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In this paper, we present a hybrid human recognition system for surveillance. A Cascade Head–Shoulder
Detector (CHSD) with human body model is proposed to find the face region in a surveillance video
frame image. The CHSD is a chain of rejecters which combines the advantages of Haar-like feature and
HoG feature to make the detector more efficient and effective. For human recognition, we introduce an

pose change and blurring. To well model the variations of faces, an Adaptive Gaussian Mixture Model
(AGMM) is presented to describe the distributions of the face images. Since AGMM does not need the
facial topology, the proposed method is resistant to face detection error caused by imperfect localization
or misalignment. Experimental results demonstrate the effectiveness of the proposed method in public
dataset as well as real surveillance video.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, surveillance cameras are deployed almost every corner
and street over theworld, especially in big cities, to watch andmanage
the activities of human being. For example, there are around 500,000
CCTV cameras in London and 4,000,000 cameras in UK [1]. It is
impossible to hire enough security guard to monitor the huge number
of cameras constantly, 24 h and 7 days. Generally, the camera feeds are
recorded without monitoring and the videos are mainly used for a
forensic or reactive response to crime or terrorism after the event
happened. However, only recording surveillance video is not enough
to prevent the terrorists. Intelligent detection of events and persons of
interest from the camera feeds before any attack happens is urgently
required for surveillance purpose.

As an intelligent surveillance system, it should be able to identify
where and who is in the scene. An intelligent surveillance system
mainly includes human detection and recognition. However, in prac-
tice, it is very challenging to find and recognize human when illumi-
nations, expressions, and poses vary. Besides, surveillance videos also
have low quality due to the long distance of the target from the cam-
era, out-of-focus blur or motion blur caused by motion between the
target and camera, or a combination of all factors aforementioned.
Besides, camera noise and image distortion incurred by optical sensor
ANG).
and network transmission also affect the performance of human
detection and recognition.

In the surveillance human recognition literature, most work was
presented with the assumption that the face detection is given. To deal
with pose variation, Gaussian mixture Models [2,3] are learned from
training data to characterize human faces, head pose variations, and
surrounding changes. In [4,5] use 3D model to aid face recognition to
robust to facial expression and pose variations and further improve-
ment by adding auxiliary information, such as motion and temporal
information between frame images. And [6] uses “Frontalization” face
to do face recognition and gender estimation. Ma et al. [7] improved
the accuracy of pose estimation by investigating the symmetry
property of the face image. To deal with the illumination variations,
Thermal Infrared Sensor (TIRS) [8] was used to measure energy
radiations from the object, which is less sensitive to illumination
changes. However, thermal images have low resolution and are unable
to provide rich information of the facial features. To account for
blurring problem, Hennings-Yeomans et al. [9] first performed
restoration to obtain images with better quality [10], and then fed
them into a recognition system. Rather treating restoration and rec-
ognition separately, Zhang et al. [11] proposed a joint blind restoration
and recognition model based on sparse representation to deal with
frontal and well-aligned faces. Grgic et al. [12] also provided a sur-
veillance face database collected in uncontrolled indoor environment
using five types surveillance cameras of various qualities and applied
principal component analysis (PCA) for face recognition. In [13,14],
each face was described in terms of multi-region modelled by prob-
abilistic distributions, such as GMMs, followed by a normalized
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distance calculated between two faces, which can be efficient to deal
with faces with illumination and misalignment. However, face
recognition is still an open problem in surveillance, although techni-
ques [15–17] used in face recognition literature [18–20,74] perform
well with the cooperative subjects in controlled applications. Also,
current face detectors are unable to find the face well in the low-
quality surveillance video.

In this paper, we present a hybrid human recognition system by
integrating face detection and recognition together as shown in Fig. 1.
For face detection, we propose to find the Head–Shoulder (HS) region
first by the Cascade Head and Shoulder Detector (CHSD), and then
employ the trained body model to get the face region for recognition.
In face recognition, to represent face region discriminatively, we pro-
pose an Overlapping Local Phase Feature (OLPF) which is robust to
image blur and pose variation without adversely affecting dis-
crimination performance. To model faces robustly, a Fixed Adaptive
Gaussian Mixture Model (FGMM) is developed to describe the dis-
tribution of the face data, but FGMM may be degraded because of
different subjects needing different numbers of Gaussians to model
the variations of faces. Therefore, an Adaptive Gaussian Mixture Model
(AGMM) is proposed to optimally build the model for each subject.
Without face topology, the proposed AGMM is insensitive to the initial
face detection without alignment. Combining AGMM and OLPF, our
method can handle faces with multiple uncontrolled issues in sur-
veillance, such as misalignment, pose variation, illumination changing,
and blurring. The proposed detection and recognition scheme can be
extended to other objects of interest with similar properties such as
cars and animals.

The organization of the paper is arranged as follows: In Section 2,
we give the structure of CHSD and the details of how to train each
filter in the CHSD. The proposed face recognition algorithm are dis-
cussed in Section 2.1. Extensive experiments are given in Section 2.2 to
demonstrate the robustness of our method. Conclusions are sum-
marized in Section 2.2.1.
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Fig. 1. Diagram of proposed system.
2. Cascade Head and Shoulder Detection

As aforementioned, in general surveillance condition, people and
the target scene cannot be strictly controlled. The face to be recog-
nized may not appear as assumed in [11,19], such as the frontal face
with proper lighting. So the captured faces may differ substantially in
pose, illumination and expression. Some examples are given in Fig. 2
from an indoor surveillance application to show the variations of pose
and illumination in the face region. For these cases, traditional face
detector [17,21] may not work well to locate the face region effectively
and correctly. To overcome these problems in unconstrained condi-
tions, we propose to detect HS region first, and then use the human
body model to obtain the face region.

