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Abstract—In this paper, we propose a novel method to discover
co-salient objects from a group of images, which is modeled as
a linear fusion of an intra-image saliency (IaIS) map and an
inter-image saliency (IrIS) map. The first term is to measure the
salient objects from each image using multiscale segmentation
voting. The second term is designed to detect the co-salient objects
from a group of images. To compute the IrIS map, we perform
the pairwise similarity ranking based on an image pyramid
representation. A minimum spanning tree is then constructed to
determine the image matching order. For each region in an image,
we design three types of visual descriptors, which are extracted
from the local appearance, e.g., color, color co-occurrence and
shape properties. The final region matching problem between
the images is formulated as an assignment problem that can be
optimized by linear programming. Experimental evaluation on
a number of images demonstrates the good performance of the
proposed method on co-salient object detection.

Index Terms—Attention model, co-saliency, minimum spanning
tree, similarity.

I. INTRODUCTION

H UMANS have an extraordinary ability to rapidly scan a
set of images and fixate their attention on the most valu-

able information (e.g., similar entity). This fixation ability can
be viewed as visual co-attention which can be carried out both
in a fast, saliency-driven and bottom-up manner, as well as in a
top-down processing and memory-dependent manner [1], [2].
Visual co-saliency is a subjective perceptual quality that

makes similar objects in a group of images stand out from their
neighbors and grab our attention by visually co-salient stimuli
[1]. A co-salient region usually exhibits the following proper-
ties, i.e., 1) a salient region in an image should be prominent or
noticeable with respect to its surroundings. 2) high similarity
can be observed for such regions with respect to certain features
(e.g., intensity, color, texture or shape). Co-saliency detection
is a key attentional mechanism by allocating the perceptual
and cognitive resources to the most relative common data
while ignoring other dissimilar contents. Two examples can
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Fig. 1. Examples of visual co-saliency detection. First and Third rows: Two
sets of images that contain co-salient objects footballer and cat, respectively.
Second and Fourth rows: Our co-saliency maps.

be found in Fig. 1, where co-salient objects footballer and cat
attract more attention than others in the image groups. The
corresponding co-saliency maps by our method can be found
in the second and the last rows of Fig. 1.
In this paper, we focus on a co-saliency driven attention

model which is to simulate the attention search process in
a group of images. Two saliency maps namely intra-image
saliency (IaIS) and inter-image saliency (IrIS) are defined to
model the proposed visual co-saliency via a linear combination.
The first term utilizes multiscale segmentation to detect the
salient objects from each image, while the second term is to
measure the co-salient objects from a set of images. In our work,
we build an image pyramid representation to perform pairwise
similarity ranking, which is then employed to construct a min-
imum spanning tree for image matching. Three types of visual
descriptors (i.e., color, color co-occurrence and shape descrip-
tors) are defined to represent the region aspects in an image.
The final region matching problem between the images can
be solved by linear programming as an assignment problem.
Experimental evaluation on many public image datasets shows
that the proposed method can detect co-saliency effectively,
and can be easily extended to the image co-segmentation task.
This paper is organized as follows. The related work is briefly

described in Section II. Section III introduces our proposed al-
gorithm for co-saliency detection. Experimental results are pro-
vided in Section IV to demonstrate the effectiveness of our ap-
proach. Finally, Section V concludes this paper.

II. RELATED WORK

In the last decade, a number of methods have been presented
to identify the visual saliency from an image, which can be ap-
plied in many fields, such as image search [3], image retargeting
[4] and segmentation [5]. Generally, visual saliency can be clas-
sified into two categories, i.e., local and globalmodels. The local
saliency model focuses on the extraction of local contrast fea-
tures, which aims to find the local salient region that stands out
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from its neighborhood. Based on a biologically-plausible model
proposed by Koch and Ullman [6], Itti et al. [2] first presented
a saliency-based visual attention model for rapid scene anal-
ysis, which combined multiscale image features into a single
topographical saliency map. This model was successfully ex-
tended to segment video objects of interest such as the facial
saliency model [7] and the focused saliency model [8]. Inspired
by the biologically plausible and the center-surround mecha-
nisms, various local saliency models have been proposed to
measure the local saliency from different aspects, such as graph
based visual saliency [9], site entropy rate saliency [10], feature
learning based saliency [11] and local region contrast methods
[12], [13]. Unlike the local model, global saliency model is to
measure a pixel’s contrast to all pixels within an image. The
global contrast feature can be computed from the frequency or
spatial domain, such as log-spectrum (SR) [14], frequency tuned
(FT) [15], symmetric surrounds [16], context-aware (CA) [17]
and histogram/region based contrast [18], [19]. Recently, some
works aim to incorporate the high level knowledge to detect the
saliency from a single image [20]–[22], which show good per-
formance compared with low-level feature based methods.
Unlike the single image saliencymodels, visual co-saliency is

