below the 5

negative-sample margins for all the classes. We choose 2. New pretraining strategy

T = —1.1 as the threshold to be a bit more conservative  The training scheme of the RCNN ifi] is as follows:
than the margin-1. With the rejection condition in1y, 1. Pretrain the deep model by using the image classification
94% bounding boxes are rejected and only @% remain- task, i.e. using image-level annotations of 1000 classes

ing windows are used for further process of DeeplD-Netat  from the ImageNet Cls-Loc train data.

the training and testing stages. The remairtifigbounding 2. Fine-tune the deep model for the object detection task,

boxes result in 84.4% recall of all ground-truth bounding  i.e. using object-level annotations of 200 classes from

boxes (at 0.5 loU threshold), 7.2% drop in recall compared the ImageNet Det train and vadlata.

with the 100% bounding boxes. Since the easy examplesThe deep model structures at the pretraining and fine-tuning

are rejected, the DeeplD-Net can focus on hard examples. stages are only different in the last fully connected lager f
For the remaining 6% bounding boxes, the execution predicting labels ¥, 000 classes vs.200 classes). Except

time required by feature extraction is 1.18 seconds per im-for the last fully connected layers for classification, ttze p



(a) Baseline deep model (clarifai-fast) image- vs. object-level annotation gap in RCNN.

com2  com3  convd Scheme 1 is as follows:

o e 1. Pretrain the deep model by using image-level annota-

o tions of 1,000 classes from the ImageNet Cls-Loc train

‘ data.

2. Fine-tune the deep model with object-level annotations
of 1,000 classes from the ImageNet Cls-Loc train data.

s
384 | 4096 4096

v
Candidate (b) Layers with multi-
region stage training

eh.. 1 () Layers with def- efined The parameters trained from Step (1) is used as initial-
y W pooling layer ZI(:S; |Zat|on
. } (d) Deep model (clarifai-fast) for scroes ) : ) i
%ﬁ IR 100 3. Fine-tune the deep model for the second time by using
Image".” object-level annotations df00 classes from the Ima-
Figure 3. Overview of the DeeplD-Net. It consists of fourtpar geNet Det train and valdata. The parameters trained
(a) the baseline deep model, which is the Clarifai-fe=] [in from Step (2) are used as initialization.
our best-performing single model; (b) the layers with mstige  Scheme 1 uses pretraining on 1000-class object-level anno-
training; (c) the layers with variable filter sizes and debling tations as the intermediate step to bridge the gap between

layer; (d) the deep model for obtaining 1000-class imagssdia
cation scores. The 1000-class image classification scockthe
200-class bounding box classification scores are combiriedhe
refined 200-class bounding box classification scores.