The proposed method is inspired by [22,23] with the use of a
dense grid of Histograms of Oriented Gradients (HoG) and linear
Support Vector Machine (SVM) to detect human. However, we found
that those detectors are not enabled to allow fast rejection in the early
stages. It works slowly and can only process 320�240 images at 10
frame per second (fps) in a sparse scanning manner. In this paper, we
intend to speed it up to real-time without quality loss by cascading
new classifiers.

The idea of CHSD is to use a cascade of rejecters to filter out a large
number of non-HS samples while preserving almost 100% of HS
regions. Thus the number of candidates can be reduced significantly
before more complex classifiers are called upon to achieve low false
positive rates. As shown in Fig. 3(a), CHSD includes three parts: initial
feature rejecter, Haar-like rejecter, and HoG classifier.

2.1. Initial feature rejecter

In this rejecter, one of the features is the regional variances which
can be obtained by limited computations1 from two integral images,
i.e., integral image and integral image of the squared image. Those
integral images will also be used to perform illumination normal-
ization in the preprocessing step and feature calculation in the Haar-
like rejecter, so no additional computation is required in this rejecter.
Assuming that σk denotes the variance of the kth region, our training
process is described in Algorithm 1.

The other feature of the first rejecter is the difference between
two blocks no matter whether they are adjacent or not. The
training method in Algorithm 2 is similar to that in Algorithm 1
with a few minor modifications from steps (a)–(c).

Algorithm 1. Training for rejecter using variance features.
1. I

2. I
3. F
a

b

c
d

1

three
nput training data ð〈x1; y1〉;…; 〈xn;n〉Þ where yiAf0;1g for
non-HS and HS regions,respectively.
nitialize rejecter label li¼0, for yi¼0;
or t ¼ 1;…; T:
. Find the minimal and maximal values of σk for each region

k from the training samples, which are denoted by σkmin and
σkmax, respectively.
. Compute the rejection number rk for non-HS training
samples, with a parity p adjusting the in-equality direction:
rpk ¼

P
yi ¼ 0;li ¼ 0signjpσi;k4pσp

k j ,
p¼ �1 for σkmin and p¼1 for σkmax

. Choose the region with the highest rejection number
. Set label li¼1 for all rejected sample fig.
. Output the combined classifiers.
4
Any two-rectangle feature can be computed in six array references, any
-rectangle feature in eight, and any four-rectangle feature in just nine.



Fig. 2. Examples of images from surveillance videos (4CIF).

Fig. 3. Face detection use CHSD and body model. (a) The structure of CHSD. (b) Body model and trained face region marked by the red rectangle. (c) Detected face region.
(For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)

Fig. 4. Examples of the proposed Haar-like features.

Fig. 5. HOG extraction and the SVM training results. (a) A test image. (b) Gradient image of the test image. (c) Orientation and magnitude of Gradient in each cell. (d) HoG of
cells. (e) The weights of positive SVM in the block. (f) The HoG descriptor weighted by the positive SVM weights.
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In the initial feature rejecter, the characteristics of the variance
and block difference of the image segments are used to form a
rejecter. It demonstrates that even simple features can be used to
construct an efficient rejecter. Since these features are also used by
Haar-like features in the following rejecter, in some sense, no
additional computation is needed for feature generation in the
initial feature rejecter.

2.2. Haar-like rejecter

For a candidate window accepted by the initial feature rejecter, it
will be further evaluated by the learning based Haar-like rejecter. In
this part, we present how to construct a strong rejecter using the
Haar-like features trained by AdaBoost method.
2.2.1. Feature
The simple Haar-like features, shown as Fig. 4(A), have been suc-

cessfully applied to face detection by Viola and Jones based on a fast
calculation method [15]. Some simpler features, i.e., the colour rela-
tionship between two pixels, were used to perform sex identification
[25]. In order to improve the performance, more rotated Haar-like
features and scalar Haar-like features were extended in [26] and [27]
to deal with in-plane rotations and multi-view face detection,
respectively.

Most previous methods construct the weak classifier using
boosting features from the huge number of feature sets represented
by Haar-like features. In [28], a template pool is generated by sliding
bounding boxes of different sizes over the pre-defined pedestrian
body shapemodel. In our feature pool, themodel is designed based on
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Fig. 6. Diagram of the body model generation.

Q. LIU et al. / Neurocomputing 194 (2016) 10–23 13
the properties of Head and Shoulder, i.e., the shape information and
pixel intensity in LUV. The training is performed via AdaBoost to boost
up the most informative feature for classification. To improve the
performance of the weak classifier, joint Haar-like features [29] and
filtered low-level features [30] are employed. The examples in the last
row of Fig. 4 are the features generated by combining the basic Harr-
like features shown in Fig. 4(A) based on the patterns shown in Fig. 4
(B)–(D). In some sense, the joint Haar-like features are more like the
“toy bricks” which can be built according to a certain composition.
Each feature consists of multiple “bricks” which are combined by
means of addition, subtraction, and absolute value operations.

For a window with the size of 64�80 and the scale¼1, the
total number of features is quite large, e.g., 32,879 for feature A,
554,034 for feature B, 713,412 for feature C, and 106,641 for feature
D. The features with the best classification of the training dataset
will be boosted from the tens of millions of the features to con-
struct a rejecter.

2.2.2. Training
There are many boosting approaches [31] for object classifica-

tion by machine learning, such as AdaBoost [15,26,32], FloatBoost
[27], Kullback-Leibler Boosting [33]. In our previous work [34], we
used AdaBoost algorithm for training face detector. It is known
that AdaBoost approach can be interpreted as a greedy feature
selection process by which a small set of features and associated
cascade weights are selected with the lowest classification errors.

