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Chapter 1
Semantic Object Segmentation

Abstract Semantic object segmentation is to label each pixel in an image or a video
sequence to one of the object classes with semantic meanings. It has drawn a lot of
research interest because of its wide applications to image and video search, editing
and compression. It is a very challenging problem because a large number of object
classes need to be distinguished and there is a large visual variability within each
object class. In order to successfully segment objects, local appearance of objects,
local consistency between labels of neighboring pixels, and long-range contextual
information in an image need to integrated under a unified framework. Such inte-
gration can be achieved using conditional random fields. Conditional random fields
are discriminative models. Alhtough they can learn the models of object classes
more accurately and efficiently, they require training examples labeled at pixel-level
and the labeling cost is expensive. The models of object classes can be learned
with different levels of supervision. In some applications, such as web-based im-
age and video search, a large number of object classes need to be modeled and
therefore unsupervised learning or semi-supervised learning is preferred. Therefore
some generative models, such as topic models, are used in object segmentation be-
cause of their capability to learn the object classes without supervision or with weak
supervision of less labeling work. We will overview different technologies used in
each step of the semantic object segmentation pipeline and discuss major challenges
for each step. We will focus on conditional random fields and topic models, which
are two types of frameworks widely used in semantic object segmentation. In video
segmentation, we summarize and compare the frameworks of Markov random fields
and conditional random fields, which are the representative models of the generative
and discriminative approaches respectively.

1.1 Introduction

The task of semantic object segmentation is to label each pixel in an image or a
video sequence to one of the object classes with semantic meanings (see exam-
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4 1 Semantic Object Segmentation

(a) VOC 2009

(b) MSRC 21

Fig. 1.1 Examples of images (first row) and manually segmented objects (second row) from PAS-
CAL VOC 2009 [1] (a) and MSRC 21 [2] (b). Different colors represent object categories.

ples in Figure 1.1). The object classes can be pre-defined or unsupervised learned
from a collection of images or videos. It is different than unsupervised image and
video segmentation, which is to group pixels into regions with homogeneous color
or texture but without semantic meanings. It has important applications to image and
video search, editing and compression. For example, semantic regions with their 2D
spatial arrangement sketched by users can be used as query to retrieve image. Seg-
mented objects can be deleted from images or copied between images. Different
regions of images can be enhanced in different ways based on their semantic mean-
ings.

Semantic object segmentation is a very challenging problem, because there are
a very large number of object classes to be distinguished, some object classes are
visually similar, and each object class may have very large visual variability. These
object classes can be structured, such as cars and airplanes, or unstructured, such as
grass fields and water. Due to variations of viewpoints, poses, illuminations and oc-
clusions, objects of the same class have different appearance across images. In order
to develop a successful semantic object segmentation algorithm, there are three im-
portant factors to be considered: local appearance, label consistency between neigh-
boring pixels, and long-range contextual information [3]. In order to model the local
appearance at a pixel, filter-banks and visual descriptors are applied to the neigh-
borhood around the pixel and their responses are used as the input of a classifier
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to predict the object label. The filter-banks, visual descriptors and classifiers have
to be carefully designed in order to achieve a good balance between high discrim-
inative power and invariance to noise, clutters and the changes of viewpoints and
illuminations. In order to obtain smooth segmentation results, the label consistency
between neighboring pixels needs to be considered. In order for the segmentation
to be consistent with the boundaries of objects, the algorithm should encourage two
neighboring pixels to have the same object label if there is no strong edge between
them. In addition to smoothness, the likelihood of two object classes being neigh-
bors should also be considered for local consistency. For example, it is more likely
for a cup to be on the top of desk than on a tree. Only considering the appearance
of an image patch leads to ambiguities when deciding its class label. For example,
a flat white patch could be from a wall, a car or an airplane. The long-range contex-
tual information of the image may help to solve the ambiguities to some extent. For
example, some object classes such as horses and grass are more likely to co-existing
in the same images. If it is known that the image is an outdoor scene, it is more
likely to observe sky, grass and cars than computers, desks and floors in that image.
Local appearance, local consistency and long-range contextual can be incorporated
in a Conditional Random Field (CRF) model [4], which has been popularly used in
semantic object segmentation.

The approaches of semantic object segmentation can be supervised or unsuper-
vised. The supervision at the training stage can be at three different levels,

• pixel-level: each pixel in an image is manually labeled as one of the object
classes;

• mask-level: an object in an image is located by a bounding box and assigned to
a object class;

• image-level: annotating object classes existing in an image without locating or
segmenting objects.

Most discriminative object segmentation approaches including CRF need pixel-
level or mask-level labeling for training. They can learn the models of object classes
more accurately and efficiently. However, as the fast increase of images and videos
in many applications such as web-based image and video search, there are a increas-
ing number of object classes to be modeled. The workload of pixel-level and mask-
level labeling is heavy and impractical for a very large number of object classes. In
recent years, some generative models, such as topic models borrowed from language
processing, have become popular in semantic object segmetation. They are able to
learned the models of object classes from a collection of images and videos without
supervision or supervised by data labeled at the image-level, whose labeling cost is
much less. It is also possible to CRF and topic models to integrate the strengths of
both types of approaches.

A typical pipeline of semantic object segmentation is shown in Figure 1.2. Filter-
banks or visual descriptors are first applied to images to capture the local appearance
objects. Their responses are typically quantized into textons or visual words accord-
ing to codebooks learned in a supervised or unsupervised way. The histograms of
textons or visual words are used as input to a classifier to predict labels of object
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Fig. 1.2 Typical steps of semantic object segmentation. They are done over image pixels, patches
or oversegmented superpixels.

classes. In order to well capture local consistency and long-range contextual infor-
mation, CRF or generative models are used to incorporate with local classifiers.
These steps can be on at image pixels, patches or oversegmented superpixels. Many
different technologies have been developed to improve each of the three steps. We
will review these technologies and discuss the major challenges for these steps. In
recent years, some benchmark databases, such as PASCAL VOC 2007 [5], PASCAL
VOC 2008 [6], PASCAL VOC 2009 [1], LabelMe [7], LHI [8] and MSRC 21 [2],
were published to evaluate the performance of different semantic object segmenta-
tion approaches.