1000-class image classification task and 200-class object
detection task.
Scheme 2 is as follows:
1. Pretrain the deep model with object-level annotations of
rameters learned at the pretraining stage are directlyased 1,000 classes from the ImageNet Cls-Loc train data.
initial values for the fine-tuning stage. 2. Fine-tune the deep model for the 200-class object de-
The problem of the training scheme of RCNN is that im- tection task, i.e. using obJect-Ieve_I annotations of 200
age classification and object detection are different tasks ~ classes from the ImageNet Det train and,\aata. Use
which have different requirements on the learned feature  the parameters in Step (1) as initialization. -
representation. For image classification, the whole imageScheme 2 removes pretraining on the image classification
is used as the input and the class label of objects withint@sk and directly uses object-level annotations to pretrai
the image is estimated. An object may appear in different the deep model. Compared with the training scheme of
places with different sizes in the image. Therefore, thepdee RCNN, experimental results on ImageNet Det,véiund
model learned for image classification is required to be ro- that scheme 1 improves mean AP by 1.6% and scheme 2
bust to scale change and translation of objects. For objeciMProves mean AP by 4.4%.
detection, the image region cropped with a tight bounding ~ The baseline deep model is pretrained using the ap-
box is used as the input and the class label of objects withinProach discussed above. The layers with mulit-stage train-
the bounding box is estimated. Since tight bounding box ing and def-pooling layers in Figk are randomly initialized
is used, robustness to scale change and translation of ob@nd trained at the fine-tuning stage.
ject is not needed. This is the reason why bag of visual
words is popular for image classification but not for detec-
tion. The mismatch in image classification and object de-  Motivation. Multi-stage classifiers have been widely
tection results in the mismatch in learning features for the used in object detection and achieved great success. With
deep model. a cascaded structure, each classifier processes a different
Another potential mismatch comes from the fact that the subset of datad, 15, 5, 19, 53. However, these classi-
Cls-Loc data has, 000 classes, while the ImageNet detec- fiers are usually trained sequentially without joint optiani
tion challenge only targets o200 classes. However, our tion. In this paper, we propose a new deep architecture that
experimental study shows that feature representations precan jointly train multiple classifiers through several ssg
trained with1, 000 classes have better generalization capa- of back-propagation. Each stage handles samples at a dif-
bility, which leads to better detection accuracy than only ferent difficulty level. Specifically the first stage of deep
selecting the00 classes from the Cls-Loc data for pretrain- CNN handles easy samples, the second stage of deep model
ing. processes more difficult samples which cannot be handled
Since the ImageNet Cls-Loc data provides object-level in the first stage, and so on. Through a specific design of
bounding boxes for 1000 classes, which is more diverse inthe training strategy, this deep architecture is able tasim
content than the ImageNet Det data with 200 classes, welate the cascaded classifiers by mining hard samples to train
use the images regions cropped by these bounding boxeshe network stage-by-stage. Our recent wail{ [has ex-
as the training samples to pretain the baseline deep modelplored the idea of multi-stage deep learning, but it was only
We propose two new pretraining strategies that bridge theapplied to pedestrian detection. In this paper, we appty it t

5.3. Fully connected layers with multi-stage training



Algorlthm 1 Stage-by—Stage Training ! (a) Baseline deep model (clarifai-fast)
Input: Training set: Warped images and their labels pool5
from the fine-tuning training data
Parameter® for the baseline deep model 5
obtained by pretraining.
Output: Parameter® for the baseline deep model,

fc6  fc7

4096 4096 \

ParameterSV, ;,1 = 6,7,8,t = 1,--- , T for ®) S
the extra layers. Ly
i with cby fc7a
1 Set elements iW, ; to be 0; mulci-
2 BP to fine-tune, while keepingW, ; as 0; t:::ﬁ:g 095 4b36
3 for t=1to T do
4 Randomly initializeW,, [ = 6,7, Figure 4. The baseline deep model and fully connected layitins
5 Usg BP .to update paramet&®é, ;, [ = 6,7,8 multi-stage training. The layer pool5 is result of max poglover
while fixing © andWy 1, -, Wy _1; the conv5 layer in Fig3. Different stages of classifiers deal with
6 Use BP to update parametésand samples of different difficulty levels.
Wl,la T an,ta l= 61 7781
7 end In the stage-by-stage training procedure, classifierseat th
8 Output® andW,,,1=6,7,8,t=1,---,T. previous stages jointly work with the classifier at the caotre
stage in dealing with misclassified samples. Existing cas-
caded classifiers only pass a single score to the next stage,
general object detection on ImageNet. while our deep model uses multiple hidden nodes to transfer

Denotations. The pooling layer after conv5 is denoted Information. _ _ o _
by pool5. As shown in Fig4, besides fc6, pool5 is con- Detailed analysis on the multi-stage training scheme is
nected toT extra fully connected layers of sizes 4096. Provided in b4 A brief summary is given as follows:

fc6,, fc6y, ---, fc6y. Denote fc, fc7y, ---, fc7r as sifier is introduced at each stage to help deal with misclas-
the T layers separately connected to the layers 666, sified samples while the correctly classified samples have
..., fc6y. Denote the weight connected tdfcby W ,, no influence on the new classifier. Second, the cascaded
| =6,7,t = 1,---,T. Denote the weights from fg#to classifiers are jointly optimized at stagén step 2.2, such
classification scores &g, t = 1,--- ,T. The path from  that these classifiers can better cooperate with each other.
pool5, fc6, fc7, to classification scores can be considered Third, the whole training procedure helps to avoid overfit-
as the extra classifier at stage ting. The supervised stage-by-stage training can be consid
The multi-stage training procedure is summarized in Al- ered as adding regularization c_onstraints to parameters, [