Algorithm 2. Training for rejector using block difference.
a. F

b. C
ind the minimal and maximal values of Dk;j ¼Mk

�Mj for two arbitrary blocks from the training samples,

which are denoted by Dmin
ðk;jÞ and Dmax

ðk;jÞ , respectively. M is the
mean value of the given block.
ompute the rejection number rk;j for non-HS training
samples, with a parity p adjusting the inequality direction:
rpðk;jÞ ¼

P
yi ¼ 0;li ¼ 0signjpDi;ðk;jÞ4pDp

ðk;jÞ j ,
p¼ �1 for Dmin

ðk;jÞ and p¼1 for Dmax
ðk;jÞ

hoose the region with the highest rejection number.
c. C

Haar-like rejecter is considered strong because it is a weighted
combination of many weak rejecters. Although each weak rejecter
constructed by one feature cannot provide good rejection for the
training samples, the appropriate combination of them with
weighting can improve the performance of the final classification
significantly, which is described in Algorithm 3.
2.3. HoG feature classifier

Viola et al. [35] built an efficient moving pedestrian detector in
a surveillance environment using AdaBoost to train a cascade
rejecter based on the Haar-like features and spatial differences. But
the detection performance relies significantly on the available
motion information. Dalal and Triggs [22] proposed a human
detection algorithm with a dense grid of Histograms of Oriented
Gradients (HoG) features which have been proved to be more
powerful than the Haar-like features in human detection. In [30],
Zhang et al. used HOGþLUV as low-level features, while adding
optical flow features to do human detection. In our system, we
focus on detecting the HS region with the assumption that the HS
region is fully visible. In proposed CHSD, the HoG feature is
employed in the final classifier as benchmark.

Algorithm 3. AdaBoosting training
nput training data ð〈x1; y1〉;…; 〈xn;n〉Þ where yi Af0;1g for
non-HS and HS regions, respectively.
nitialize sample weights ω1;i ¼ ð1=2pÞ; ð1=2qÞ where p and q
are the number of positive and negative samples.
or t ¼ 1;…; T:
. Normalized weights ωt;i.
. Compute the classification error for each feature f using
ϵf ¼

P
iωðt;iÞ jhðf ; xiÞ�yi j

. Choose the best weak classifier ht(x) with the lowest error
ϵt .
. Update weight.

ωðtþ1;iÞ ¼ωðt;iÞ
ϵt

1�ϵt

� �1� j hiðxiÞ�yi j

utput the combined classifiers.
hðxÞ ¼ 1;
PT

t ¼ 1 αthtðxÞZ1
2

PT
t ¼ 1 αt

0;otherwise

(

2.3.1. Features
To extract HoG feature from an image, such as Fig. 5(a), it is

divided into uniformly sized cells and a group of cells is integrated
into a block in a sliding fashion with blocks overlapping with each
other vertically and horizontally shown as in Fig. 5(c). Each cell
from its gradient image is quantized and projected to a 9-bin
Histograms of Oriented as in Fig. 5(d). The feature representing a
detection window is a concatenated vector of all its cells and then
normalizes to a L2-norm unit length. These feature vectors are
then classified by a linear Support Vector Machine (SVM).

2.3.2. Training
The training data consists of a large set of images with bounding

boxes around each instance of an object. We reduce the problem of
learning to a binary classification problem. Let ð〈x1; y1〉;…; 〈xn;n〉Þ be
a set of labelled examples where yiAf�1;1g and xi specifies a HoG
feature of a training image. We construct a positive example from
each bounding box in the training set. Negative examples come
from images that do not contain the target object. A soft ðC ¼ 0:01Þ
linear SVM is trained with the SVMLight [36] algorithm. The
objective function is then increased by a function which penalizes
non-zero ξi for each sample, and the optimization becomes a trade
off between a large margin, and a small error penalty. If the penalty
function is linear, the optimization problem becomes:

min
ω;ξ;b

1
2
JωJ2þC

Xn
i ¼ 1

ξi

( )
ð1Þ



Fig. 7. Invariant property of phase feature to blur and illumination. a, b, and c show the original image, images with blurring (σ ¼ 2), and image with different illumination. 1,
2, and 3 denote the original image, the LPF image, and the LPF histogram. The Bhattacharyya distances between two histograms are 0.0846 (a3 and b3) and 0.1035 (a3
and c3).

Fig. 8. OLPF feature extraction.
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subject to yiðωT � xi�bÞZ1�ξ, ξZ0 for any i¼ 1;…;n. The training
results and weighted HoG are shown in Fig. 5(e) and (f).

2.4. Cascade of classifiers

In CHSD, multiple layers of cascade classifiers is employed to
reject as many non-HS samples as possible at the earliest stages
with limited computation, which reduces the detection time
greatly. The first layer is the initial feature rejecter where common
features like variance and difference are used and calculated effi-
ciently from the integral images. The second layer is the Haar-like
rejecter constructed by a cascade of Haar-like features. In this
rejecter, every weak rejecter is adjusted to have a very high
detection rate (e.g., 99.9%), but a moderate false positive rate (50%)
after the AdaBoost learning. If 10 of the above rejecters are
bounded together, the false alarm rate and detection rate would be
9:7� 10�4 and 0.99, respectively. The first two rejecters get rid of
the majority of the non-HS samples while retaining the detection
rate of almost 100%. The last layer is the HoG classifier which only
needs to deal with tens of HS candidates for an image. So the
classification can be finished quickly even for high dimensional
data (2268 dimensions).