In video segmentation, Markov random fields (MRFs) and CRFs are two main
frameworks. Statistically, video segmentation formulizes and maximizes a posterior
probability of the labels given the observation data. In the case that there is no or
only small number of labeled data, some heuristic or prior knowledge based dis-
tributions can be selected to describe the observation data. Based on the selected
distributions and the prior of labels modeled in a MRF, the MRF approaches formu-
late the posterior via likelihoods and priors in Baye’s rule. On the contrast, CRFs
model the posterior directly to improve the predictive performance if there are large
quantities of training data. In CRFs, the model of the observation data is obtained
by learning from the training data using some classifiers. Compare to MRFs, CRFs
relax the assumption of data independence, while large more expensive labeled data
is necessary in CRFs.

This chapter is organized as follows. Section 1.2 introduces different types of
filter-banks and visual descriptors to capture local appearance, and different tech-
niques to quantize their responses into textons or visual words. Some popular clas-
sifiers on local appearance are reviewed in Section 1.3.1. Section 1.3.2 introduces
CRF and different approaches of using CRF for semantic object segmentation. Sec-
tion 1.4 first introduces two classical topic models, Probabilistic Latent Semantic
Analysis [9] (pLSA) and Latent Dirichlet Allocation [10] (LDA), which were di-
rectly borrowed from language processing and applied to semantic object segmen-
tation. Both pLSA and LDA ignored the spatial distribution of image patches. Spa-
tial Latent Dirichlet Allocation [11], which is an extension of LDA and other topic
models incorporating spatial structures of objects are introduced in Section 1.4.2
and Section 1.4.3. The approaches of object segmentations in videos are discussed
in Section 1.5. Finally the summary is given in Section 1.6.
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(a) (b)

(c)

Fig. 1.3 A set of filter banks proposed by Winn [2]. (a) Three Gaussian kernels with σ = 1,2,4.
They were applied to each CIE L,a,b channel. (b) Four derivatives of Gaussians divided into the x−
and y− aligned sets, each with two different values of σ = 2,4. They were applied to L channel.
(3) Four Laplacian of Gaussians with σ = 1,2,4,8. They were applied to L channel.

1.2 Local Visual Cues

1.2.1 Filter-banks and visual descriptors

Filter-banks and visual descriptors are used to capture the local appearance of ob-
jects. They are calculated from the neighbor of a pixel. On the one hand, they need
to be discriminative enough to distinguish a large number of object classes, some of
which are visually similar; on the other hand, they need to have invariance to noise,
clutters and changes of illuminations and viewpoints. If they are computed at every
pixel, computational efficiency is another issue to be considered. In this section we
will review some popularly used filter-banks and visual descriptors.

Filter-banks. Filter-banks capture certain frequencies within a neighborhood.
Winn et al. [2] proposed a set of filter-banks after testing different combinations
of Gaussians, Laplacian of Gaussians (LoG), first and second order derivatives of
Gaussians and Gabor kernels on semantic object segmentation. The proposed set
of filter-banks included three Gaussians, four LoGs and four first order deriva-
tives of Gaussians. The three Gaussian kernels with different standard deviation
parameters σ = 1,2,4 were applied to each CIE L,a,b channel. The four LoGs(with
σ = 1,2,4,8) and the four first order derivatives of Gaussians (with σ = 1,2,4,8)
were applied to L channel only. The first order derivatives of Gaussians were in x
and y directions. See the kernels of the proposed filter-banks in Figure 1.3. Some
other filter-banks, such as rotation-invariant filters and maximum-response filters,
were also proposed [12, 13, 14]. A comparison study can be found in [15].

SIFT. SIFT (Scale-Invariant Feature Transform) (see Figure 1.4) proposed by
Lowe [16] is the most widely used local visual descriptors. It has reasonable invari-
ance to changes in illumination, rotation, scaling and small changes in viewpoints.
SIFT keypoints were detected by finding local extrema of Difference-of-Gaussian
(DoG) filters at different scales. For each keypoint, its orientation and scale were se-
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Fig. 1.4 SIFT descriptor [16] is computed by combining the normalized orientation histograms of
gradients within subregions of the keypoint into a feature vector.

lected. A SIFT descriptor of a keypoint was obtained by first computing the gradient
magnitudes and orientations of pixels in the neighborhood region of the keypoint,
using the scale of the keypoint to select a proper Gaussian kernel to blur the im-
age. It order to achieve orientation invariance, the coordinates of the descriptor and
the gradient orientations were rotated relative to the keypoint orientation. The ori-
entation histograms within the subregions around the keypoint were computed and
combined into the SIFT feature vector. This vector was normalized to improve the
invariance to changes of illumination. Gradient Location and Orientation Histogram
(GLOH) [17] extended SIFT by allowing SIFT descriptor to be computed on a log-
polar location grid.

HOG. Histogram of Oriented Gradients proposed by Dalal and Triggs [18] was
similar to SIFT. It computed the histograms of gradient orientations in different
subregions. Different from SIFT which was computed on detected sparse keypoints,
HOG was sampled from a dense and uniform grid and was improved by local con-
trast normalization in overlapping spatial blocks. Integral Histogram of Oriented
Gradients (IHO) [19] is an approxmiation of HOG and can be efficiently computed
using integral images.

MSER. Instead of detecting keypoints, Maximally Stable Extremal Regions
(MSER) proposed by [20] et al. detected regions which were darker or brighter
than surroundings. It was affinely-invariant and robust to changes of illuminations.
It was extended to colour in [21].