to discover co-salient objects from a set of images. It is the sub-
jective perceptual quality that implies a selection and/or ranking
by importance and makes similar or common objects in a set of
images stand out from their neighbors. It is known that common
object detection from a set of images has become one of the
most important tasks in computer vision, such as common pat-
tern discovery [23], [24], image matching [25] and co-recogni-
tion [26]. Generally, the visual co-saliency map can be simply
obtained by performing the single image saliency detection for
all images. However, the inherent similarity cue between the im-
ages will be ignored, whichmay result in poor performance after
the ‘blind’ co-saliency detection. Recently, a co-saliency model
has been proposed to simulate the attention search process for an
image pair [1]. This model first combines three existing saliency
techniques to generate a local saliency map. Then a co-multi-
layer graph and the normalized single-pair SimRank algorithm
are employed to find the co-salient objects from the image pair.
Good performance can be observed for the co-saliency detec-
tion of a pair of images. However, high computational load is
needed, which is difficult to apply to a number of images. Al-
though the similar goal of detecting the co-saliency can be ob-
served, we can see that the proposed method is significantly
different from the previous work [1] in the entire framework.
Firstly, the proposed method mainly focuses on co-saliency de-
tection from a group of images instead of an image pair [1]. Sec-
ondly, the proposed method proposes a new method to measure
the intra-saliency using multiscale segmentation voting, while
the work [1] simply combines the existing saliency detection
techniques. Thirdly, unlike the work [1], the proposed method
designs a different framework to compute the inter-saliencymap
via a minimum spanning tree. Finally, the proposed method de-
fines three powerful types of visual descriptors, i.e., color, color
co-occurrence and shape properties, which are distinctly dif-
ferent from the previous work [1].
In addition, a similar work with our approach is called ‘coseg-

mentation’ that aims to segment the common regions from im-
ages [27]–[34]. This method can be traced back to the work of

TABLE I
COMPARISON OF A NUMBER OF DIFFERENT
SALIENT OBJECT EXTRACTION MODELS

Rother [27] which cosegmented the common parts of an image
pair by histogram matching. Mukherjee et al. [28] extended this
work by adding the histogram constraint as the regularized term
in a MRF energy function for the simultaneous segmentation.
Instead of penalizing the difference of the two foreground his-
tograms, Hochbaum and Singh [29] turned to reward their sim-
ilarity using a maximum flow procedure on an appropriately
constructed graph, which leaded to a polynomial time algo-
rithm for cosegmentation. Joulin et al. [30] proposed a discrim-
inative clustering framework for image cosegmentation, which
combines the existing tools for bottom up image segmentation
such as the spectral clustering technique and positive definite
kernels. Recently, a number of cosegmentation methods have
been proposed to extract the common regions from multiple im-
ages based on different optimization models [33]–[37]. Com-
pared with the co-saliency mode, distinct differences can be
observed between co-saliency and cosegmentation tasks, i.e.,
cosegmentation usually performs in supervised or weakly su-
pervised manner, where several object-like proposals should be
obtained before object cosegmentation. In other words, coseg-
mentation can extract a specific common object by combining
the object classifier even the object is not salient in the images.
In addition, the co-salient result can be easily extended to the
cosegmentation task if we take the co-saliency map as the ob-
ject-like proposal. Table I summarizes the differences between
these related works and the co-salient object detection.

III. PROPOSED METHOD

The co-saliency defined in our paper is obtained by com-
puting the intra-image saliency and inter-image saliency maps.
The first is used to identify the salient regions within each image.
The second aims to measure the saliency of a set of images. The
framework of our proposed method is illustrated in Fig. 2.

A. Intra-Image Saliency (IaIS)

In the current literature, most saliency models focus on the
local or global contrast mechanism for the salient region detec-
tion. Generally, good results can be achieved when the salient
object is surrounded by a uniform background. However, it is
still a challenging task to identify the salient object from com-
plex scenes. In order to achieve robust saliency detection, a new
saliency detection method is proposed in our work, which aims
to improve detection performance based on the multiscale seg-
mentation voting.
1) Multiscale Object Segmentation: Multiple or over seg-

mentation is widely used in saliency detection [38], image cate-
gorization [27] and object recognition [39] as an important pre-
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Fig. 2. The framework of our proposed method.

