
Learning Latent Semantic Relations from
Clickthrough Data for Query Suggestion

Hao Ma, Haixuan Yang, Irwin King, Michael R. Lyu
Dept. of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, N.T., Hong Kong

{hma, hxyang, king, lyu}@cse.cuhk.edu.hk

ABSTRACT
For a given query raised by a specific user, the Query Sug-
gestion technique aims to recommend relevant queries which
potentially suit the information needs of that user. Due to
the complexity of the Web structure and the ambiguity of
users’ inputs, most of the suggestion algorithms suffer from
the problem of poor recommendation accuracy. In this pa-
per, aiming at providing semantically relevant queries for
users, we develop a novel, effective and efficient two-level
query suggestion model by mining clickthrough data, in the
form of two bipartite graphs (user-query and query-URL bi-
partite graphs) extracted from the clickthrough data. Based
on this, we first propose a joint matrix factorization method
which utilizes two bipartite graphs to learn the low-rank
query latent feature space, and then build a query simi-
larity graph based on the features. After that, we design
an online ranking algorithm to propagate similarities on the
query similarity graph, and finally recommend latent seman-
tically relevant queries to users. Experimental analysis on
the clickthrough data of a commercial search engine shows
the effectiveness and the efficiency of our method.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Query Formulation, Search Process

General Terms
Algorithms, Performance, Experimentation

Keywords
Similarity Propagation, Matrix Factorization, Query Sug-
gestion, Clickthrough Data, Web Search

1. INTRODUCTION
With the exponential growth of information on the World

Wide Web, Web search engines provide an indispensable in-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’08, October 26–30, 2008, Napa Valley, California, USA.
Copyright 2008 ACM 978-1-59593-991-3/08/10 ...$5.00.

terface for Web users to obtain any kind of information they
may seek. Although current commercial search engines have
been proved to be successful for recommending the most
relevant Web pages to users, there are several outstanding
issues that can potentially degrade the quality of search re-
sults, and these merit investigation. The first one is the
ambiguity which commonly exists in the natural language.
Queries containing ambiguous terms may confuse the search
engine into retrieving Web pages which do not satisfy the in-
formation needs of users. Another consideration, as reported
in [12, 25], is that users tend to submit short queries consist-
ing of only one or two terms under most circumstances, and
short queries are more likely to be ambiguous. Through the
analysis of a commercial search engine’s query logs recorded
over three months in 2006, we observe that 19.4% of Web
queries are single term queries, and a further 30.5% of Web
queries contain only two terms. Thirdly, in most cases, the
reason why users search is that they have little or even no
knowledge about the topic they are searching for. In or-
der to find satisfactory answers, users have to rephrase their
queries constantly.

To overcome all of these problems, a valuable technique,
query suggestion, has been employed by some famous com-
mercial search engines, such as Yahoo! 1, Live Search2, Ask3

and Google4, to recommend relevant queries to users. How-
ever, due to the commercial reasons, few public papers have
been released to unveil the methods they adopt.

Typically, query suggestion is based on local (i.e., search
result sets) and global (i.e., thesauri) document analysis [31],
or anchor text analysis [19]. However, these traditional
methods have difficulty summarizing the latent meaning of
a Web document due to the huge noise embedded in each
Web page. Moreover, this noise is not easily removed by ma-
chine learning methods. In order to avoid these problems,
some additional data sources are likely to be very helpful to
improve the recommendation quality.

In fact, clickthrough data is an ideal source for mining rel-
evant queries. In the typical search scenario, a user initiates
a query, and submits it to a search engine. The search engine
returns a set of ranked related Web pages or documents to
this user. The user then clicks some pages of interest. Some
users even refine their queries in order to find the desired
information. Therefore, the collection of queries is likely to
well reflect the relatedness of the target Web pages [26].

1http://www.yahoo.com
2http://www.live.com
3http://www.ask.com
4http://www.google.com

709



Table 1: Samples of search engine clickthrough data

ID Query URL Rank Time
358 facebook http://www.facebook.com 1 2008-01-01 07:17:12
358 facebook http://en.wikipedia.org/wiki/Facebook 3 2008-01-01 07:19:18
3968 apple iphone http://www.apple.com/iphone/ 1 2008-01-01 07:20:36
1398 Michael Jordan http://www.youtube.com/watch?v=OFxXSXGd4hs 4 2008-01-01 07:30:18
... ... ... ... ...