SURF. Bay et al. [22] proposed the SURF (Speeded Up Robust Features) descrip-
tor, which could be efficiently computed using integral images. The neighborhood of
a pixel was uniformly into P×Q spatial bins. The SURF descriptor was calculated
by accumulating the sum of Haar wavelet responses at different spatial bins. Let d x

and dy be the Haar wavelet responses in the horizontal and vertical directions. The
descriptor has a four-dimensional vector (∑dx,∑‖dx‖ ,∑dy,∑

∥∥dy
∥∥) for each spatial

bin. The resulting 4×P×Q dimensions SURF descriptor was L1-normalized.
Spin image and RIFT. Lazebnik et al. [23] proposed two rotation-invariant de-

scriptors, spin image and RIFT (Rotation-Invariant Feature Transform). The spin
image was a two-dimensional histogram of image intensities and their distance to
the keypoint. To construct the RIFT descriptor, the circular normalized patch around
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the keypoint was divided into concentric rings of equal width and a gradient orien-
tation histogram was computed within each ring.

Most descriptors described above were applied to intensity images. To increase
illumination invariance and discriminative power, color descriptors were proposed.
An evaluation of different color descriptors can be found in [24]. It was shown that
the combination of different filter-banks of visual descriptors could improve the
performance [25].

These filter bank responses and invariant descriptors can be computed at image
patches densely sampled or at sparse interest points. Results in [26] showed that
densely sampling improved the performance because it captured the most informa-
tion, but its computation was expensive.

1.2.2 Textons and visual words

In semantic object segmentation, the responses of filter-banks or visual descriptors
are usually further quantized to textons or visual words 1 according to a learned
codebook. Since the histograms of textons or visual words will be used as the input
of classifiers at later stages, the design of codebooks should consider both distinc-
tiveness and repeatability. This means that it should try to assign image patches of
different object classes to different codewords and to assign image patches of the
same object class to the same codeword. The codebook should be compact in order
to avoid overfitting of the classifiers at later stages. Because there are a huge number
of image patches in data collections, memory and computation efficiency is another
issue to be considered when learning the codebooks.

K-means is the most commonly used clustering methods to generate the code-
books. Some examples of visual words obtained by k-means are shown in Figure
1.5. Since the distribution of image patches in the filter-bank space or in the descrip-
tor space is far from uniform, one of the disadvantages of k-means is that it clusters
centres almost exclusively around the densest few regions in descriptor space and
cannot over other informative regions well. Based on this consideration, Jurie et al.
[27] proposed a new approach building codebooks using mean shift. Some patches
in the dense regions were removed and the learned codebooks were more informa-
tive.

K-means has high computational cost. It also has the difficulty of balancing the
distinctiveness and repeatability by choosing different sizes of codebooks. If the
size of the codebook is too small, image patches of different object classes will fall
into the same bin. At the other extreme, image patches around the same keypoint ob-
served in different images will fall into different bins. To overcome these difficulties,
Nister et al. [28] proposed the vocabulary tree constructed by hierarchical k-means.
It allowed a larger and more discriminatory codebook to be used efficiently. Moos-
mann et al. [29] proposed Extremely Randomized Clustering Forests, which were

1 Textons are quantized responses of filter-banks and visual words are quantized visual descriptors.
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Fig. 1.5 Examples of visual words obtained by the filter-banks proposed in [2] and k-means. The
first row are images and the second row are visual words. Colors represent different visual words.

ensembles of randomly created clustering trees, to learn the codebook. It provided
more accurate results and was faster than k-means. Elkan [30] used the triangle
inequality to dramatically accelerate k-means, while guaranteed always computing
exactly the same result as the standard k-means.

K-means assumed hard assignment, i.e. exactly assigning a single visual word to
one image feature. If an image feature is relevant to multiple textons or visual words,
only the best is selected. If none of the codewords in the codebook well represent the
image feature, the best one is still assigned to the image feature. These may cause
problems during object segmentation. van Gemert et al. [31] created codebooks
using kernel density estimation. It modeled the uncertainty between visual words
and image features.

The above approaches are unsupervised. Some supervised approaches learned
codebooks incorporating semantic information. These codebooks were more com-
pact and discriminative. Winn et al. [2] learned an optimally compact visual code-
book by pair-wise merging of visaul words given segmented images for training.
Shotton et al. [32] proposed semantic texton forests, which were randomized deci-
sion forests [33] and were learned from image pixels. Perronnin et al. [34] learned
different codebooks for different object classes by adapting a universal codebook,
which described the content of all the classes of images, using class-specific data.
Both the universal codebook and adapted class-codebooks were used for classifica-
tion.

1.3 Object Segmentation Using Discriminative Approaches

1.3.1 Classifiers on local appearance

The obtained histograms of textons or visual words within local regions capture the
features of local appearance and are usually used as the input of classifiers to pre-
dict object labels. Support Vector Machines (SVM) and Boosting are widely used
to model the appearance of object classes. Marsalek and Schmid [35] estimated the
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shape mask of an object and its object category using non-linear SVM and with χ 2

distance. The appearance of the object within the shape mask was represented by a
histogram of visual words. Shotton et al. [32] used the texton histograms and region
priors, which were calculated from their proposed semantic texton forests, of image
regions as input of a one-vs-others SVM classifier to assign image regions into dif-
ferent object classes. Gould et al. [36] used the boosting classifier to predict the label
of each pixel. Tahir et al. [25] used Spectral Regression Kernel Discriminant Anal-
ysis(SRKDA) [37] and achieved better results than SVM on PASCAL VOC 2008
[6]. It was also much more efficient than Kernel Discriminant Analysis(KDA). Al-
davert et al. [38] proposed an integral linear classifier, which used integral images
to efficiently calculate the outputs of linear classifiers based on histograms of visual
words at the pixel level.

1.3.2 Conditional Random Fields

Although classifiers such as SVM and Boosting can predict the object label of a
pixel based on the appearance within its neighborhood, they cannot capture local
consistency other contextual features, such as “sky” appears above buildings but not
the other way around. Local appearance, local consistency and contextual features
can be well incorporated under a Conditional Random Fields (CRF) framework.

1.3.2.1 Multiscale conditional random fields

He et al. [39] were the first to use CRF for semantic object segmentation. Their
proposed CRF framework is described as following. Suppose X = {x i} are image
patches and Z = {zi} are their object class labels. In [39], the conditional distribu-
tion over Z given input X was defined by multiplicatively combining component
conditional distributions.