Fig. 3. First row: Superpixel results by the method [40]. Second row: Four
candidate segmentation windows with red color. Third row: Corresponding seg-
mentation results by Grab-Cut.

cessing step. After over segmentation, an image can be divided
into a lot of homogeneous regions called “superpixels”, which
can reduce the computational cost and avoid undersegmenta-
tion [40]. An example can be found in the first row of Fig. 3,
where 30, 10 and 5 superpixels are created from the original
image. Since there is no semantic information linked to these
superpixels, it is unknown that which superpixel belongs to the
salient object. In order to discover the possible salient object, we
propose a newmethod to produce the object superpixels from an
image. The idea is motivated by an observation that the salient
object or its part can be successfully segmented from its sur-
roundings using the interactive segmentation algorithms such
as graph-cut [41], lazy snapping [42] or grab-cut [43]. As il-
lustrated in the second row of Fig. 3, we select four rectangular
windows to perform image segmentation based on the Grab-Cut
algorithm [43]. The first window includes most image regions
except for the image boundary, while the others enclose small
parts of the image. The results are presented in the third row
of Fig. 3 which show that only the object regions are extracted
from the predefined windows. It means that most objects can be

Fig. 4. The predefined segmentation windows. Left: Basic partition modes.
Right: Generated segmentation windows (yellow region).

segmented when we properly choose the candidate segmenta-
tion windows.
In order to extract most objects, we definemultiscale segmen-

tation windows which are shown in Fig. 4. Note that the left
part presents the basic partition modes which are used to create
the candidate windows shown in the right part. Here denotes
the scale number. It is seen that different positions and different
sizes of windows are taken into account to perform the object
segmentation. For example, the first window (i.e., ) selects
the whole image as the segmentation window, while the second
window (i.e., ) only takes the center region as the candi-
date window. To deal with multiple objects, we define several
mixed windows that are listed in the last four cases. For each
window, we run the Grab-Cut [43] to perform the binary seg-
mentation, which assigns the foreground pixels with label one
and background with zero. Assume denote the segmentation
label at the th scale, we have

if
if

(1)

2) Intra-Image Saliency Map: After the multiscale image
segmentation, we extract the objects from an image at various
scales. In other words, an object or its parts may appear in many
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Fig. 5. Examples of the intra image saliency map. First row: Original images.
Second row: Multiscale image segmentation. Third row: Saliency maps.

Fig. 6. Saliencymap by the existingmethods. First row: Original images. Rows
2–4: Saliency maps by SR [14], FT [15] and RC [19], respectively.

scales due to the overlapped candidate windows. Here, we de-
fine that a pixel is said to be salient if this pixel is voted as an ob-
ject pixel with many times. Assume denotes the intra
image saliency value at pixel . We have

(2)

where is defined as the voting number by the multscale
segmentations, denotes the total number of defined scales,
and is a normalized constant to ensure the IaIS value in the
range of [0, 1]. From (2), we can see that if a pixel is voted as
the object label for all scales, it will have the maximum salient
value.
As shown in Fig. 5, four test images are given in the first

row. The second row presents multiscale segmentation results.
The intra image saliency maps by (2) are shown in the last row,
where most objects are highlighted with large salient values.
In addition, we compute the saliency map using the existing
methods, i.e., spectral residual (SR) [14], frequency tuned (FT)
[15] and global contrast (RC) [19], which are shown in Fig. 6.
For the first two images with simple backgrounds, most methods
achieve good performance and extract those football players
successfully. However, for the last two images with complex
backgrounds, our method tends to produce more robust results
than the existing methods.

B. Inter-Image Saliency (IrIS)

Visual system relies on several heuristics to direct attention
to important locations and objects [44]. The subject is searching

Fig. 7. The image descriptor based on a pyramid representation.

for a favorite object, and the attention is geared to react when
it appears [45]. Therefore, if a group of images includes a
co-salient object (e.g., cat), the object region in each image
should be highlighted with distinct saliency value. In this
work, we define such saliency as inter-image saliency (IrIS)
which aims to describe the co-salient object from a group of
images. Unlike the intra-image saliency that measures object
saliency within an image, inter-image saliency is to discover
the co-attention object that simultaneously stands out in the
image group. As illustrated in Fig. 2, there are three stages
included in our IrIS detection, i.e., pairwise similarity ranking,
pyramid feature extraction and pairwise image matching.
1) Pairwise Similarity Ranking: In order to identify the

co-salient object from multiple images, we should solve the
image correspondence problem to find out which parts of
an image correspond to which parts of another image. If the
co-salient objects share the similar color information, some
methods, e.g., image pair saliency detection [1], can be em-
ployed to solve the correspondence problem between the
images. However, co-salient objects usually exhibit the color
and shape diversities in images, which can be described as
follows.
(i) The co-salient objects, especially for those man-made ob-
jects, are allowed to exhibit different colors.

(ii) The co-salient objects may appear with different shapes
when they are captured in different views or positions.