Recently, as a valuable data source, clickthrough data
has been employed in some research work in order to op-
timize ranking of Web search results [1, 15, 16, 26, 29], im-
prove clustering accuracy [4, 30], or conduct other interest-
ing work [22, 24]. However, most of these references extract
only the query-URL bipartite graph of the clickthrough data
for analysis, and ignore the information of users who issued
the queries. Actually, users perform as the most important
role in the clickthrough data, since all the queries are issued
by the users, and which URLs to click are also decided by
the users. The connections between queries and URLs are
essentially bridged by different kinds of users. Moreover, if
two distinct users issued the similar set of queries, we can
assume that these two users are very similar since they have
similar information needs. From the above analysis, we can-
not ignore the users in the clickthrough data.

In this paper, by analyzing the clickthrough data, we de-
velop a query suggestion framework using two-level latent
semantic analysis. We first extract two bipartite graphs,
which are user-query and query-URL bipartite graphs. Then
we give solutions to the following two problems: (1) How to
learn the query latent feature space from these two bipartite
graphs, and (2) How to recommend semantically relevant
queries to users?

As to the first problem, we develop a joint matrix fac-
torization method which fuse user-query and query-URL bi-
partite graphs together to learn the low-dimensional query
latent feature space. Then we build a query graph based on
the representation of query space. In order to address the
second problem, we develop a novel, effective, and efficient
similarity propagation model, which not only suggests a list
of queries relevant to the queries submitted by users, but
also ranks the query list based on the similarity scores.

We evaluate our model for query suggestion using click-
through data of a commercial search engine. We evaluate
our model from different angles: (1) First, it is assessed
by a panel of three experts. (2) Then, we evaluate it in
terms of the ground truth extracted from the ODP5 (Open
Directory Project) database. (3) Finally, we measure the
efficiency of our online query suggestion algorithm by mea-
suring how much CPU time that it needs. The results show
that our method is both effective and efficient for improving
the recommendation quality, as well as generating semanti-
cally related queries to users.

The rest of the paper is organized as follows. We review
related work in Section 2. Section 3 describes the construc-
tion of two bipartite graphs, and proposes a joint matrix
factorization method of learning query latent feature space.
Section 4 presents the similarity propagation model as well
as the method for recommending queries. In Section 5, we
demonstrate the empirical analysis of our models and algo-

5http://www.dmoz.org

rithms. Finally, conclusions and future work are given in
Section 6.

2. RELATED WORK
Our work addresses two important research topics: query

suggestion or query recommendation, and clickthrough data
analysis.

2.1 Query Suggestion
The intention of query suggestion is similar to that of

query expansion [6, 7, 27, 31], query substitution [17] and
query refinement [19, 28], which all focus on improving the
queries submitted by users. Query suggestion is closely re-
lated to query expansion or query substitution which ex-
tends the original query with new search terms to narrow
the scope of the search. But different from query expansion,
query suggestion aims to suggest full queries that have been
formulated by previous users so that query integrity and co-
herence are preserved in the suggested queries [10]. Query
refinement is another closely-related notion, since the objec-
tive of query refinement is interactively recommending new
queries related to a particular query.

In [31], local and global documents are employed in query
expansion by applying the measure of global analysis to the
selection of query terms in local feedback. Although experi-
ment shows that this method is generally more effective than
global analysis, it performs worse than the query expansion
method proposed in [7] based on user interactions recorded
in user logs. In another approach reported in [19], anchor
texts are employed for the purpose of query refinement. This
work is based on the observation that Web queries and an-
chor texts are highly similar.

In [3] and [8], two query recommendation methods based
on clickthrough data are proposed. The main disadvantage
of these two algorithms is that they ignore the rich informa-
tion embedded in the query-click bipartite graph, and con-
sider only queries that appear in the query logs, potentially
losing the opportunity to recommend highly semantically
related queries to users.

In addition, query suggestion technology has also been
developed and applied into several other promising topics,
such as pay-for-performance search [11], question-answering
service [14], personalized search [6], etc.