P(Z|X) ∝ PC(Z|X)PR(Z|X)PG(Z|X). (1.1)

PC, PR and PG capture statistical structures at three different spatial scales: local
classifier, regional features and global features (see Figure 1.6).

The local classifier PC produces a distribution over the label zi given its image
patch xi as input,

PC(Z|X,λ ) = ∏
i

PC(zi|xi,λ ), (1.2)

where λ is the parameter of the local classifier. A 3-layer multilayer percep-
tron(MLP) was used in [39].

The regional features PR represent local geometric relationships between ob-
jects. They avoid impossible combinations of neighboring objects such as “ground
is above sky” and also encourage the segmentation results to be spatially smooth. A
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Fig. 1.6 A graphical representation of CRF. Reproduced from [39].

collection of regional features are learned from the training data. Let r be the index
of regions and a be the index of the different regional features within each region,
and j be the index of image patches within in region r. PR is defined as

PR(Z, f) ∝ exp{∑
r,a

fr,awT
a zr}. (1.3)

f = { fr,a} are binary hidden regional variables. f r,a = 0,1 indicating the feature a in
region r exists or not. wa = [wa,1, . . . ,wa,J ,αa] are parameters and αa is a bias term.
wa, j connects fr,a with zr, j and specifies preferences for the possible label value of
zr, j. zr = [zr,1, . . . ,zr,J,1]. PR is high of zr matches wa and fr,a = 1 or zr does not
match wa and fr,a = 0.

The global feature PG is defined over the whole image,

PG(Z,g) ∝ exp{∑
b

gbuT
b Z}. (1.4)

b is the index of the global label patterns, which are encoded in the parameters {u b}.
g = {gb} are the binary hidden global variables.

Both hidden variables f and g can be marginalized, leading to

PR(Z) ∝r,a
[
1+ exp(wT

a zr)
]
, (1.5)

PG(Z) ∝b
[
1+ exp(uT

b Z)
]
. (1.6)

Thus Eq(1.2) has a closed form,

P(Z|X;θ ) ∝ ∏
i

PC(zi|xi,λ )×∏
r,a

[
1+ exp(wT

a zr)
]×∏

b

[
1+ exp(uT

b Z)
]
. (1.7)
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θ = {λ ,{wa},{ub}} are parameters. They are learned from a training by maximiz-
ing the conditional likelihood in [39]. Once the parameters are learned, the object
class labels are inferred by maximizing posterior marginals.

1.3.2.2 TextonBoost

Under the CRF framework, Shotton et al. [40] proposed TextonBoost to learn a dis-
criminative model of object classes incorporating texture, layout and context infor-
mation. Their CRF includes four types of potentials: texture-layout, color, location
and edge.

logP(Z|X ,θ ) =∑
i

texture−layout︷ ︸︸ ︷
ψi(zi,X;θψ )+

color︷ ︸︸ ︷
π(ci,xi;θπ )+

location︷ ︸︸ ︷
�(zi, i;θ�)+

∑
(i, j)∈ε

edge︷ ︸︸ ︷
ξ (zi,z j,gi j(X);θξ )− logC(θ ,X) (1.8)

where i and j are indices of pixels, (i, j) ∈ ε are two neighboring pixels, θ =
{θψ ,θπ ,θ�,θξ} are parameters, and C(θ ,X) is a normalization term.

The texture-layout potentials are provided by a boosting classifier combining
a set of discriminative features called texture-layout filters. The neighborhood of
pixel i is partitioned into regions by a predefined spatial kernel. Each texture-layout
v[r,t](i) is the number of pixels with texton t in region r. Therefore, texture-layout
filters are histograms of textons over defined spatial kernels. They capture texture,
spatial layout and textural context. Discriminative texture-layout filters are selected
as weak classifiers and combined into a powerful classifier by Joint Boost [41]. Joint
Boost allows to share weak classifiers among different object classes and the learn
classifier has better generalization.

The color potentials model the color distribution of each object class using Gaus-
sian mixture models in CIELab color space.

The location potentials model the dependence between the locations of pixels
and object classes. For example, trees and sky tend to appear in the top regions of
images while roads tend to appear in the bottom regions of images.

In the edge potentials, gi j measures the edge features between neighbor pixels. A
penalty is added if two neighboring pixels have different object class labels unless
there is a strong edge between them.

TextonBoost was evaluated on 21 object classes from the MSRC database and
achieved 72.2% overall accuracy [40]. The confusion matrix is shown in Figure 1.7.
The experimental evaluation showed that although the texture-layout potentials had
the most significant contribution to semantic object segmentation, CRF significantly
improved the accuracy of results.
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Fig. 1.7 Confusion matrix of object segmentation by TextonBoost [40] on the MSRC 21 database.
The figure is reproduced from [40].

1.3.2.3 Other approaches based on conditional random fields

Other semantic object segmentation approaches based CRF were proposed. Fulker-
son et al. [42] treated superpixels [43], which were small regions obtained from a
conservative oversegmentation, as basic units of segmentation. They assumed that
superpixels allowed to measure histograms of visual words on a natural adaptive
domain rather than on a fixed patch window. Moreover, superpixels tend to pre-
serve boundaries and created more accurate segmentation. A one-vs-others SVM
classifier with a RBF-χ2 kernel was constructed on the histograms of visual words
found in each superpixel. This local classifier was used in a CRF operating on the
superpixel graph. CRF was used to add spatial regularization by requiring that if
two neighboring superpixels share a long boundary and were similar in appearance,
they tended to have the same class label. It discouraged small isolated regions and
reduced misclassifications that occurred near the edges of objects. He et al. [44]
also first oversegmented images into superpixels. Superpixels were labeled under a
mixture of CRF. Images in a database were grouped into several contexts and each
context was modeled by a separate CRF.