To generate a body model, we randomly select 2000 samples
and annotate the face regions for training. As illustrated in the
rightmost column of Fig. 6, HS regions are aligned with annotated
face region and cropped to the same size 64�80. More details can
be found in the Preprocessing Section 4.1. After colour normal-
ization, the HS gradients are calculated using Sobel filter. The body
model is produced by combining those gradient images and face
region is annotated according to the annotation of aligned training
samples.
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As shown in the leftmost column, in face detection, the input
frame is first fed into CHSD to gain the Head–Shoulder region.
Then, the trained body model is mapped on it to finally extract the
face region.
3. Face recognition

In traditional face recognition algorithms, from utilizing the facial
properties and relationships, such as areas, distances, and angles to
projecting the face image to feature spaces, e.g., Eigenface [37], Fish-
erface [38], Laplacianface [39] and derivative domain [40,41], those
methods were designed for well aligned, uniformly illuminated, and
frontal pose face images. While, in practice, it is almost impossible to
satisfy these requirements, especially in security surveillance system.
Consequently, many efforts have been made to develop algorithms for
unconstrained face images [42,43]. Instead of using global features,
Fig. 9. Number of GMMs for each subject in FERET.

Fig. 10. Evaluation of the robustness of AGMM (the norma
local appearance descriptors such as Gabor jets [44], Local Binary
Patterns [45], SIFT [46], HOG [47] and SURF [48] were employed
because of their robustness to occlusion, expression, pose and smaller
sample size than the global feature.

To mitigate against the low-resolution and blurring problems
that often suffered in the surveillance images, Hennings-Yeomans
et al. [49] proposed a method to extract features from both the
low-resolution faces and their super-resolution ones within a
single energy minimization framework. On the other hand, Gupta
et al. [50] alternated between recognition and restoration with the
assumption of a known blurring kernel. And Nishiyama et al. [51]
proposed to improve the recognition of blurry faces with a pre-
defined finite set of blurring kernels. Using the theory of sparse
representation and compressed sensing, Wright et al. [52] yield
new insights into two crucial issues in face recognition: the role of
feature extraction and the difficulty of occlusion.

For the above methods, alignment is an indispensable preproces-
sing step, i.e., fix the coordinates of corners (e.g., eyes, nose) and then
normalize to the same scale. However, it is known that automatic
alignment is still a challenging problem for real-time system. Espe-
cially, faces detected automatically are often unsatisfactory at different
scales and locations. Even detecting faces in surveillance image is a
challenging task because of the highly uncontrolled pose, non-uniform
illumination, camera noise, and compression distortion in network
transmission. However, those constraints are relaxed in the proposed
face recognition algorithm because of distinctive feature representa-
tion and robust face model for face region, which will be investigated
in the following sections.

3.1. Overlapping Local Phase Feature (OLPF)

Local Binary Pattern (LBP) as a local feature has been proven to be
highly discriminative descriptors for various applications, including
image retrieval, surface inspection, texture classification and seg-
mentation. However, most LBP-based algorithms [13,45] use a rigid
lized similarity probability is given below the image).
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descriptor matching strategy that is sensitive to pose variation and
misalignment of face, and thus cannot work well in surveillance.
In this section, we propose a modified LBP-like feature, Overlapping
Local Phase Feature (OLPF), to overcome the difficulties of uncon-
straint face recognition in surveillance.

In the traditional methods, they may be robust to illumination or
expression but may not be efficient to a blurred image, like PCA [37]
and LBP [45]. We propose the OLPF based on the phase feature [53]
which is extracted from the frequency domain by Fourier Transform.
In mathematical formulation, the image blurring process in the time
domain can be described as:

bðxÞ ¼ ðinkÞðxÞ ð2Þ
where iðmÞ is the original image, bðmÞ is the observed blurred image,
and kðmÞ is the blurring kernel, in the time domain. n denotes 2D
convolution and m is a vector of coordinates ½m;n�T . In the Fourier
domain, (2) corresponds to

BðuÞ ¼ ðI �KÞðuÞ ð3Þ
where BðuÞ, I ðuÞ andKðuÞ are the discrete Fourier transforms (DFT) of
the blurred image bðmÞ, the original image iðmÞ, and the blurring
kernel kðmÞ, respectively, and u is a vector of coordinates ½u; v�T . We
may separate the magnitude and phase parts of (3) into

jBðuÞj ¼ j ðI ðuÞj � jKðuÞj and ∠BðuÞ ¼ ∠I ðuÞþ∠KðuÞ ð4Þ
If the blurring kernel kðmÞ is assumed to be centrally sym-

metric, namely kðmÞ ¼ kð�mÞ, its Fourier transform is always real-
valued KðuÞ ¼RefKðuÞg, and as a consequence its phase part is
only a two-valued function, given by

∠KðuÞ ¼
0; ifKðuÞZ0
π; ifKðuÞo0

(
ð5Þ

This means that ∠BðuÞ ¼∠I ðuÞ for all KðuÞZ0, therefore a blur
invariant representation can be obtained from the phase part.