2.2 Clickthrough Data Analysis
In the field of clickthrough data analysis, the most com-

mon usage is for optimizing Web search results or rank-
ings [1, 15, 16, 26, 29]. In [29], Web search logs are uti-
lized to effectively organize the clusters of search results by
(1) learning “interesting aspects” of a topic and (2) gen-
erating more meaningful cluster labels. In [16], a rank-
ing function is learned from the implicit feedback extracted

710



Figure 1: An example of two bipartite graphs

from search engine clickthrough data to provide personal-
ized search results for users. Besides ranking, clickthrough
data is also well studied in the query clustering problem [4,
30]. Query clustering is a process used to discover frequently
asked questions or most popular topics on a search engine.
This process is crucial for search engines based on question-
answering [30]. Recently, clickthrough data has been ana-
lyzed and applied to several interesting research topics, such
as Web query hierarchy building [24] and extraction of class
attributes [22].

3. MATRIX FACTORIZATION
Before suggesting queries to users, we first need to pre-

process clickthrough data. In this section, we first introduce
the structure of clickthrough data and how to construct two
bipartite graphs. Then we present a novel joint matrix fac-
torization method to learn the low-rank representation for
queries.

3.1 Construction of Bipartite Graph
Clickthrough data records the activities of Web users,

which reflects their interests and the latent semantic rela-
tionships between users and queries, as well as queries and
clicked Web documents. As shown in Table 1, each line
of clickthrough data has the following information: a user
ID (u), a query (q) issued by the user, a URL (l) on which
the user clicked, the rank (r) of that URL, and the time (t)
at which the query was submitted for search. Thus the
clickthrough data can be represented by a set of quintu-
ples 〈u, q, l, r, t〉. From a statistical point of view, the query
word set corresponding with a Web page contains human
knowledge on how the pages are related with their issued
queries [26]. Thus, in this paper, we utilize the relationships
of users and queries, as well as queries and Web pages for the
construction of two bipartite graphs containing three types
of vertices 〈u, q, l〉. The information of ranks and times is
ignored.

For the user-query bipartite graph, consider an undirected
bipartite graph Buq = (Vuq, Euq), where Vuq = U ∪ Q, U =
{u1, u2, ..., um}, and Q = {q1, q2, ..., qn}. Euq = {(ui, qj)|
there is an edge from ui to qj} is the set of all edges. The

edge (ui, qj) exists in this bipartite graph if and only if a
user ui issued a query qj .

For the query-URL bipartite graph, consider another undi-
rected bipartite graph Bql = (Vql, Eql), where Vql = Q ∪ L,
Q = {q1, q2, ..., qn}, and L = {l1, l2, ..., lp}. Eql = {(qi, lj)|
there is an edge from qi to lj} is the set of all edges. The
edge (qj , lk) exists if and only if a user ui clicked a URL lk
after issuing an query qj .

Figure 1 is an example of the representation of two bi-
partite graphs of clickthrough data. The left side rectangle
in dashed line contains the user-query bipartite graph Buq,
while the right side rectangle in dashed includes the query-
URL bipartite graph Bql.

In order to perform matrix factorization task on bipartite
graph Buq and Bql in the following sections, we transform
these two bipartite graphs into two matrices R and S, re-
spectively. For the m × n user-query matrix R, rows rep-
resent users, and columns represent queries. The value of
rij specifies how many times that user ui issued query qj .
From another aspect, this value indicates how much ui need
information about query qj . For the n × p query-URL ma-
trix S, similar to R, we employ sjk to quantify how many
times that a query qj has been connected to the URL lk by
different users. Here, “different” means that if a user click
the same query-URL pair several times, we only count it
once. This consideration can best discover the relationship
between queries and URLs.

3.2 Matrix Factorization for User-Query and
Query-URL Matrices

The idea of user-query matrix factorization is to derive a
high-quality low-dimensional feature representation U and
Q of users and queries based on analyzing the user-query
matrix R. Here, U is a d × m matrix, with each column
being the d-dimensional feature vector of a user, while Q is
a d × n matrix, with each column being the d-dimensional
feature vector of a query. Then we define the optimization
function as follows:

H(R, U, Q) = min
U,Q

1

2

m∑
i=1

n∑
j=1

IR
ij(rij − UT

i Qj)
2

+
αu

2
‖U‖2

F +
αq

2
‖Q‖2

F , (1)

where αu and αq are small positive numbers, ‖ · ‖2
F denotes

the Frobenius norm, and IR
ij is the indicator function that is

equal to 1 if user i issued query j and equal to 0 otherwise.
The optimization aims to approximate observed value rij by
UT

i Qj , a product of two low-rank vectors, with regulariza-
tion on U and Q. A local minimum of the objective function
given by Eq. (1) can be found by performing gradient de-
scent in U , Q.