gorithm 1. It consists of two steps. some parameters are constrained to be zeros in the early

training strategies. At each stage, the whole network is

e Step 1 (2 in Algorithml): BP is used for fine-tuning initialized with a good point reached by previous training

all the parameters in the baseline deep model. strategies and the additional classifiers deal with mist¢las
fied samples. Itis important to S&; ; = 0 in the previous
training strategies; otherwise, it become standard BFh Wit
standard BP, even an easy training sample can influence any
classifier. Training samples will not be assigned to différe
classifiers according to their difficulty levels. The paraene
space of the whole model is huge and it is easy to overfit.

e Step 2.1 (4 in Algorithni): parameterdV,; ;,t = 6,7
are randomly initialized at stageén order to search for
extra discriminative information in the next step.

e Step 2.2 (5-6 in Algorithni): multi-stage classifiers
W, forl =6,7,t =1,---,T are trained using BP
stage-by-stage. In stageclassifiersW, ; up tot are 5.4. The def-pooling layer

jointly updated.

. o ) ] 5.4.1 Generating the part detection map
The baseline deep model is first trained by excluding extra

classifiers to reach a good initialization point. Trainihgst ~ Since object parts have different sizes, we design filtetfs wi
simplified model avoids overfitting. Then the extra classi- variable sizes and convolve them with the conv5 layer in the
fiers are added stage-by-stage. At stagall the existing ~ baseline model. Fig5 shows the layers with def-pooling
classifiers up to layefrare jointly optimized. Each round of layers. It contains the following four parts:

optimization finds a better local minimum around the good(a) The conv5 layer is convolved by filters of sizés 3,
initialization point reached in the previous training stag 5 x 5, and9 x 9 separately in order to obtain thpart



Existing deep model (clarifai-fast)

conv5

fc6  fc7

Layers with
i def-pooling
i layers

convé;  def6s conv7s)

128 |

128

Figure 5. The baseline deep model and def-pooling layers.

detection map®f 128 channels, which are denoted by
conv6, convg, and convg as shown in Fig5. In com-
parison, the path from conv5, fc6, fc7 to classification
score can be considered as a holistic model.

Part detection maps are separately fed into deé
pooling layersdenoted by deff def6,, and defg in or-
der to learn their deformation constraints.

The output of def-pooling layers, i.e. def defé,, and
def6s, are separately convolved with filters of sides 1
with 128 channels to produce outputs convéonvs,
and convi, which can be considered as fully connected
layers over the 128 channels for each location.

The fc7 in the Clarifai-fast and the output of layers
conv7, convh, and convy are used for estimating the
class label of the candidate bounding box.

(b)

()

(d)

5.4.2 Learning the deformation

Motivation. The effectiveness of learning deformation con-

Convolution
result M

Global
—
max

O

Output b

=

Deformation
penalty
Figure 6. The deformation layer when deformation map is de-
fined in (). Part detection maM and deformation constraint are
summed up to obtain the summed nfep Global max pooling is
then performed oM to obtain the scoré.

{(kz-z+i,ky-y+7)|i,5 = —R, ... R}. Inthis case, the def-
pooling layer degenerates to max-pooling layer with sub-
sampling stegk, ., k,) and kernel sizé2R+1) x (2R+1).
Therefore, the difference between def-pooling and max-
pooling is the term- 327" ¢,.di7 in (2), which is the de-
formation constraint learned by def-pooling. In short,-def
pooling is max-pooling with deformation constraint.
Example 2 Supposé/ = k,, H =k, i =1,---,V,
andj = 1,---, H, then the def-pooling layer degenerates
to the deformation layer in3]. There is only one output

straints of object parts has been proved in object detectionfor M in this case. The deformation layer can represent

by many existing non-deep-learning detectors, e.g].[

the widely used quadratic deformation constraint in the de-

However, it is missed in current deep learning models. In formable part-based modei(]]. Details are given in Ap-
deep CNN models, max pooling and average pooling arependix A. Fig.6 illustrates this example.