It is known that object matching highly depends on the feature
description, while the feature description is usually sensitive to
the object diversity. Thus, it is still a challenging task to extract
co-salient objects with various color or shape features frommul-
tiple images. Some work simplifies this diversity problem by
assuming the objects are with similar color [1][34].
However, it is interesting to see that co-salient objects appear

to exhibit local feature consistence for some instances although
they are allowed to have various color and shape features. As
shown in Fig. 2, some cat instances appear with black color,
while some others are calico cats. Based on this phenomenon,
we first compute a pairwise similarity for the image group. Then
the images ranking is performed to generate the local consistent
images, i.e., the similar pair of images.
Assume there are images that need to perform the

co-salient object detection, which are denoted by ,
, respectively. Firstly, we compute the RGB

color histogram for each image based on a pyramid structure,
which is shown in the first column of Fig. 7. We use three
levels to perform the pyramid decomposition. The whole image
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is set to the first level, while the center-surround partition
is the second level. The third level is created by a quadtree
partition of an image. Prior to the histogram computation, we
quantize all the pixels in , into (=100 in our
work) color words using the k-means clustering algorithm. For
each level, we count the occurrence number for each word to
produce the histogram. Let denote the set of pixels in the
th pyramid level. The histogram descriptor at the th level

can be expressed by

(3)

where denotes the clustering label of pixel after the
k-means clustering, and is the total number of pixels at
the th pyramid level and is used to normalize the sum of
the histogram into one. As shown in Fig. 7, the final image
histogram descriptor is built by concatenating the histograms
of all levels together, which can be expressed by

(4)

Here, the histogram dimension is set to 600 (i.e.,
) in our work.

Secondly, we measure the similarity between images based
on the obtained histograms. The chi-square distance is
used to evaluate the pairwise similarity, which is described as
follows.

(5)

where denotes the total number of histogram bins (=600). Fi-
nally, we rank the image pairs according to the similarity values
in a descending order. From (5), we can see that the first ranked
image pairs exhibit the similar color content.
2) Image Feature Extraction: After the pairwise similarity

ranking, we can perform the image matching to discover which
parts are co-salient between images. Here, we implement the
image matching at the region level. In order to perform image
region matching, three types of visual descriptors are built to
describe the region properties, i.e., color word, color co-occur-
rence word and shape word. The first two visual descriptors are
designed to capture the image appearance from the color distri-
bution, while the third is used to describe the image appearance
in terms of the shape property.
To create a color descriptor, we use RGB color space to rep-

resent the color feature. All the pixels in an image pair are
quantized into 50 clusters using the k-means clustering algo-
rithm. Each cluster center is called a codeword. As mentioned
in the previous section, each image has been partitioned into
a number of regions after multiscale image segmentation. For
each region, we compute the histogram by counting the number
of codewords at each bin (i.e., cluster) according to (3). The
color descriptor of a region is represented by the bins of the
histogram.
To create a co-occurrence descriptor, we first extract the

image contour based on the globalized probability of boundary
(gPb) [46], which can detect and localize the candidate contour

Fig. 8. The construction progress of our co-occurrence descriptor.

using a combination of local and global cues. Inspired by the
fact that color variation usually occurs at image boundaries, we
can describe the color co-occurrence around boundary pixels.
In this work, we compute the co-occurrence descriptors from
the salient boundary points (i.e., ). As shown in
Fig. 8, we first design a polar location grid with the radius of
8 pixels, which centers at the boundary point. Then we divide
this polar grid into 4, 8, 16 subregions in an angular direction,
which yield a four-level pyramid structure. For each subregion
at a pyramid level, we compute the mean RGB color value of
all the pixels in this subregion, which are then set to the bins of
a co-occurrence descriptor. This produces a 87 bins histogram
descriptor. In order to achieve the rotation-invariant property,
we determine the start subregion based on the maximum in-
tensity change. Assume two points and equally divide

the polar grid into two parts which are denoted by

and in a clockwise direction. There can be 8 possible
divisions of the polar grid into 2 equal parts, which result in
16 possible endpoints for selection. The start subregion is
defined as

(6)

where denotes the average intensity value

for the part . All the descriptors in an image pair are also
quantized into 50 clusters (e.g., codeword) using the k-means
clustering algorithm. The color co-occurrence descriptor for
a region is represented by the bins of the histogram which is
generated by counting the number of codewords at each bin (i.e.,
cluster) according to (3).
The third descriptor used in our work is the shape descriptor.

Unlike the above color related descriptors, the shape descriptor
focuses on measuring intensity variations of boundary points.
We also employ the salient boundary points to build the shape
descriptors. The construction process is illustrated in Fig. 9,
which consists of two parts, i.e., gPb coefficients and normal-
ized AC coefficients. For each subregion at a pyramid level, we
compute the mean gPb values of all boundary pixels in this sub-
region, which are then set to the bins of a shape descriptor. In ad-
dition, we compute the mean intensity value for each subregion
in the last level, and perform a discrete cosine transform (DCT).
The obtained 15 AC coefficients are normalized by the DC co-
efficient, and then combined with the gPb coefficients to pro-
duce the final shape descriptor. To describe a region, we quan-
tize all shape descriptors in an image pair into 50 clusters using
the k-means clustering algorithm. The shape descriptor of a
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Fig. 9. The construction progress of our defined shape descriptor.

