THE CHINESE UNIVERSITY OF HONG KONG

Electronic Engineering, Faculty of Engineering

Interface Engineering for Graphene Transistors and Photodetectors

Prof. Jianbin XU, Prof. Hon-Ki TSANG; Drs. Xiaomu WANG, Xi WAN, Kun CHEN, Zhenzhou CHENG, Xiao-qing TIAN, and Prof. Weiguang XIE

MOE Natural Science Awards Presentation 7th May, 2015

Graphene Synthesis

Gaseous (black text), liquid (red), and solid(blue) precursors

X. Wan, K. Chen, J. B. Xu, Small, 10(22), 4443-54, (2014).

Enhanced Performance of Graphene Transistors by Interface Engineering

X. M. Wang, J. B. Xu, et al., Adv. Mater. 23, 2464 , (2011) X. Wan, X. Wan, J. B. Xu, et al., J. Phys. Chem. C 117, 4800-4807, (2013) K. Chen, X. Wan, J. B. Xu, Nanoscale 5, 5784-5793, (2013).

Suspended Membrane Platform

[1] Z. Cheng, et al., Opt. Lett.37, p. 1217 (April 2012).

Graphene on Silicon Suspended Membrane Devices

Integrated graphene on silicon suspended membrane devices

Photodetector Experimental Results

Photodetector characterization at 2.75 µm wavelength

✓ The responsivity is measured as 0.130 mA/mW under room temperature.
 ✓ The *in-plane absorption* plays an important role in high responsivity.

Xiaomu Wang, Zhenzhou Cheng, Ke Xu, Hon Ki Tsang, & Jian-Bin Xu, Nature Photonics 7, 888–891 (2013)

Photodetector Comparison

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, M. Polini, Nature Nanotechnology 9, 780 (2014); Photodetectors based on graphene, other two-dimensional materials and hybrid systems

Table 1 | Performance parameters.

Reference	Description	Responsivity	Detector type	Bandwidth	Wavelength	IQE (%)	EQE (%)
18,19	Graphene-metal junction	6.1mA W-1	Photocurrent (PV/PTE)	>40 GHz	Visible, NIR	10	0.5
30,37,52	Graphene p-n junction	10 mA W ⁻¹	Photocurrent (PTE)		Visible	35	2.5
20-22	Graphene coupled to waveguide	0.13 A W ⁻¹	Photocurrent (PV/PTE)	>20 GHz	1.3 - 2.75 μm	10	10
90	Graphene-silicon heterojunction	0.435 A W ⁻¹	Schottky photodiode	1kHz	0.2 -1 µm		65
31	Biased graphene at room temperature	0.2 mA W ⁻¹	Bolometric		Visible, infrared		
94	Dual-gated bilayer-graphene at low temperature	10 ⁵ V W ⁻¹	Bolometric	>1GHz	10 µm		
105	Hybrid graphene-QD	10 ⁸ A W ⁻¹	Phototransistor	100 Hz	0.3-2 µm	50	25
63	Graphene with THz antenna	1.2 V W ⁻¹	Overdamped plasma waves		1,000 µm		
120	Graphene interdigitated THz antenna	5 nA W ⁻¹	Photovoltaic and photoinduced bolometric	20 GHz	2.5 THz		
147,148	${\it Graphene-TMD-graphene}\ heterostructure$	0.1 A W ⁻¹	Vertical photodiode		<650 nm		30
130	Biased MoS ₂	880 A W-1	Photoconductor	0.1Hz	<700 nm		
143	Graphene double-layer heterostructure	>1 A W-1	Phototransistor	1Hz	0.5-3.2 μm		
7,8,134	WSe ₂ p-n junction	16 mA W ⁻¹	p-n photodiode		<750 nm	60	3
136	GaS nanosheet	19.1 A W ⁻¹	Photoconductor	>10 Hz	0.25-0.5 μm		

Graphene-on-Silicon Heterostructure Waveguide Photodetectors

 nature photonics
 LETTERS

 High-responsivity graphene/silicon-heterostructure waveguide photodetectors
 LETTERS

Xiaomu Wang**, Zhenzhou Cheng*, Ke Xu, Hon Ki Tsang* and Jian-Bin Xu*

The work has been highlighted by Nature and Nature Photonics

Graphene makes light work of optical signals

NATURE PHOTONICS | NEWS AND VIEWS

< 🖾 🔒

Silicon photonics: Graphene benefits

Ming Liu & Xiang Zhang

>The work has been read online ~9,500 times

>Over <u>30</u> website news outlets.

>The work has been reported by medium.

■普漢奇教授(前排左)、許建斌教授 後研究員程振洲(後排)共同研發。

【新報訊】香港中文大學電子工程學系曾漢奇 教授和許律或教授及其科研欄隊,最近成功發明 了一項全新的光電檢測器,有效推進高效率,低 成本紅外光讀技術,可應用於環境和生物醫學工 程,如監測空氣污染和分析人類呼吸疾病標記。

電子工程系獨立完成

在曾教授和許教授的帶領下,科研關隊利用 透明膠帶,從石墨中機械到繼出單一碳原子層的 石墨碼,並將石墨烯置於砂蟹浮得販光波導路的 頂部,製作出異質結結構的光探測器。該器件在 室溫下具有很寬的光譜探測範圍。

這項突破性的實驗進展,有望實現高效率, 低成本、高集成度中紅外新一代尤擇測器。科研 團隊說明,利用單層石墨和砂光波導製作的異質 站中紅外探測器具有很高靈敏度。整個研究從林 教藝備、器件設計、製造以至測量,均由中大電 子工程學系科研人員獨立完成。

許建試教授表示,科研團隊提出並開發了一 種新額的,用聚焦光機構合的中紅外懸浮薄膜波 或,蛹碼路石那區始智於透纖的頂證,氮件證驗 9

Conclusions

- High-quality large-area graphene sheets can be synthesized on Cu foils from PAHs
 - The quality of the synthesized graphene sheets strongly depend on the molecular structures of PAHs
 - The underlying growth mechanism mainly involves a surface-mediated process of dehydrogenated PAHs
- Coronene-derived graphene sheets have a carrier mobility up to ~ 5300 cm²/V·s on SiO₂ and ~11000 cm²/V·s on OTMS modified SiO₂, while triphenylene-derived graphene sheets show similar quality, while for mechanically exfoliated graphene, a carrier mobility can be as high as 70,000 cm²/V·s, one of the highest on large substrtae surface so far.
 - Dramatically increasing the mobility of GFETs OTMS SAMs modification provide a new avenue to achieve high quality graphene devices, with intrinsic graphene nature
- A new platform to dramatically enhance light interaction with graphene has been developed, with which an ultra-high sensitive Mid-IR photodetector was developed. It is generic for all 2D materials.