useful in handling deformation but cannot learn the defor-

Example 3 SupposeV = 1 andc¢,, = 1, then the defor-

mation constraint and geometric model of object parts. We mation constraintl;” is learned for each displacement bin
de5|gn_ the def-poplmg Iaygr for deep models so that the de-(; ;) from the center locatiofk, -, ky-y). Inthis caseq;’
formation constraint of object parts can be learned by deepjs the deformation cost of moving an object part from the

models.

DenoteM of sizeV x H as the result of the convolu-
tional layer, e.g. conv6 The def-pooling layer takes small
blocks of size(2R + 1) x (2R + 1) from theM and sub-
samplesM to B of size = x % to produce single output

from each block as follows:

N
} {mbe etk _NT e didy, (2)
R

n=1

pEY) = max

i,je{—R,--,
where(k, - z, ky - y) is the center of the block;, andk,
are subsmpling steps*¥) is the(z, y)th element oB. ¢,
andd’’ are deformation parameters to be learned.
Example 1 Suppose,, = 0, then there is no penalty for
placing a part with centef,, - , k,, - y) to any location in

center locatiortk, -z, k,, -y) to location(k, - +1, ky -y +j).
As an example, ifl)"° = 0 andd}? = oo for (i, ) # (0,0),
then the part is not allowed to move from the center loca-
tion (k; -z, ky - y) to anywhere. As the second example,
if d7 = 0forj <= 0andd}’ = oo for j > 0, then the
part can move freely upward but should not move down-
ward. As the third example, if)"° = 0 andd}’ = 1 for
(,7) # (0,0), then the part has no penalty at the center lo-
cation(k, - z, k, - y) but has penalty 1 elsewhere. TRén
controls the movement range. Objects are only allowed to
move within the horizontal and vertical rangeR R] from
the center location.

The deformation layer was proposed in our recently pub-



lished work [3€g], which showed significant improvementin
pedestrian detection. The def-pooling layer in this paper i
different from the deformation layer i3{] in the following
aspects.

1. The work in B¢ only allows for one output, while this filter

paper is block-wise pooling and allows for multiple out- Convolution Max
put at different spatial locations. Because of this differ- result M pooling
ence, the deformation layer can only be put after the fi- "!
nal convolutional layer, while the def-pooling layer can .
. . . _ Output B
be put after any convolutional layer like the max-pooling
layer. Therefore, the def-pooling layer can capture geo- .
metric deformation at all the levels of abstraction, while
the deformation layer was only applied to a single layer .
corresponding to pedestrian body parts. ’
2. It was assumed in3f] that a pedestrian only has one Derf‘;:;‘z;lon

instance of a body part, so each part filter only has one
optimal response in a detection window. In this work, Figure 7. The def-pooling layer. Part detection map andrdede

it is assumed that an object has multiple instances of itstion constraint are summed up. Block-wi.se max pooling .i$1the
part (e.g. a building has many windows, a traffic light p}?rforryed on the summed map to obtain the oufBubf size
has many light bulbs), so each part filter is allowed to # * %"

have multiple response peaks. This new model is more
suitable for general object detection. For example, the
traffic light can have three response peaks to the light
bulb in Fig. 7 for the def-pooling layer but only one peak

in Fig. 6 for the deformation layer in3].

3. The approach in3f only considers one object class,
e.g. pedestrians. In this work, we consider 200 object
classes. The patterns can be shared across different ob-
ject classes. As shown in FigB, circular patterns are
shared in wheels for cars, light bulb for traffic lights,
wheels for carts and keys for ipods. Similarly, the pat-
tern of instrument keys is shared in accordion and pi-
ano. In this work, our design of the deep model in Fig.