The frequency could be computed using a short-term Fourier
transform ðSTFTÞ on M �M neighbourhoods Nm at each pixel
position m of the image iðmÞ defined by

IN ðu;mÞ ¼
X

yANm

iðyÞ rðy�mÞe� j2πuTy ð6Þ

where rðmÞ is a rectangle window function defining the neighbour-
hoodNm ofm. The transform can be efficiently evaluated for all image
position mAfm1;m2;…;mN g using 1-D convolutions for the rows
and columns successively. The local Fourier coefficients are computed
at four frequency point u1 ¼ ½a;0�T , u2 ¼ ½0; a�T , u3 ¼ ½a; a�T , and
u4 ¼ ½a; �a�T , where a is a sufficiently small scalar to satisfy KðuiÞ40.
As a invariant feature to blur IN

m is extracted by observing the signs of
the real and imaginary parts of each component in the Fourier domain
for recognition. A LBP-like method quantizes the phase information:

qj ¼
1; if gjðmÞZϵ
0; otherwise

(
ð7Þ

where gjðmÞ is the jth component of the vector Gm ¼ ½RefIN
mg;

ImfIN
mg�. ϵ is a robust threshold which we introduce to control the
Fig. 11. Colour normalization (a are the origi
quantization degree. The resulting eight binary coefficients qjðmÞ (8-
neighbourhood) are represented as integer values between 0 and 255
using binary coding

f LPF ¼
X8
j ¼ 1

qjðmÞ � 2j�1 ð8Þ

An example in Fig. 7, the original image (a1), the blurred image
(b1), and different illumination image (c1), is represented by the
quantized phase histograms as shown in (a3), (b3), and (c3). And their
phase image are described in Fig. 7(a2), (b2), and (c2). From the
Bhattacharyya distance measuring the similarity of between two
quantized histograms, it is obvious that the extracted phase feature
can tolerate with severe blurring and illumination changing.

Head pose is believed to be one of the hardest problems for
face recognition [54]. Although phase feature can tolerate with
blurred image and poor illumination, it is sensitive to the pose
variation and misalignment usually happened in surveillance.
Inspired by the “bag-of-feature” approach [55], we develop an
Overlapping Local Phase Feature (OLPF), which describes a face as
a set of temporally correlated feature vectors as shown in Fig. 8.
For each face, we first divide it into small, uniformly sized, over-
lapped blocks as shown in Fig. 8(b). Then descriptive features
(Fig. 8(c)) are extracted from each block to form a vector which is
used to perform training and recognition. The robustness to pose
variations is attributed to the explicit allowance for movement of
face areas, when comparing face images of a particular person at
various poses. Changes occurring at one facial component (e.g., the
mouth) only affect the subset of face areas that cover this parti-
cular component. Therefore, OLPF-based face descriptor is not only
robust to blurring but also to pose, expression, and misalignment.

3.2. Fixed Gaussian Mixture Model (FGMM)

In surveillance system, it is difficult to get an ideal frontal face
image, because the cameras are normally mounted under the
ceiling where subjects rarely pose for. Although face synthesis
algorithm like that described in [6] can convert the lateral faces to
frontal ones, the synthesized faces still have residual artefacts
which may degrade the recognition performance significantly. In
[55] , a “bag of features” approach was shown to perform well in
the presence of pose variations. It is based on dividing the face into
overlapping uniform-sized blocks, analysing each block with the
Discrete Cosine Transform (DCT) and modelling the resultant set of
features via a Gaussian Mixture Model (GMM). In our face recog-
nition, OLPF is employed to replace the DCT feature. Given a face
image, it is normalized to the size of 64�80 pixels and a 1073�64
feature matrix is obtained to represent the face with the blocksize
of 8�8 and 4 overlapping pixels. By assuming that the feature
vectors X are independent and identically distributed (i.i.d.), the
likelihood of it belonging to the person i is

PðX jλ½i�Þ ¼ ∏
N

n ¼ 1
Pðxn jλ½i�Þ ¼ ∏

N

n ¼ 1

XG
g ¼ 1

ω½i�
g N ðxn jμ½i�

g ;Σ
½i�
g Þ ð9Þ
nal images; b are the normalized ones).



Fig. 12. Blurring image removed by HFT (0.5 was used as the setting in the experiments).

Fig. 13. Examples of the positive and negative training data.

Fig. 14. Rejection rate of the initial feature rejecter on the testing samples. (For
interpretation of the references to colour in this figure caption, the reader is
referred to the web version of this paper.)
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where N ðxjμ;ΣÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞg �jΣ j

p e� 1
2ðx�μÞTΣ � 1ðx�μÞ is a multi-variant

Gaussian function, while λ½i� ¼ fω½i�
g ;μ

½i�
g ;Σ

½i�
g g

G

1
is the set of para-

meters of person i with G Gaussians.
Its parameters are optimized by the Expectation Maximization

(EM) algorithm. Due to the vectors being treated as i.i.d, infor-
mation about the topology of the face is in effect lost. While at first
this may seen counter-productive, the loss of topology in con-
junction with overlapping blocks provides a useful characteristic:
the precise location of face areas is no longer required namely
being robust to imperfect face detection as well as a certain
amount of in-plane and out-of-plane rotations.
For optimization by Expectation Maximization (EM), a fixed
number of Gaussians should be set to describe those faces. As the
matter of fact, the number of Gaussians affects the accuracy of the face
model significantly. More Gaussians can give more precise face model,
but it may not converge due to the limited training data. In order to
ensure the convergence of each face model, the smallest Gaussian
number of the training faces is selected to initialize EM, which can be
referred to as Fixed Gaussian Mixture Model (FGMM).