region is generated by measuring the frequency of codewords
at each bin according to (3).
3) Minimum Spanning Tree: After multiscale segmentation

for a set of images , each image has been divided
into segments. Here denotes
the segment set of the image , where corresponds to the
th segment. For simplicity, we use to denote a segment
in the image , i.e., . Let denote a group of
regions, i.e., , which are taken from the image
set. In other words, we can build a region group by simply
choosing one region from each image. Thus, the co-salient map
for a region can be defined as

(7)

with

(8)

Here the similarity of a group of regions is obtained by sum-
mating the pairwise similarity among these regions. It is seen
that each region in a region group will have the same
co-salient value, i.e., the summation of all pairwise similari-
ties. However, the total number of region groups will reach to

, which is an impossible task for
current computation capability especially for large and .
It is known that the more similar a pair of image, the more ac-

curate the image matching. Therefore, we identify the co-salient
objects by performing the pairwise similarity computation for
those images with high similarities. To achieve this goal, we
first construct a minimum spanning tree (MST) based on the
ranked similarities. Given an undirected graph
with nodes and edges , where the nodes

denote a set of images. Two nodes and
are connected by an undirected edge which has the weight

. It is known that a minimum spanning
tree is a subgraph that connects all the vertices together, which
has the weight less than the weight of every other spanning tree.
Here, this tree can be easily obtained by cutting the image pairs
with high ranking scores to build a spanning tree [48].
Let denote the edge set for the MST graph. Based on

(7), we measure the co-saliency of a region in the region group
by

(9)

From (9), we can see that the region matching is only performed
on the image pairs with edge links in MST graph.
4) Image Pairwise Matching: After the MST construction,

we are ready to measure the pairwise similarity so as to infer
the co-salient region with the high matching score from
a group of images. Given a pair of images and that have
an edge in the MST graph (i.e., ), we first compute
the correspondence matrix between regions, where each el-
ement denotes the distance between regions and .
Here, and denote two regions in the image and ,
respectively. Based on the feature extraction, each region can be
represented by three types of descriptors, i.e., color descriptor
, color co-occurrence descriptor and shape descriptor .

Here we further combine and into a color descriptor
based on the scheme used in (4). For a pair of regions and

, the distance between regions is defined as:

(10)

where is used to evaluate the histogram distance between
tow regions. It is observed that a weighted distance is used
to generate the matrix . For a pair of images with high simi-
larity, large weight will be imposed to the first term (i.e., color
distance). Otherwise, the image pair will be evaluated mainly
based on the shape feature due to the distinct color difference.
Let be an indicator variable. If region corresponds

to region , we have , otherwise . The
one-to-one constraint matching between this image pair can be
expressed as the following optimization problem

(11)

From (11), we can see that this problem is actually an assign-
ment problem, which can be solved via linear programming.
Using the image matching (11), we can obtain groups of

regions. We compute the total matching similarities for all the
groups, and then sort them in a descending order. Generally, we
can select the region group with the maximum matching score
to yield a final inter-image saliency map. However it is difficult
to deal with multiple co-salient object detection. To achieve a
robust performance, we consider the first groups to generate
our inter-image saliency map. Let de-
note the sorted groups according to the matching scores. As-
sume denotes a pixel in an image , the inter-image saliency
value of pixel can be computed by

(12)

with

(13)

if (14)
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where is a weighting coefficient, and the parameter adjusts
the range (i.e., distance) similarity.

C. Object Co-Saliency Map

Based on intra-image and inter-image saliency maps, we are
ready to extract the co-salient object from a group of images

. Let denote the co-salient value of a
pixel in the image . By combining the two saliency maps (2)
and (12), we have

(15)
where is a constant that is used to control the impact of the
IaIS and IrIS on the image co-saliency. From (15), we can see
that the co-saliency map is built by a linear combination of the
IaIS and IrIS [1], which means that a pixel with high co-saliency
value will not only exhibit strong intra-image saliency but also
inter-image saliency. The contributions of the IaIS and IrIS are
controlled by the weight . The detailed steps of our proposed
method are presented in Algorithm 1.

IV. EXPERIMENTS

In this section, we evaluate the performance of our proposed
method on a number of image groups. Four public image
datasets are used for the extensive experiments and compar-
isons with the state-of-the-art methods. Some subjective and
objective assessments of detection results are reported.

A. Parameter Settings and Evaluation Metrics

We first introduce the parameter settings in our experiments.
For the multiscale object segmentation, we design 28 candidate
windows to run the Grab-Cut segmentation. In order to avoid
the effects of possible false segmentations, we sort the segmen-
tation results according to the number of foreground pixels, and
remove the first two and last two segmentation results, i.e., those
segmentations with seldom or numerous foreground pixels in
the segmentation window. For the final object co-saliency map,
we chose as the weight in (15). Here, we set to
compute the control parameter in (13), which shows good per-
formance from our empirical study.
In order to evaluate the quality of our proposed method,

we perform an objective comparison based on the extracted
co-saliency map and the hand-annotated ground-truth mask.
The comparison between an algorithm’s output and the ground
truth is performed on three evaluation metrics, i.e., Precision
(Pre), Recall (Rec), and F-measure (F) [1]. Given a group
of images, the Precision is defined as the ratio of correctly
segmented object regions to all the segmented regions, while
the Recall is computed by the ratio of correctly extracted
object regions to the ground-truth masks. A weighted mean of
precision and recall [15] is employed to calculate F-measure,
which can be expressed as

(16)

Here, we set that was also recommended in the
work[15].