7 considers this property and learns the shared patterns
through the layers cony6convg and convg and use
these shared patterns for 200 object classes.

5.5. Fine-tuning the deep model with hinge-loss

RCNN fine-tunes the deep model with softmax loss, then
fixes the deep model and uses the hidden layers fc7 as fea- (b)
tures to learn 200 one-versus-all SVM classifiers. This Figure 8. The circular patterns (a) and musical instrumentgat-
scheme results in extra time required for extracting fea- terns (b) shared across different object classes.
tures from training data. With the bounding box rejection,
it still takes around 60 hours to prepare features from the
ILSVRC2013 Det train and valfor SVM training. In our
approach, we replace the softmax loss of the deep model by A bounding box denoted by, can be divided intaV
hinge loss when fine-tuning deep models. The deep modekub-boxes, - - , 7y, N = 4 in our implementationr, is
fine-tuning and SVM learning steps in RCNN are merged called the root box in this paper. For example, the bound-
into one step in our approach. In this way, the extra train- ing box for cattle in Fig.9 can be divided into 4 sub-boxes
ing time required for extracting features is saved in our ap- corresponding to head, torso, forelegs and hind legs. The
proach. features of these sub-boxes can be used to improve the ob-

5.6. Sub-box features
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Figure 9. A boxrq with its four sub-boxes, - -- ,r4(a) and ex- @ ’ N )
amples for the bounding boxes on cattle (b).

‘ > Golf ball

Figure 10. The weights of image classification scores (ajHer
object detection class volleyball (b).

ject detection accuracy. In our implementation, sub-boxes
have half the width and height of the root bax The four tion scores as the contextual features. The steps of using
sub-boxes locate at the four corners of the root hpxDe- o i

contextual modeling is as follows:

noteB, as the set of bounding boxes generated by selectlvell The 1000-class scores of image classification and 200

search. The features for these bounding boxes have been ; .
. scores of object detection are concatenated as the 1200
generated by deep model. The following steps are used for . .
- i dimensional feature vector.
obtaining the sub-box features: .
. . 2. Based on the 1200 features, 200 one-versus-all linear
1. For asub-box,,,n = 1,--- 4, its overlap with the the oo . .
. . . : SVM classifiers are learned for 200 object detection
boxes inB; is calculated. The box iB, having the . PO
. . classes. At the testing stage, the classification scores
largest loU withr,, is used as the selected bby,, for . . 2 . )
the sub-box: ’ obtained by linear weighting of the 1200 dimensional
" features are used as the refined score for each candidate
2. The features of the selected box,, are used as the fea- bounding box

turesf,, for sub-boxr,,. . .
3. Element-wise max-pooling over the four feature vectors \l/:v(()ari tntes(??ff:‘:efgggoi?n 26‘25312!:26‘"" thgLnsrt])(c)eW;etr? that
f, forn = 1,2,3,4 is used for obtaining max-pooling . 9 . g ' .
. 4 image classes bathing cap and golf ball suppress the exis-
feature vectof,, ., i.€. fimaee = maxj,_; fin, Where . . . - .
fi is theith element inf. and f; . is theith ele- tence of volleyball with negative weight while the image
R max o class volleyball enhances the existence of detection class

mentinf,, . .
4. Element-wise average-pooling over the four feature vec—VOI.Ieybfa”' The bathing cap oftgn appears near the beach or
swimming pool, where it is unlikely to have volleyball.

torsf, forn = 1,2, 3,4 is used for obtaining average-
pooling feature vectof,,g, i.€. fiavg = % Son_y fim

Where ;. ou, is theith element irf, . 6. Combining models with high diversity

5. Denote the feature for the root box ﬁbs fo, frae, In existing model combination approachég,[29, 25,
andf,., are concatenated as the combined feafure  he same deep architecture is used. Models are different
{fo, fraa, favg }- in spatial locations or learned parameters. In our model