Torralba et al. [45] proposed Boosted Random Fields for object detection and
segmentation. Boosting was used to learn the graph structure and local evidence of
a conditional random field. The graph structure of CRF was learned using boosting
to select from a dictionary connectivity templates which were derived from labeled
segmentations. It exploited the contextual correlations between object classes. Ra-
binovich et al. [46] explicitly defined the interactions between object classes as se-
mantic context and incorporated it into CRF. The semantic context was modeled as
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the co-occurrence of object labels and was learned both from the training data and
Google Sets 2.

Quattoni et al. [47] used CRF for part-based object recognition and detection.
CRF was used to model the spatial arranges of object parts. Ma and Grimson [48]
proposed a coupled CRF to decompose the images into contour and texture and to
model their interaction. The decomposed low-level cues were adaptively combined
for object recognition and different discriminative cues for different object classes
were fully leveraged. Reynolds and Murphy [49] proposed a tree-structured CRF
for object segmentation.

1.4 Object Segmentation Using Topic Models

The discriminative approaches described above required training data to be labeled
at pixel-level. If there are a large number of object classes to be modeled, the la-
beling work is very expensive. Some researchers started to explore approaches of
learning the models of object classes from a collection of images or videos with-
out supervision or with weak supervision (such as using training data labeled at
image-level). Inspired by the success of topic models, such as Probabilistic Latent
Semantic Analysis (pLSA) [9] and Latent Dirichlet Allocation (LDA) [10], in the
applications of language processing, they have been aslo applied to semantic object
segmentation in recent years. Under pLSA or LDA, words, such as “professor” and
“university”, often co-existing in the same documents are clustered into the same
topic, such as “education”. The models of topics are automatically without supervi-
sion. The word-document analysis has been applied to object segmentation through
mapping the concepts of “words” and “documents” to the image and video domains.
For example, if images are treated as documents and visual words (or textons) are
treated as words, with the assumption that visaul words of the same object classes
often co-exist in the same images, the models of object classes can be learned as the
models of topics. Object classes are treated as topics. Since an image may include
objects of several classes, it is model as a mixture of topics. An advantage of such
an approach is that manually segmenting objects at the pixel level is not required for
training. Some proposed approaches [50, 51, 11] were totally unsupervised. Some
required labeling at the image level [52, 53]. Some semantic object segmentation
approaches based on topics models will be reviewed in this section.

1.4.1 pLSA and LDA

Sivic et al. [50] discovered the object classes from a set of unlabeled images and
segmented images into different object classes using pLSA and LDA. They modeled

2 http://labs.google.com/sets
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(a) pLSA

(b) LDA

Fig. 1.8 Graphical models of pLSA and LDA.

an image as a bag of visual words and ignored any spatial relationships among visual
words. Suppose there are M images in the data set. Each image j has N j visual
words. Each visual word w ji is assigned one of the K object classes according to
its label z ji. Under pLSA the joint probability P({w ji},{d j},{z ji}) has the form of
the graphical model shown in Figure 1.8(a). The conditional probability P(w ji|d j)
marginalizing over topics z ji is given by

P(wji|d j) =
K

∑
k=1

P(z ji = k|d j)P(wji|z ji = k). (1.9)

P(z ji = k|d j) is the probability of object class k occurring in image d j. P(w ji|z ji = k)
is the probability of visual word w ji occurring in object class k and is the model
of object class k. Fitting the pLSA model involves determining P(w ji|z ji) and
P(z ji = k|d j) by maximizing the following objective function using the Expecta-
tion Maximization (EM) algorithm:

L =
M

∏
j=1

Nj

∏
i=1

P(wji|d j) (1.10)

Images are segmented into objects with semantic meanings based on the labels z ji

of visual words.
pLSA is a generative model only for training images but not for new images.

This shortcoming has been addressed by LDA, whose graphical model is shown in
Figure 1.8(b). Under LDA, {φk} are models of object classes and are discrete dis-
tributions over the codebook of visual words. They are generated from a Dirichlet
prior Dir(φk;β ) given by β . Each image j has a multinomial distribution π j over
K object classes and it is generated from a Dirichlet prior Dir(π j;α). Each patch
i on image j is assigned to one of the K object classes and its label z ji is sampled
from a discrete distribution Discrete(z ji;π j) given by π j. The observed visual word
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wji is sampled from the model of its object class: Discrete(w ji|φz ji). α and β are
hyperparameters. φk, π j and z ji are hidden variables to be inferred. The inference
can by implemented by variational methods [10] or collapsed Gibbs sampling [54].
Under LDA, if two visual words often co-occur in the same images, one of the
object class models will have large distributions on both of them. pLSA and LDA
perform similarly on image classification and object segmentation and their results
were promising especially when each image only contained one object. As reported
by [50], on a data set consisting of 4,090 images of five categories from the Caltech
101 database [55], the image classification accuracy achieved by pLSA was 92.5%
(see Table 1.1) and its object segmentation accuracy was 49%. Both pLSA and LDA
requires the number of object classes to be known in advance. As an extension, Hi-
erarchical Dirichlet Process (HPD) proposed by Teh et al. [54] could automatically
learn the number of object classes from data using Dirichlet Processes [56] as priors.

True class → Faces Motorbikes Airplanes Cars Background
Class 1 - Faces 94.02 0.00 0.38 0.00 1.00
Class 2 - Motorbikes 0.00 83.62 0.12 0.00 1.25
Class 3 - Airplanes 0.00 0.50 95.25 0.52 0.50
Class 4 - Cars 0.46 0.88 0.38 98.1 3.75
Class 5 - Background I 1.84 0.38 0.88 0.26 41.75
Class 6 - Background II 3.68 12.88 0.88 0.00 23.00
Class 7 - Background III 0.00 1.75 2.12 1.13 28.75

Table 1.1 Confusion table of using pLSA for image classification on a data set of five object
categories from the Caltech 101 database [55]. Class number is equal to 7 in pLSA. Three classes
correspond to the background. The result was reported in [50].