B. Experiments on ICoseg Database

We first evaluate our proposed method on the public image
dataset ICoseg,1 which consists of 38 groups (643 images) along
with pixel ground-truth hand annotations [32]. Each group con-
tains a common object with the similar color, e.g., bear, pandas,
kite.
We compare our result with four state-of-the-art methods for

saliency detection, i.e., frequency model SR [14], FT [15], com-
putational model SER [10] and global contrast model RC [19].
To perform a fair comparison, most methods are implemented
based on the source codes or executable codes by authors. Note
that all the results are computed using the default parameters
given by the source codes. We implement our method with the
Matlab code.
Some experimental results are illustrated in Fig. 10, which

contains two image groups, i.e., Red Sox and Cheetah. For
the first image group Red Sox, we can see that most existing
methods can provide good performance when the common
object (i.e., players) appears in the simple backgrounds, such
as the first three images in the upper part of Fig. 10. But for
those images that not only include the players but also the
complex backgrounds, many false detections can be observed
for the existing saliency models. In addition, for the second
image group Cheetah, the common object usually exhibits
more complex texture with respect to the first group, which

1http://chenlab.ece.cornell.edu/projects/touch-coseg/
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Fig. 10. Evaluation results for two ICoseg image groups. Top and Bottom: Some results for image groups Red Sox and Cheetah, respectively. Row 1: Some
original images. Rows 2–6: Results for FT, SR, SER, RC, and Our method, respectively.

leads to a poor performance for the existing methods. However,
as shown in the last row of Fig. 10, it is seen that our method
is able to discover co-salient objects successfully from each
image group.
To provide a fair comparison, we follow the evaluation

strategies used in [1], [15]. Firstly, for each image, we employ
an adaptive threshold in [14], [15] to obtain the binary saliency
map, which is computed by two times the mean saliency of a
given image. We compute the average value of the evaluation
metrics for each image group. Table II gives the comparison
results on all ICoseg image groups which show that our method
measures the co-saliency more accurately with the high Pre-
cision, Recall and F-measure. Compared with the method
SER [10], our method achieves about 41.03%, 50.77% and
53.76% improvements of Recall, Precision and F-measure,
respectively. Compared with the method RC [19], our method
yields about 32.85%, 5.74% and 25.83% gains of Recall,
Precision and F-measure, respectively. Secondly, we vary this
threshold from 0 to 255, and calculate the precision and recall
at each value of the threshold. It provides a reliable comparison
of how well various saliency maps highlight salient regions
in images. We compute the area under the precision versus
recall curve (PRC-Area) using the method [9]. The last term
in Table II presents the mean area result for each image group,
which shows that our method ourperforms the state-of-the-art
methods. About 1.44%, 25.21%, and 33.38% gains can be
achieved by our proposed method compared with RC [19], FT
[15] and SER [10], respectively.

C. Experiments on MSRC Database

We next evaluate our proposed method on the public MSRC
object class recognition dataset2 which consists of 20 groups
(591 images) along with pixel-wise labelled annotations.
Different objects, such as cow, aeroplane, car and flowers,
are included in the dataset. Compared with the ICoseg image
dataset, different colors are allowed for the common objects
within the image groups. Here, we further compare our pro-
posed method with the similar work FCO [36] which computed
the co-saliency map by combining the single-view saliency
and repeatedness together. Since the authors have not released
their code for open evaluation, we implement the co-saliency
algorithm according to the original paper [36]. Note that in our
experiment the single-view saliency is replaced by the more
effective saliency model RC [19] instead of SER [17] used
in [36].
Fig. 11 shows the comparison results of two MSRC image

groups, i.e., sign and flower, where the common objects ex-
hibit distinct diversities in color or shape property. Note that
since most existing methods identify the salient object from a
single image, such diversity will produce more effect on the
co-saliency model. Compared with existing methods, our pro-
posed method still achieves good performance on salient ob-
ject detection, which highlights the common objects with large
saliency values.