3.3. Adaptive Gaussian Mixture Model (AGMM)

Unlike the FGMMwhich uses a fixed number of Gaussians ðG¼ 32Þ
to model the distributions of each face, we propose to use an adaptive
number of Gaussian Mixture Model to represent each face. The

number of Gaussians G½i� and the other parameters λ½i� ¼ f
ω½i�

g ;μ
½i�
g ;Σ

½i�
g g

G½i�

1
are estimated from the training dataset by maximizing

the Log likelihood (10) with iterative EM [57]:

arg max
λ

ln PðX jλ½i�Þ ¼ arg max
λ

XN
n ¼ 1

ln fPðxn jλ½i�Þg

¼ arg max
λ

XN
n ¼ 1

ln
XG
g ¼ 1

ω½i�
g N ðxn jμ½i�

g ;Σ
½i�
g Þ

( )

ð10Þ
Fig. 9 shows the optimal number of Gaussians needed for the

faces ð64� 80Þ in FERET dataset divided by 8�8 block with
4 overlapping pixels. According to the information given in the
figure, we found that the minimum and maximum numbers of
Gaussians for a face are six for the 50th face and twenty-eight for



Q. LIU et al. / Neurocomputing 194 (2016) 10–2318
the 4th face, respectively. For FGMM, if setting G¼6 as the number
of Gaussians for each face, the faces such as the 4th one which
have large variations cannot be modelled well. Similarly, if using
too many Gaussians like G¼28, EM may not be able to converge in
the 50th face, because the samples with high dimensions is too
sparse to be used to build the face model with 28 Gaussians.
However, this issue can be solved using AGMM as appropriate
number of Gaussians can be obtained adaptively for each face,
which can give on average a 5% gain in recognition on average.

To evaluate AGMM, some examples with misalignment on differ-
ent scales and detection windows are shown in the top row of Fig. 10.
It can be observed that the face images from the same person, even
having misalignment problem, are more similar (high similarity pro-
bability) than those from different persons in the bottom row of Fig. 9.
Fig. 15. Precision/recall curves of face detection methods on Pascal face dataset.
4. Experimental verification

In this section, we present the experimental results of preproces-
sing, CHSD training and testing, body model learning, and the per-
formance of the proposed face recognition algorithm on publicly
available databases and our dataset to demonstrate the efficacy of our
method.

4.1. Preprocessing

In surveillance, low-quality face images mainly result from motion
blur or non-uniform colour, and false detection, which can be rem-
oved by a new High Frequency Threshold (HFT), colour normalization,
and background information, respectively.

4.1.1. Colour normalization
To equalize the colour and remove camera noise, preprocessing is

very important to improve the performance of face recognition. In our
method, we incorporate preprocessing prior to feature extraction.
First, we standardize all face images to 64�80 pixels, and then nor-
malize them to similar colour scale. Instead of using histogram
equalization, we build the colour model for each pixel as:

pðx; yÞ ¼ bþc � pðx; yÞ ð11Þ
where pðx; yÞ is the “uncorrupted” pixel. Removing the DC component
only corrects for bias b. To achieve the robustness to the contrast
variations, the set of pixels within each block are normalized to have
zero mean and unit variance N ð0;1Þ, which can be calculated fast by
integral image and integral square image used in Section 2.1. Some
results are shown in Fig. 11.

4.1.2. Blurred image removing
For the fuzzy image, it contains relatively smaller amount of energy

in high frequency than that of the sharp image. In HFT, the ratio
between the high-frequency coefficients and the low-frequency
coefficients of the face image which are defined as Fig. 12(a) is used
as a threshold to remove the blurred image. Two examples and their
corresponding ratios are illustrated in Fig. 12(b) and (c). But only the
image with significant global blurring artefacts can be removed, the
image with local blurring, like moving mouth, may not be detected by
the HFT. However, the proposed OLPF can handle the case due to
motion effect on face component. For the false detected face image, it
can be filtered out by background mask and skin colour.

4.2. CHSD training and face detection

4.2.1. CHSD training
The training data consists of 3860 hand-labeled frontal HS, which

are collected from datasets, such as INRIA [22], Caltech [24], ETHZ [58],
SCFace [12], and our cameras network and internet. The samples cover
varying lighting, different quality, age, gender, and pose. All data are
cropped and scaled to 64�80 pixels. For negative samples, we col-
lected 5000 images without human being including the natural ima-
ges and texture images, which are cropped to form a total of
944,338,068 non-HS images. Some positive and negative examples are
shown in Fig. 13.

Initial feature rejecter: In the initial feature rejecter, we trained 42
and 32 rejecters for the region variance and block difference, respec-
tively, which can yield the rejection rate of 91.99% and detection rate
of 100% on the testing dataset. The blue curve in Fig. 14 denotes the
combined result of the two feature sets. As can be seen from the
figure, the performance of initial feature rejecter approaches to be
stable with increment of the number of features, so only 15 features
consisting of variance features and difference features are selected to
construct the initial feature rejecter. According to the information
given in Fig. 14, we can find that with the first variance feature
rejecter, about 52.29% of the non-HS images are removed while
yielding 100% detection rate for the testing dataset.

Haar-like rejecter: In the proposed CHSD, the joint Haar-like fea-
ture is used, where the elementary feature block size of the Haar-like
feature is 4�4. The parts of feature sets are listed in Fig. 4. The dataset
used for training the Haar-like rejecter consists of 3860 positive
samples and 31970 negative samples. Those samples, including the
positive samples and negative samples, are input to the AdaBoost
training system, and the features and the corresponding thresholds
with the best performance of separating those samples are selected to
construct a weak filter.

HoG classifier: For good performance suggested by [22,24] to
extract the HoG feature, each detection window without smoothing
ðσ ¼ 0Þ is divided into cells of size 8�8 pixels and each group of 2�2
is integrated into a block in a sliding fashion, and blocks overlap with
each other by 50% vertically and horizontally. Each cell is mapped into
a 9-bin Histograms of Oriented Gradient and each block contains a
concatenated vector of HoG from all its cells. So a block is thus
represented by a 36-dimensional feature vector that is normalized to a
L2-norm unit length. Each detection window with size of 64�80 is
represented by 7�9 blocks, giving a total of 2268 features points per
detection window. These features are then classified by a soft linear
SVM provided by SVMLight.