6. f is used as the feature for bey. Linear SVMis used  5yeraging scheme, we learn models under several settings.
as the object detection classifier for these features. The settings of the 10 models we used for model averag-
The hierarchical structure of selective search has pravide ing when submitted to ILSVRC2014 challenge are shown
us with the opportunity of reusing the features computed for j, Taple 1. The 10 models are different in net structure,
small root box as the sub-box for large root box. The sub- yretraining scheme, loss functions for the deep modeltrain
box features need not be computed and is directly cop|eding' adding def-pooling layer/multi-stage training/sotx
from the features computed for bounding boxes of selectivefeatyres or not, and whether to do bounding box rejection
search. In this way, the execution time for computing fea- o not. In our current implementation, the def-pooling lay-
tures is saved for sub-boxs. Another good property is thaters multi-stage training and sub-box features are added to
the selected bounding boxes for sub-boxes are allowed toyjtferent deep models separately without being integrated
move, which improves the robustness to the translation Oftogether, although such integration can be done in the fu-
object parts. With sub-box features, the mAP improves by tre work. Models generated in this way have high diver-
0.5%. sity and are complementary to each other in improving the
detection results. The 10 models were selected with greedy
search based on performance on,vdlhe mean AP (MAP)
The model learned for the image classification task takesof averaging these 10 models 49.9% on vak, and its
the scene information into consideration while the model mAP on the test data of ILSVRC2014 is 40.7%, ranking #2
for object detection focuses on local boxes. Therefore, thein the challenge. After the deadline of ILSVRC2014, our
image classification scores provides contextual inforomati deep models were further improved. Running model av-
for object detection. We use 1000-class image classifica-eraging again, the selected models and their configurations

5.7. Contextual modeling



Table 1. Models used for model averaging submitted to Table 4. Ablation study of bounding box (bbox) rejection hade-
ILSVRC2014. The result of mAP is on valFor net design, Ade-  line deep model on ILSVRC2014 val

notes AlexNet, C denotes Clarifai-fast, D-D denotes DeelHd bbox rejection? n y y
with def-pooling layers, D-MS denotes DeeplD-Net with mult deep model  A-net A-net C-net
stage training. In A and C, only the baseline deep model {{@lar mAP (%) 299 309 318
fast or AlexNet) is used without def-pooling layers or mgitage meadian AP%) 28.9 29.4 30.5

training. In D-D and S-MS, the baseline deep model is chosen
as Clarifai-fast, and extra layers from def-pooling or rastage 7.1. Ablation study
training are included. For pretrain?j] denotes the pretraining

scheme of RCNN, 1 denotes the Scheme 1 in Se&i@n2 de- 7.1.1 Investigation on bounding box rejection and
notes the Scheme 2 in Sectibr2 baseline deep model
modelnumber 1 2 3 4 5 6 7 8 9 10
bboxrejecion y n y y y y 'y y y vy AsshowninFig.3, a baseline deep model is used in our
netdesign A A C C D-DD-DD-MS D-D D-D D-D DeeplID-Net. The baseline deep model using the AlexNet
Pretrain  P3 1 [29 1 1 1 2 2 2 2 in[29 is denoted as A-net and the baseline deep model
loss of net s s s

h h h h h h hysing the clarifai-fast inq7] is denoted as C-net. Table
mAP (%) 31.031.232133635336.0 37.0 37.0 37.1 374 shows the results for different baseline deep model and
Table 3. Experimental results for model averaging on ILSVRC bounding box rejection choice. Except for the two com-
2014. Fore averaging scheme, all-cls denotes the greedghsea ponents investigated in Table other components are the
in which all classes share the same set of models for averagin same as RCNN, while the new training schemes and new
per-cls denotes the greedy search in which different csasaee  components introduced in Sectiérare not included. The
different model combinations. Since our results got imprbafter baseline is RCNN, the first column in Table Based on
the competition deadline, both results submitted beforkadter the RCNN approach, applying bounding box rejection im-
the deadiine are reported on both.vahd test data. proves mAP by 1%. Therefore, bounding box rejection not
Averaging scheme all-cls all-cls all-cls per-cls only saves the time for training and testing new models but
After deadline n n y y . . .
evaluation data  val test vab val also improves detectlon_agcuraqy. Based on the bounding
mAP (%) 209 407 424 45 box reje<_:t|0n step, Clarlfal-fast_ ] performs better than
AlexNet in [29], with 0.9% mAP improvement.