2http://research.microsoft.com/en-us/projects/objectclassrecognition/
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TABLE II
EVALUATION RESULTS FOR ICOSEG IMAGE DATASET

The objective performance on all MSRC image groups are
illustrated in Table III, where the results by adaptive thresholds
are shown at the first three terms in Table III, respectively.
Compared with the method SER [10], It is seen that our method
provides about 50.52%, 22.10%, and 32.35% improvements
of Recall, Precision and F-measure, respectively. It is noted
that similar precision on average can be observed between
our method and the global contrast model RC [19]. But our
method achieves about 74.22% and 31.69% gains of Recall
and F-measure, respectively. Compared with FCO model [36],
our method also provides distinct improvements in the Recall,
Precision and F-measure with 71.30%, 4.12% and 31.23%
gains on average, respectively. It means that our method is
able to discover most salient object regions from image groups
under the similar precision levels. The last term in Table III
shows the mean area result for each image group, which shows
that our method still outperforms the state-of-the-art methods,
which yields 3.60%, 40.10%, 35.83%, 15.16% and 5.70% gains
compared with RC [19], FT [15], SR [14] SER [10], and FCO
[36], respectively.
To further investigate the performance of our proposed

method, we combine the previous saliency methods, i.e., SR

[14], FT [15], SER [10] and RC [19], with our inter-saliency
to generate a final co-saliency map. The results are given in
Table IV which shows that all the previous saliency methods
can achieve improvements with respect to Recall, Precision
and F-measure. For example, about 0.1249, 0.1633, 0.2732
and 0.1926 gains of F-measure on ICoseg dataset can be
achieved for RC [19], FT [15], SR [14], and SER [10],
respectively. For MSRC dataset, the corresponding gains of
F-measure are also about 0.1046, 0.1642, 0.1509 and 0.1042,
respectively. Compared with the previous saliency methods
with the IrIS saliency, our proposed method still achieves
more accurate saliency detection with the high Precision,
Recall and F-measure. In addition, we only consider our
IaIS map to fairly compare with the other methods, which
can be found in Table IV. Compared with the RC saliency
model, our IaIS achieves about 10.9%, 0.71% and 11.83%
improvements of Recall, Precision and F-measure on the
ICoseg dataset, respectively. The corresponding improvements
will reach to 59.9%, 1.83% and 28.86% for the MSRC dataset.
The experimental results further demonstrate that our IaIS can
compete with the state-of-the-art methods for the single image
saliency detection.
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Fig. 11. Evaluation results for two MSRC image groups. Top and Bottom: Some results for the image group sign and flower, respectively. Row 1: Some original
images. Rows 2–7: Results for FT, SR, SER, RC, FCO, and Our method, respectively.

TABLE III
EVALUATION RESULTS FOR MSRC IMAGE DATASET

D. Experiments on Images With Larger Variations

We collect six image groups with large variations from the
public image datasets (e.g., PASCAL VOC 2008, UIUC But-
terfly, Stanford-40 and Flickr). Some image examples can be
found in Fig. 12(a), which includes Running, Baby, Butterfly,
Dog2, Riding-horse, and Toy-baby image groups. It is seen that
the first two image groups are taken from the road, room or

countryside. The butterfly images contain a similar object (i.e.,
admiral butterfly) in a cluttered background. The objective com-
parison results are illustrated in Fig. 12(b), which shows that our
proposed method also achieves good performance compared
with the existing methods. Compared with the RC method, our
method yields about 19.14% and 8.27% gains of F-measure and
mean area on average for all images. Furthermore, two image
groups with multiple objects are evaluated, which are shown in
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TABLE IV
COMPARISON RESULTS BY COMBINING THE EXISTING METHODS WITH OUR IRIS

Fig. 12. Some examples taken from six image groups. (a) From left to right: Running, Baby, Butterfly, Dog2, Riding-horse, and Toy-baby. (b) Evaluation results
for five image groups for Recall, Precision and F-measure, respectively.

Fig. 13. Experimental results for image pairs. (a): Original image pairs, i.e.,
llama, elephant, hawksbill. (b)-(f): Results by CA [17], SER [10], RC [19],
IPCO [1], and our method.

the last two columns of Fig. 12(a). The first contains two dif-
ferent objects (i.e., toy baby and toy dog), where some occlu-
sions and lighting variations can be observed. From objective

evaluation metrics in Fig. 12(b), we can see that good perfor-
mance can be achieved by our proposedmethod. Comparedwith
RC method [19], about 78.36% and 20.74% gains of F-measure
on average can be obtained for our method, respectively.

E. Experiments on Image Pair Database

In this experiment, we compare our result with the recent
image pair co-saliency (IPCS) detection method [1] which mea-
sures visual saliency for a pair of images. Three saliency models
used in [1], i.e., SER [10], CA [17] and RC [19], are also consid-
ered for the evaluation. The comparisons are performed on the
public image pair dataset3 given in [1], which consists of 105
pairs of images, such as human objects, flowers, buses, cars,
boats and various animals.
Some examples are shown in Fig. 13, where the original

image pairs are presented in the first column. The corresponding
results are presented in Figs. 13(b)–(f), respectively. It is shown
that good performance for co-salient object detection can be
achieved by our proposed method. For the image pairs elephant
and hawksbill, the object appears with different sizes or views
making it a challenging image to detect. However, our method
provides more accurate results to identify the co-salient regions.