1.4.2 SLDA

A shortcoming of using pLSA and LDA to segment objects is to treat an image as
a document of visual words ignoring the spatial structure among visual words. The
assumption that if two types of patches are from the same object class, they often
appear in the same images is not strong enough. As an example shown in Figure 1.9,
although the sky is far from the vehicles, if they often exist in the same images in the
data set, they would be clustered into the same topic (object class) by pLSA or LDA.
Since most parts of this image are sky and building, an image patch on a vehicle is
likely to be labeled as building or sky as well. Such problems can be solved if the
document of an image patch, such as the yellow patch in Figure 1.9, only includes
patches falling within its neighborhood, marked by the red dashed window in Figure
1.9 instead of the whole image.

With the assumption that if two types of image patches are from the same object
class, they are not only often in the same images but also close in space, a Spa-
tial Latent Dirichlet Allocation (SLDA) was proposed in [11]. Under SLDA, the
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Fig. 1.9 There will be some problems (see text) if the whole image is treated as one document
when using LDA to discover classes of objects.

word-document assignment becomes a hidden random variable. There is a genera-
tive procedure to assign words to documents. When visual words are close in space
or time, they have a high probability to be grouped into the same document. The
graphical model SLDA is shown in Figure 1.10. The N visual words in an image
set are assigned to M documents. d j is a hidden variable indicating the document
assignment of visual word i. Each document j is associated with a hyperparame-
ter cd

j = (gd
j ,x

d
j ,y

d
j ), where (gd

j is the index of the image where the document is

placed and (xd
j ,y

d
j ) is the location of the document. Besides the word value w ji, the

location (xi,yi) and image index gi of a word i are observed and stored in variable
ci = (gi,xi,yi). The generative procedure is as following.

1. For a topic k, a multinomial parameter φk is sampled from Dirichlet prior φk ∼

Dir(β ).
2. For a document j, a multinomial parameter π j over the K topics is sampled from

Dirichlet prior π j ∼ Dir(α).
3. For a word (image patch) i, a random variable d i is sampled from prior p(di|η)

indicating to which document word i is assigned. We choose p(d i|η) as a uniform
prior.

4. The image index and location of word i is sampled from distribution p(c i|cd
di
,σ).

We may choose this as a Gaussian kernel.

p((gi,xi,yi) |
(

gd
di
,xd

di
,yd

di

)
,σ) ∝ δgd

di
(gi)exp

⎧⎪⎨
⎪⎩−

(
xd

di
− xi

)2
+
(

yd
di
− yi

)2

σ2

⎫⎪⎬
⎪⎭

p(ci|cd
di
,σ) = 0 if the word and the document are not in the same image.

5. The topic label zi of word i is sampled from the discrete distribution of document
di, zi ∼ Discrete(πdi).

6. The value wi of word i is sampled from the discrete distribution of topic z i, wi ∼

Discrete(φzi).

In [11] both LDA and SLDA were evaluated on the MSRC data set [2] with
240 images for object segmentation. The detection rate and false alarm rate of four
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(a)

(b)

Fig. 1.10 (a) Graphical model of SLDA. (b) Add spatial information when designing documents.
Each document is associated with a point (marked in magenta color). These points are densely
placed over the image. If an image patch is close to a document, it has a high probability to be
assigned to that document.

Fig. 1.11 Examples of object segmentation results by LDA and SLDA. The images are from the
MSRC data set [2]. The first row shows example images. The second row uses manual segmenta-
tion and labeling as ground truth. The third row is the LDA result and the fourth row is the SLDA
result. Under the same labeling approach, image patches marked in the same color are in one object
cluster, but the meaning of colors changes across different labeling methods. The results are from
[11].

classes (cows, cars, faces and bicycles) are shown in Table 1.2. Some examples are
shown in Figure 1.11. The segmentation results of LDA were noisy since spatial
information was not considered. The patches in the same image were likely to have
the same labels. SLDA achieved better results.

In [11] SLDA was also used to segment objects from a video sequence. All the
frames were treated as a collection of images and their temporal order was ignored.
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cows cars faces bicycles
Det rate FA rate Det rate FA rate Det rate FA rate Det rate FA rate

LDA 0.3755 0.5576 0.5552 0.3963 0.7172 0.5862 0.5563 0.5285
SLDA 0.5662 0.0334 0.6838 0.2437 0.6973 0.3714 0.5661 0.4217

Table 1.2 Detection(Det) rate and False Alarm (FA) rate of LDA and SLDA on MSRC [2]. The
results are from [11].

Fig. 1.12 Object segmentation from a video sequence. The first column shows two fames in the
video sequence. In the second column, the patches in the two frames as are labeled as different
object classes using LDA. The third column plots the object class labels using SLDA. The red
color indicates the class of tigers. In the fourth column, tigers are segmented out by choosing all
the patches of the class marked by red color. The results are from [11].

Figure 1.12 shows results on two sampled frames. LDA could not segment out any
objects. SLDA clustered image patches into tigers, rock, water, and grass.

1.4.3 Other topic models of including spatial information

Some other topic models were also proposed to include spatial information. Russell
et al. [51] first obtained multiple segmentations of each image at different scales
using normalized cut [57] and then treated each segment instead of an image as a
document. These segments captured the spatial relationships among visual words.
Some good segments are sifted from bad ones for each discovered object class.

Verbeek et al. [52] proposed two aspect-based spatial field models by combin-
ing pLSA/LDA with Markov Random Fields (MRF). One is based on averaging
over forests of minimal spanning trees linking neighboring image regions. A tree-
structure prior is imposed to the object class labels Z j = {z ji} of image patches in
image j,

P(Z j) ∝ exp(∑
i

ψ(z ji,z jχ(i))+ logθ j) (1.11)

where χ(i) is the unique parent of patch i in the tree, and ψ(z ji,z jχ(i)) is a pair-wise
potential,
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ψ(z ji,z jχ(i)) = ρ [̇z ji = z jχ(i)]. (1.12)

The other model applies an efficient chain-based Expectation Propagation method
for regular 8-neighbor Markov Random Fields. The prior over Z j is given by

P(Z j) ∝ exp(∑
i∼i′

ψ(z ji,z ji′)+ logθ j), (1.13)

where i ∼ i′ enumerates spatial neighbor patches i, i ′ in image j. MRF captures the
local spatial dependence of image patches. These two models were trained using
either patch-level labels or image-level labels. Tested on 240 images of nine ob-
ject categories from the MSRC data set, when trained using patch-level labels, they
achieved object segmentation accuracy of 80.2% and when trained using image-
level labels, the accuracy of 78.1% was achieved. The accuracies of pLSA were
78.5% and 74.0% respectively under these two settings. The similar idea was also
explored in [58] and a Dirichlet process mixture was introduced to automatically
learn the number of object classes from data. In this framework was extended to
Conditional Random Field (CRF) [4] to integrated both local and global features in
the images [53, 59].