are shown in Tabl&. The mAP on val is 42.4%.
In existing works and the model averaging approach de-

scribed above, the same model combination is applied to allThere are two different sets of data used for pretraining the
the 200 classes in detection. However, we observe that thepaseline deep model. The ImageNet Cls train data with

effectiveness of different models varies a lot across wffe 1000 classes and the ImageNet Det train ang ¢ata with
object categories. Therefore, it is better to do model selec 200 classes. There are two different annotation levels, im-
tion for each class separately. With this strategy, we aehie  age and object. Investigation on the combination of im-

MAP 45% on vab. age class number and annotation levels is shown in Table
5. When producing these results, other new components in-
7. Experimental Results troduced in Section 5.3-5.7 are not included. Using image-
level annotation, pretraining on 1000 classes performs bet
The ImageNet Det valdata is used for evaluating sepa- ter than pretraining on 200 classes by 9.2% mAP. Using the
rate components and the ImageNet Det test data is used fosame 1000 classes, pretraining on object-level-annatatio
evaluating the overall performance. The RCNN approach in peforms better than pretraining on image-level annotation
[29is used as the baseline for comparison. The source coddy 4.4% mAP for A-net and 4.2% for C-net. This ex-
provided by the authors are used for repeating their results periment shows that object-level annotation is better than
Without bounding box regression, we obtain mean AP 29.9 image-level annotation in pretraining deep model. Pretrai
on vah, which is close to the 29.7 reported inj. Table?2 ing with more classes improves the generalization capabil-
summarizes the results from ILSVRC2014 object detection ity of the learned feature representations.
challenge. It includes the best results on test data suduhitt There are two schemes in using the ImageNet object-
to ILSVRC2014 from our team, GoogleNet, Deeplnsignt, level annotations of 1000 classes in SectioR Scheme
UvA-Euvision, and Berkeley Vision, which ranked top five 1 pretrains on the image-level 1000-class annotation, first
among all the teams participating in the challenge. It also fine-tunes on object-level 1000-class annotation, and then
includes our most recent results on test data obtained aftefine-tunes again on object-level 200-class annotations.
the competition deadline. All these best results were ob- Scheme 2 does not pretrain on the image-level 1000-class
tained with model averaging. annotation and directly pretrains on object-level 1008ss!

7.1.2 Investigation on different pretraining schemes



Table 2. Experimental results on ILSVRC2014 for top rankepraaches.

approach RCNNjZ] Berkeley Vision UvA-Euvision Deeplnsight GoogLeNetrs ours new
mAP %) onvak  31.0 334 n/a n/a 445 |40.9 45
mAP (%) on test 314 345 354 40.5 43.9(40.7 nla

Table 5. Ablation study of pretraining datasets and nettires
on ILSVRC2014 val.
net structure

A-net A-net A-net C-net C-net
bbox rejection n n n y y
class number 200 1000 1000 1000 1000
annotation level image image object image object
mAP (%) 20.7 299 34.3 31.8 36.0
meadian AP%) 17.8 289 349 305 34.9
Table 6. Ablation study of the two pretraining schemes intisac
5.20n ILSVRC2014 val. Scheme 1 uses the image-level annota-

tion while scheme 2 does not.
net structure A-net A-net C-net C-net

bbox rejection n n y y
pretraining scheme 1 2 1 2
mAP (%) 31.2 34.3 33.4 36.0
meadian AP%) 29.7 33.4 33.1 34.9
Table 7. Ablation study of the different net structures on

ILSVRC2014 va}.
net structure

A-net C-net D-MS D-Def
bbox rejection n y y y
pretraining scheme 2 2 2 2
mAP (%) 34.3 36.0 375 385
meadian AP%) 33.4 349 36.4 374

annotation. As shown in Tablk Scheme 2 performs better
than Scheme 1 by 2.6% mAP. This experiment shows that
image-level annotation is not needed in pretraining deep
model when object-level annotation is available.