A contribution of our work to object detection is the integration of
Haar-like features and HoG features into a cascade framework, which
equips the HS detector with strong rejection ability without accuracy
loss. A cascade of classifiers is employed to reject as many non-HS
samples as possible at the earliest stages, which can efficiently reduce



Table 2
Comparison of face detection on surveillance frames.

Methods Viola–Jones HeadHunter Our (GrayþLUV)

Detection rate 51.3% 78.6% 83.9%
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the detection time for the real-time system. The first rejecter, “initial
feature rejecter”, rejects almost 91.99% of the non-HS samples while
retaining the detection rate of 100%. The second rejecter with 25
boosted Haar-like features can achieve 97.6% rejecter rate with 0.26%
false positive rate. The following part is the SVM classifier which
makes a final decision for the candidate regions.

4.2.2. Face detection on Pascal face dataset
The proposed face detection method has been evaluated and

compared to state-of-the-art methods, including Mathias et al. [17],
Boosted Exemplar [59], PEP-Adapter [60], Zhu and Ramanan [61], and
Viola–Jones in OpenCV. We adopt the PASCAL VOC precision–recall
protocol for object detection (requiring 50% overlap) and the results
are shown in Fig. 15.

Apparently, our face detection method CHSD is competitive to
state-of-the-art face detectors, such as HeadHunter and Boosted
Exemplar, and outperforms the others on Pascal face dataset.
Specifically, if using both Gray and LUV information, our proposed
CHSD is the second best and only slightly worse than HeadHunter.
It is worth noting that our CHSD is more efficient than Boosted
Exemplar and HeadHunder as shown in Table 1, and can work in
real-time applications.

4.2.3. Face detection on surveillance videos
We also tested the face detection in real surveillance videos, where

the faces are often of low quality. So face detection becomes very
challenging due to image blurring, compression noise, and variations
in pose and illumination. In the testing, totally 2000 images were
collected from real surveillance frames to build a challenging dataset
with annotation for face detection validation. The whole performance
(i.e., detection rate) is given in Table 2. Some examples are given in
Fig. 16. Only the HeadHunter and Viola–Jones face detectors are
included as their codes are released by the authors. Apparently, the
proposed method is superior over HeadHunter in real detection tasks,
which demonstrates the robustness of our detector (from Head–
Shoulder to Face). It is worth noting that we have included some
Head–Shoulder training samples with different viewpoints, e.g., 7301
in pan and 01�601 in tilt. So the proposed CHSD may also handle
some side view detection.

The tradeoff between speedup and accuracy was investigated
by two experiments: detecting time vs. the number of rejecters
shown in Fig. 17 and accuracy vs. the number of rejecters (Fig. 18).
In Fig. 17, we found that the first twenty rejecters can reject more
than 90% non-HS region with detection time decreased to 56 ms.
Adding more rejecters gains less computation time until the
number of rejecters reaches 54. The detection time will increase
when the number of rejecters is bigger than 54. This is because to
classify the left HS and non-HS region samples, a more elegant
rejecter is needed with more complicated features to be con-
structed. So, it also needs more time to do classification. The
detection time is below 50 ms when the number of rejecters is
between [30, 60] and the best number in terms of efficiency is 40.
But adding more rejecters will degrade the performance of CHSD
(accuracy decreased) due to high risk of making mistakes.
Table 1
Average detection time on Pascal VOC dataset.

Method Time (ms)

HeadHunter 100
Boosted Exemplar 189.5
PEP-Adapt 4800
Zhu et al. 4000
CHSD (Gray) 13
CHSD (GrayþLUV) 34
Therefore, to achieve high efficiency (rejection rate) and accuracy
(detection rate), we used 40 rejecters (15 at layer one and 25 at
layer two) in the experiments.

4.3. Face recognition

In FGMM and AGMM, the face image is divided into blocks of
8�8 pixels with 4 overlapping pixels for extracting the OLPF
feature. For a 64�80 face image, it results in 1073 feature vectors
per face, and each feature vector contains 64 phase histogram bins
(down-sampling the phase histogram bins to 64).

4.3.1. FERET dataset
For the FERET dataset, we selected nine poses (at �601, �401,

�251, �151, 01, þ151, þ251, þ401, and þ601), one illumination and
one expression for each subject. In order to test the robustness to
image blur, we added blurred images (with blurring kernels
σ ¼ 1;2;3), all together a total of 2758 images with 197 subjects. We
use the frontal image (01) as the gallery and others as the probe
images. Tables 3 and 4 show the comparisons with existing methods
on pose, illumination, expression, and blur variations. Clearly, AGMM
has high recognition rate and outperforms the other algorithms except
MDF. Because MDF generates a virtual image at the pose of the gallery
image for the probe image through the 3D Morphable Displacement
Field. And FGMM also comparable with state-of-art, such as StackFlow.
In Table 4, we note that some algorithms are excluded, because they
cannot handle the variations on illumination, expression and blur or
not list the results in their papers.

4.3.2. Labeled Faces in the Wild
Labeled Faces in the Wild (LFW) [75] is an image dataset for

unconstrained face recognition. It contains more than 13,000 face
images collected from the web with large variations in pose, age,
expression, illumination, etc. In our experiments, we followed the
most restricted protocol [68], which splits the dataset into ten
subsets with each subset containing 300 intra-class pairs and 300
inter-class pairs. The performances are measured by using 10-fold
cross-validation.

We compare the proposed face recognition methods on LFW
with the image-restricted protocol, and compared to the state-of-
the-art methods such as [69,42,70–73]. The ROC curves of different
methods are shown in Fig. 19, where the results of baselines are
obtained from the official website of LFW.