Sudderth et al. [60] proposed a Transformed Dirichlet Process (TDP) model
to jointly solve the problem of scene classification and object segmentation. This
approach coupled topic models with spatial transformations and consistently ac-
counted for geometric constraints. The spatial relationships of different parts of ob-
jects were explicitly modeled under a hierarchical Bayesian model. Cao et al. [61]
proposed a Spatially Coherent Latent Topic Model (Spatial-LTM) to simultaneously
classifying scene categories and segmenting objects. It over segmented images into
regions of coherent latent topic model and coherent latent topic model were consid-
ered as visual words. It enforced the spatial coherency of the model by requiring that
only one single latent-topic was assigned to the image patches within each region.

1.5 Object Segmentation in Videos

A video is composed of a sequence of images. Different from still image segmenta-
tion, video segmentation should take account the temporal information. Many sta-
tistical models have been proposed for video segmentation, either generative or dis-
criminative. In the discriminative model, a large number of expensive labeled data
is required to train an excellent classifier. On the contrary, the generative model can
handle the incomplete data problem and address the large number of unlabeled data
via small number of expensive labeled data. Therefore, the generative model is pop-
ular for video segmentation. On the other hand, the discriminative model relax the
conditional independence assumption and has better predictive performance than the
generative model. This attract many attentions to the discriminative model in video
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segmentation. MRFs [62], [63] and CRFs [64], [65], [66], [67] are representative
generative and discriminative models in video segmentation, respectively.

Let X = {xi}i∈S and Z = {zi}i∈S be the observation and labels of a video, where
S = {si} is the set of units (they can be pixels, patches, or semantic regions) in the
video. Then video segmentation is to maximize the posterior p(Z|X).

1.5.1 MRF Model

In the MRF model, the posterior is expressed proportioned to the joint probability
using the Baye’s rule as:

p(Z|X) ∝ p(Z|X) = p(X|Z)p(Z), (1.14)

where the prior p(Z) is modeled as a MRF.
In the MRF model, the strong assumption of conditional independency of the

observed data is enforced. Therefore, the likelihood p(X|Z) is assumed to have a
factorized form, i.e.,

p(X|Z) = ∏
si∈S

p(xi|zi). (1.15)

Here p(xi|zi) indicates the probability that the unit si has the label zi based on the
observation xi at si. Here xi can be features incorporating the color, texture, and
motion information. To adapt to changes of environment, some features robust to
illumination changes are utilized, like gradient direction, shadow models, and color
co-occurrence.

To model the distribution of p(xi|zi), several ways have been proposed. The most
traditional approach is model the distribution in terms of the Gaussian Mixture Mod-
els (GMMs) and the Expectation Maximization (EM) algorithm is used to estimate
the model parameters. The GMM model has several shortcomings: it is sensitive
to the initialization, the EM algorithm takes long time to converge, and a suitable
number of Gaussian components has to be set. To address these problem, a non-
parametric way, smoothed histograms in the YUV color space [64], has been pro-
posed. It learns the histograms from some labeled region and stored in 3D look-up
tables with smoothing. Then the value of p(xi|zi) is searched from the histogram
tables.

In the MRF model, p(Z) is used to enforce the Markov properties of the labels.
In the Bayesian view, the prior p(Z) does not depend on the observed data X. It is
assumed to be an Potts model, i.e.,

p(Z) = exp

(
∑
si∈S

∑
s j∈Ni

λ T (zi �= z j)

)
, (1.16)

where Ni is the neighborhood system of si, λ is a negative constant, and T (·) = 1 if
its argument is true and T (·) = 0 if false. In video segmentation, the neighborhood
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system includes two parts, the spatial and temporal neighborhoods. The prior in the
spatial neighborhood system incorporates the spatial smoothness constraint, which
can reduce the effect of noise. The prior in the temporal neighborhood system is
used to incorporate the inter-frame information. In the case of binary class problem
(e.g., in foreground/background segmentation, z i ∈ {1,−1} ), the prior p(Z) can be
transformed as an isotropic Ising model, i.e.,

p(Z) = exp

(
∑
si∈S

∑
s j∈Ni

λ ziz j

)
. (1.17)

As noted above, the prior p(X) does not depend on the observed data. But in the
applications of video segmentation, observed data-dependent prior is necessary. In
the part of spatial neighborhood system, the contrast information is incorporated by
modulating the prior according to the intensity gradients. In the temporal part, the
intensity difference is used to control the probability of s i and s j having the same
label. Therefore, in video segmentation, the prior is expressed as

p(Z) = exp

(
∑
si∈S

∑
s j∈Ni

λ T (zi �= z j) · exp
(−Δ 2

i, j/σ
))

, (1.18)

where Δi, j is the intensity difference between si and s j and σ is a positive constant.
From the equation we can see that: if si and s j have larger intensity difference, then
they have a higher probability of being different labels.

Combing (1.14), (1.15), and (1.18), the posterior in MRF model is expressed as

p(X|Z) = 1
C

exp

(
∑
si∈S

log(p(xi|zi))+ ∑
si∈S

∑
s j∈Ni

λmT (zi �= z j)

)
, (1.19)

where C is the partition function and λm = λ exp(−Δ 2
i, j/σ).