3http://ivipc.uestc.edu.cn/hlli/projects/cosaliency.html
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Fig. 14. Evaluation results for 105 image pairs given in [1]. (a) Precision-recall
curves for varying thresholds. (b) Precision-recall bars for adaptive thresholds.

Fig. 15. The curve of the evaluation metric verse the parameter .

We follow the evaluation strategies used in [1]. The preci-
sion versus recall curve is plotted in Fig. 14(a), which shows
that our method achieves high precision for most recall values
especially for the recall in the range of [0.2 0.9]. Then, we em-
ploy an adaptive threshold in [15] to obtain the binary saliency
map. As shown in Fig. 14(b), the comparison results show that
our method measures the co-saliency more accurately with the
highest Precision, Recall and F-measure. Compared with the
method [1], our method achieves about 23.14%, 3.73% and
8.84% improvements of Recall, Precision and F-measure, re-
spectively.

F. Discussion

In this work, we use the linear fusion to generate the final
co-saliency map, which is controlled by the weight parameter
. From (15), we can see that the large weight will be imposed
to the inter-image saliency with the decreasing . To investigate
the effect of on the co-saliency detection, we also compute
Precision, Recall and F-measure metrics based on the adaptive
threshold by changing from 0 to 1. Fig. 15 plots the curve
of the evaluation metrics for all the images (namely ICoseg
+ MSRC datasets), which shows that good performance can
be achieved when the weight is in the range of [0.4, 0.6].
The result also demonstrates the effectiveness of our proposed
co-saliency model.
In order to measure the co-saliency map, the multiscale seg-

mentation windows (see Fig. 4) are defined based on different
positions and different sizes of the windows. There are total
28 segmentation windows used in our work. To investigate
influence of the number of windows on the final accuracy,
we compute Precision, Recall and F-measure metrics based
on the adaptive threshold for different windows (i.e., 5, 15,
20, 28). Each window scale was randomly selected from the
total window set for many times. Fig. 16 plots the curve of the

Fig. 16. The relative performance of the evaluation metric verse the selected
windows.

Fig. 17. Evaluation results for girl image group with significantly cluttered
images. Rows 1 and 3: Some original images. Rows 2 and 4: Co-saliency results.

relative improvement on evaluation metrics for all the images
(namely ICoseg + MSRC datasets). Here, the 5-window scale
was used as a reference and the relative differences for the
remaining window scales were calculated. We can see that the
worst performance can be found when there are only 5 win-
dows used. The main reason is that a small number of windows
cannot provide enough object candidates for co-salient object
detection. Furthermore, a slight improvement can be observed
when we increase candidate windows.
In addition, we investigate the effect of three types of vi-

sual descriptors (i.e., color-based, color co-occurrence-based,
and shape-based visual descriptors) on the final performance.
Table V shows the relative performance values for different
visual descriptors. For each evaluation metric, the worst de-
scriptor was used as a reference and the relative differences for
the remaining descriptors were calculated. It is seen that the
color word and shape word respectively provide large gains for
the ICoseg and MSRC datasets if only one visual descriptor is
considered. For the ICoseg dataset, the combined descriptors
achieve the highest gains compared with other descriptors, i.e.,
4.79%, 5.97% and 4.79% for Recall, Precision and F-measure,
respectively. For the MSRC dataset, the combined descriptors
also provide higher gains of Recall and F-measure except for
the Precision.
Furthermore, it should be noted that the false detection will

occur when the objects have no clear shape or color within
the image group, especially for the significantly cluttered im-
ages. An example can be found in Fig. 17, where some false
co-saliency detections can be observed (i.e., marked with red
windows) due to the cluttered background. The main reason is
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TABLE V
RELATIVE PERFORMANCE ON THREE VISUAL WORDS FOR ALL ICOSEG AND MSRC DATASETS

that our method is based on the assumption that a co-salient re-
gion should exhibit high similarity with respect to certain fea-
tures (e.g., intensity, color, texture or shape).

V. CONCLUSION

In this paper, we have presented a new method to discover
co-salient objects from a set of images. This method aims to
simulate the attention search process and predict the human
fixed objects within an image group. The proposed co-saliency
model is built based on two saliency maps, i.e., the intra-image
saliency (IaIS) and the inter-image saliency (IrIS) maps. The
first term is designed to identify the salient objects from a single
image according to the multiscale image segmentation voting,
while the second term is to discover the co-salient objects from
a set of images. To compute the IrIS map, we first construct an
image pyramid representation to perform a pairwise similarity
ranking. The ranked results are then used to build a minimum
spanning tree for image pairwise matching. To describe the re-
gion aspects of local appearance in an image, we design three
types of visual descriptors in terms of color, color co-occurrence
and shape properties. Finally, we solve the final region matching
problem between images by linear programming. Experimental
evaluation on a number of image groups demonstrates the good
performance of the proposed method on the co-salient object
detection.
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