Apparently, the proposed AGMM outperforms most methods
except the PEP-based methods, such as Eigen-PEP and POP-PEP.
However, PEP-based method normally takes the deep hierarchical
architecture, and build representation as the concatenation of
sequences of appearance descriptors (e.g., SIFT) with multiple
layer fusion structure (coarse-to-fine). Therefore, such method is
very computational expensive and cannot work at real-time speed.
In contrast, our method is quite efficient and the recognition step
only takes several milliseconds (o10 ms) to process one surveil-
lance 4CIF frame (576�702) frame on a desktop with general
dual-core 2.4 GHz CPU. The performance is competitive to PEP-
based methods and very close to Eigen-PEP. The whole proposed
recognition system can work in real-time speed (detection þ
recognition o44 ms per frame), and thus might be more pro-
mising for practical surveillance tasks.



Fig. 16. Face detection results on surveillance frames. First row: Viola–Jones’ results; second row: HeadHunter's results; last row: our results.

Fig. 17. CHSD detection time vs. number of rejecters.
Fig. 18. CHSD detection accuracy vs. number of rejecters.

Table 3
Comparison with existing algorithms on FERET with pose variation (G¼25
for FGMM).

Method Pose

�601 �401 �251 �151 þ151 þ251 þ401 þ601

Eigenface [37] 3.2 8.5 23.7 54.3 49.7 36.1 11.5 5.2
MRPH [56] NO NO 85.6 88.2 88.1 66.8 NO NO
FRR [55] NO NO 83.6 93.4 100 72.1 NO NO
PLS [66] 39.6 59.3 76.5 76.8 77.3 72.9 53.8 37.9
StackFlow [65] 48.1 70.4 89.3 96.2 94.1 8.92 62.7 42.9
MDF [67] 87.5 97.2 99.4 99.7 100 99.4 98.1 92.0
FGMM 40.8 73.4 87.3 95.9 96.6 78.1 65.3 43.1
AGMM 56.4 80.6 91.3 100 100 88.4 76.8 58.1
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4.3.3. Our dataset
We also build a dataset with totally 9164 colour images col-

lected from an indoor surveillance camera. Some samples are
given in Fig. 2. For this dataset, the recognition rate of our method
can reach 82.6% by using OLPFþFGMM and 84.9% by using
OLPFþAGMM, respectively. Table 5 shows the recognition results
for different descriptors (released source code) on our dataset.
Both FGMM and AGMM with OLPF feature outperform other
methods. It is noticed that [71] and FGMM have the similar per-
formance in LFW and our dataset. The recognition rates for indi-
viduals are given in Fig. 20. For ID8 face images, it includes many
images with severe expressions and noisy images which adversely
affect the performance of our method.

Compared to PCA, we use the same number of training samples
(six images) of each subject and the others for testing. The
recognition rate of PCA is 46.3%. With the same training data, PCA
is much worse than our method, because PCA needs accurate
alignment and is sensitive to variations of pose, illumination, and
blurring. While as illustrated in Fig. 21, the size of training set
rarely affects the recognition rate of our proposed method. But the
number of overlapping pixels significantly impacts on the
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recognition rate. That is because, in the high-dimensional space,
overlapped samples can provide more complete clusters, which
can be easily modelled by AGMM. In Table 5, although LPQ and
LFD use the phase information, they cannot handle the pose var-
iation and misalignment as good as our method due to the lack of
a robust face model, like FGMM or AGMM.

It is noted that apart from pose variations, imperfect face
localization [63] is also an annoying problem in a real life sur-
veillance system. Imperfect localization results in translation as
well as scale change, which adversely affects face recognition
performance. The proposed face recognition method can solve the
problem of imperfect localization, because our model is indepen-
dent of the face topology. Some examples are illustrated in Fig. 10.
In the first row, the imperfect face detection results in the face
Fig. 19. Performance comparison on the restricted LFW.

Table 4
Comparison with existing algorithms on FERET with illumination, expression and
blur variation.

Algorithm Accuracy Expression Blur
(σ¼1.0)

Blur
(σ¼2.0)

Blur
(σ¼3.0)

Eigenface [37] 58.0 36.8 78.9 64.7 53.4
LFD [64] NO NO 89.6 85.0 73.7
FGMM 81.3 75.8 99.6 93.5 81.6
AGMM 89.5 78.1 100 95.7 83.9

Table 5
Comparison with existing algorithms on our dataset.

Method PCA [37] LBP [62] LPQ [53]

Recognition rate 46.3 49.1 57.9
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Fig. 20. Recognition rate of in
images with different locations and scales. In the AGMM model,
the face images from the same person have higher similarity than
those from different persons.
5. Conclusion

A robust human detection and recognition system for surveil-
lance is presented in this paper. The contributions can be sum-
marized as follows: (1) we proposed CHSD with trained body
model to solve the unconstrained face detection problem in sur-
veillance; (2) we proposed a new face feature OLPF to represent
the face discriminately which is not only invariant to blur but also
robust to pose; (3) we proposed the FGMM and AGMM models to
describe the distribution of the faces which are robust to both pose
variation and imperfect detection; and (4) in preprocessing, we
used the integral images to speed up the illumination normal-
ization and removed blurred face images by HFT. Experimental
results on FERET and real surveillance data show the superiority of
LFD [58] Fisher [71] FGMM AGMM
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Fig. 21. Relationship between the size of training sample and recognition rate
(AGMM); 1 sample and 4 samples correspond to the first one and four image in the
right side image; and 6 samples use the entire samples listed in the right side.
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our proposed method over the existing algorithms. The human
object detection and recognition scheme can be easily extended to
implement on other interested objects with proper training
dataset, like cars and animal detection and recognition.
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