1.5.2 CRF Model

Compared with MRFs, the CRF model formulates the posterior p(Z|X) directly
instead of formulating the joint probability p(Z,X) via the likelihood p(X|Z) and
p(Z) by the Baye’s rule. Generally, the posterior in MRFs is written as,

p(Z|X) =
1
C

exp

(
∑
si∈S

ui(zi,X)+ ∑
si∈S

∑
s j∈Ni

vi j(zi,z j,X)

)
, (1.20)

where C is the partition function, −ui and −vi j are the unary and pairwise potential,
respectively.
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Comparing (1.20) with (1.19), the definitions of unary potential and the pairwise
potential are different between MRFs and CRFs. In CRFs, the unary potential is a
function in the term of the whole observed data X, while in MRFs the unary po-
tential for si is a function in term of observed data at si due to the conditionally
independent assumption. Theoretically, in MRFs the pairwise potential is a func-
tion of only labels (actually a function of labels and the intensity difference in the
applications of video segmentation) while it is a function of labels and the whole
observed data X in CRFs.

Since the potentials are in term of the whole observed data in CRFs, they are
designed by using some arbitrary local discriminative classifiers. In discriminative
classifiers, it is important to select a good feature space. Compared with MRFs, the
CRF model selects more discriminative features besides colors, constant, and other
features used in MRFs. For example in [65], texture, location, and histogram of ori-
ented gradient (HOG) features are used for scene labeling. In [66], motion-shape
cues are used for bilayer video segmentation. The features of “motons” (related to
textons) are used for modeling the motion information in videos. A shape-filter mod-
eling long-range correlations is selected to describe the shape features. Acturally,
any fusion of discriminative features used in images can be selected in video seg-
mentation. The difference between the video and image applications is good dis-
criminative features describing the motion information may be used to improve the
video segmentation results.

The second important thing in the discriminative model is classifier selection. In
common, the classification algorithms build strong classifiers from a combination of
weak classifiers. The difference between these algorithms is the way that the weak
classifiers combine. In [66], the authors construct a tree cube taxonomy for helping
to select classification algorithms. Fig. 1.13 is the tree cube taxonomy of classi-
fiers. The origin is the weak learner and the axes H, A, and B are three basic ways
of combining weak learners: hierarchically (H), by averaging (A), and via boost-
ing (B). Different strong classifiers, i.e., different combinations of weak classifiers,
correspond to different paths along the edges of the cube in Fig. 1.13.

1.5.3 MRFs Vs. CRFs

This subsection summarizes some main differences between MRFs and CRFs.
Formulation: In MRFs, the posterior is proportioned to the joint probability us-

ing the Baye’s rule, and the joint probability is modeled by defining the likelihood
and prior. While CRFs model the posterior directly. In MRFs, the unary and pair-
wise potentials are functions of observed data at individual site and only the labels,
respectively. While in CRFs, the unary and pairwise potentials are functions of the
whole observed data and labels.

Feature Space: In MRFs, since the distributions of the observed data should
be modeled, low-dimension features, like color and motion, are used in common.
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Fig. 1.13 The tree cube taxonomy of classifiers. The figure is taken from [66].

While in CRFs, more complex discriminative features would be selected to improve
the predictive performance.

Performance: Compared with CRFs, MRFs can handle data missing problem
and new class adding problem. While CRFs have better predictive performance
since CRFs model the posterior directly. On the other hand, since CRFs relax the
assumption of conditional independence of the observed data, they can incorporate
global information in the model.

Training Data: MRFs can augment small number of expensive labeled data with
large number of unlabeled data. While CRFs need much labeled data for training.

Data Modeling: In MRFs, appropriate distributions need to be selected to model
the observed data. In CRFs, good classifier algorithms should be design for learning
from labeled data.

Model Selection: At last, our question is which model should be selected in
applications. For the tasks of segmentation for video without prior knowledge, like
object cutout in video editing [63] and foreground segmentation in surveillance [62],
since there is no labeled data or a few interactively labeled data, the MRF model
would be selected in common. For the tasks of class labeling problem with large
quantities of labeled data, like scene detection in dynamic image sequences [65],
the CRF model is used commonly. Actually, the MRF and CRF formulations used
in the applications of video segmentation do not strictly comply with the definition
of MRFs and CRFs. For instant, the pairwise potential in MRFs is the function of
not only the labels but also the intensity difference. In CRFs, the color features are
often incorporated in the model by adding the same likelihood term as in MRFs (for
example in [66]). This enforces the data independence assumption in CRFs.
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1.6 Summary

In summary, this chapter overviews different technologies developed for each step of
the pipeline for semantic object segmentation and discusses major challenges at dif-
ferent steps. In order to achieve good performance on semantic object segmentation,
local appearance, local consistency and long-range contextual information need to
be considered together. To capture local appearance, filter-banks, visual descriptors
and their quantization schemes need to be well designed. They need to have both
high discriminative power and good invariance to noise, clutters, and changes of
illuminations and viewpoints. Because of the large number of image patches to be
processed during object segmentation, computational efficiency is also an important
issue to be considered. Conditional random fields provide a powerful framework to
integrate local appearance, local consistency and long-range contextual information.
However, it requires training data to be labeled at the pixel-level, which is expensive
for a large number of object classes. Topic models can learn the models of object
classes without supervision or with weak supervision. By including spatial struc-
tures, topic models are able to capture long-range contextual information as well as
local consistency. However, its capability of modeling local appearance is relatively
weak compared with discriminative approaches which use strong classifiers such as
SVM and Boosting to model local appearance. It is expected to achieve better per-
formance if the strengths of both generative models and discriminative models can
be well combined. For video segmentation, we compare two main statistical frame-
works, Markov random fields (MRFs) and conditional random fields (CRFs). The
generative approach, MRFs, models the observation data by selecting some condi-
tionally independent distributions. CRFs have better predictive performance since
in CRFs the assumption of conditional independency for the observation data is re-
laxed. But to achieve good enough results, a large number of labeled data should be
provided in CRFs. Actually in many real applications, the MRF and CRF model is
combined to obtain better results.
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