7.1.3 Investigation on deep model designs

Based on the pretraining scheme 2 in Sectidr) different

backpack
bus

car
person

Our approach

Figure 11. Object detection result for RCNN and our approach

~ 1%. Replacing image-level annotation by object-level
annotation for pretraining, mAP increases by4%. The
def-pooling layer further improves mAP 3/5%. After
adding the contextual information from image classifiaatio
scores, MAP increases by 1%. Bounding box regression
improves mAP by~ 1%. With model averaging, the best
result is45%. Table9 summarizes the contributions of dif-
ference components. More results on the test data will be
available in the next version soon.

8. Appedix A: Relationship between the defor-
mation layer and the DPM in [20]

The quadratic deformation constraint it{]] can be rep-

resented as follows:
D = — ey (i—ait 2= ) —ea(j—aj+ o),

%1 ®)

wherem(9) is the (i, j)th element of the part detection
mapM, (a;,a;) is the predefined anchor location of the

pth part. They are adjusted hy/2¢; andey/2¢2, which

are automatically learned:; andc; (3) decide the defor-
mation cost. There is no deformation costjf= cy = 0.

deep model structures are investigated and results arexshowarts are not allowed to movedf = ¢, = oc. (ai, a;)

in Table7. Our DeeplD-Net that uses multi-stage training
for multiple fully connected layers in Figlis denoted as D-
MS. Our DeeplID-Net that uses def-pooling layers as shown
in Fig. 5is denoted as D-Def. Using the C-net as baseline
deep moel, the DeeplD-Net that uses multi-stage training in
Fig. 4 improves mAP by 1.5%. Using the C-net as baseline
deep moel, the DeeplD-Net that uses def-pooling layer in
Fig. 5 improves mAP by 2.5%. This experiment shows
the effectiveness of the multi-stage training and def-jmgpl
layer for generic object detection.

7.1.4 Investigation on the overall pipeline

Table8 and Tabled summarize how performance gets im-
proved by adding each component step-by-step into our
pipeline. RCNN has mAR9.9%. With bounding box re-
jection, mAP is improved by about/, denoted by~ 1%.
Based on that, changing A-net to C-net improves mAP by

c3 Cq

and (72, o) jointly decide the center of the part. The

guadratic constraint in Eq3) can be represented using Eq.
(2) as follows:

m(i»j) :m(’i,j) _ C1d§i’j) _ Cngi’j) _ nggm‘)_ C4d4(f’j)_057
di") = (i - a:)?, d§" =(j - a;)*, 5"
dii’j) =j—a;,c = 032/(401) + C42/(402).

=1 — Q4,
(4)

In this case,ci, c2,c3 and cs are parameters to be learned and
d9) forn = 1,2, 3,4 are predefinedes is the same in all loca-
tions and need not be learned. The final output is:
b = max ﬁz(i'j)7
(4.4
wherem (") is the(i, j)th element of the matri® in (3).

()

9. Conclusion

This paper proposes a deep learning diagram that learns four
components — feature extraction, deformation handlingy- co
text modeling and classification — for generic object débect



Table 8. Ablation study of the overall pipeline for single debtested on ILSVRC2014 val2. It shows the mean AP afterrapdach key
component step-by-step.
detection pipeline RCNN +bbox A-net image to bbox +Def +eant +bbox

rejection to C-net  pretrain  pooling regression
mAP (%) 29.9 30.9 31.8 36.0 385 39.2 40.1
meadian AP%) 28.9 29.4 30.5 34.9 374 387 40.3

Table 9. Ablation study of the overall pipeline for single aebtested on ILSVRC2014 val2. It summarizes the contrilmgifrom each
key components.
detection pipeline RCNN +bbox A-net image to bbox +Def +eant +bbox | model
rejection to C-net  pretrain  pooling regresJiaweraging
mAP (%) 299 ~1% +~1%  +~4%  +25% +~ 1% +~1% [ 45%
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