In order to decrease the noise, we normalize the value of
rij by the maximum value of row i in user-query matrix
R, denoted as r∗ij . Now the value of r∗ij is in the range

of [0, 1]. For the multiplication UT
i Qj , we also bound it

into range [0, 1] by employing the logistic function g(x) =
1/(1 + exp(−x)). Hence, Eq. (1) is enhanced to

H(R, U, Q) = min
U,Q

1

2

m∑
i=1

n∑
j=1

IR
ij(r

∗
ij − g(UT

i Qj))
2

+
αu

2
‖U‖2

F +
αq

2
‖Q‖2

F . (2)

711



Now let us consider the query-URL matrix. Similar to
user-query matrix, we also use two d-dimensional matrices
Q and L to represent queries and URLs, respectively, where
L is a d×p matrix, with each column being the d-dimensional
feature vector of a URL. Similar to Eq. (2), the idea of query-
URL matrix factorization can be represented by

H(S, Q,L) = min
Q,L

1

2

n∑
j=1

p∑
k=1

IS
jk(s∗jk − g(QT

j Lk))2

+
αq

2
‖Q‖2

F +
αl

2
‖L‖2

F , (3)

where IS
jk is the indicator function that is equal to 1 if query

j is clicked to URL k and equal to 0 otherwise, αq and αl

are small positive numbers. Similar to user-query matrix,
s∗jk is normalized too.

3.3 Joint Matrix Factorization
In order to learn the latent query feature space from user-

query and query-URL bipartite graphs together, we fuse
Eq. (2) and Eq. (3) together by sharing the same query
feature space. Hence, we have

H(S, R, U,Q, L) =

1

2

n∑
j=1

p∑
k=1

IS
jk(s∗jk−g(QT

j Lk))2 +
αr

2

m∑
i=1

n∑
j=1

IR
ij(r

∗
ij−g(UT

i Qj))
2

+
αu

2
‖U‖2

F +
αq

2
‖Q‖2

F +
αl

2
‖L‖2

F , (4)

where αr is a small positive number to determine how much
information need to be taken from user-query matrix. A
local minimum of the objective function given by Eq.(4) can
be found by performing simple gradient descent in Ui, Qj

and Sk,

∂H
∂Ui

= αr

n∑
j=1

IR
ijg

′(UT
i Qj)(g(UT

i Qj) − r∗ij)Qj + αuUi,

∂H
∂Qj

=

p∑
k=1

IS
jkg′(QT

j Lk)(g(QT
j Lk) − s∗jk)Lk

+ αr

m∑
i=1

IR
ijg

′(UT
i Qj)(g(UT

i Qj) − r∗ij)Ui + αqQj ,

∂H
∂Lk

=
n∑

j=1

IS
jkg′(QT

j Lk)(g(QT
j Lk) − s∗jk)Qj + αlLk, (5)

where g′(x) is the derivative of logistic function g′(x) =
exp(x)/(1 + exp(x))2. In order to reduce the model com-
plexity, in all of the experiments we conduct in Section 5,
we set αu = αq = αl. Moreover, in all the experiments we
conduct in Section 5, when building the query graph, we use
fixed 20 dimensions to represent the query feature space.

Although recently, similar factor analysis methods have
been employed in [33, 34] for document retrieval and doc-
ument classification, our approach has essential difference
compared with these methods. Our method only fits the ob-
served data, and treat unobserved data unknown or missing,
while their methods fit unobserved data with zero, which will
potentially distort the latent feature space. Moreover, since
we only fit the observed data, our consideration can accel-
erate the computation time of the gradient descent, which
will be analyzed in the next section.

3.4 Complexity Analysis
Although the feature learning part is the offline computa-

tion in our query suggestion framework, we still need to ana-
lyze the complexity of it to show that our approach scalable
to very large datasets. The main computation of gradient
methods is evaluating the object function H and its gradi-
ents against variables. Because of the sparsity of matrices
R and S, the computational complexity of evaluating the
object function H is O(ρRd+ρSd), where ρR and ρS are the
numbers of nonzero entries in matrices R and S, respectively.
The computational complexities for gradients ∂H

∂U
, ∂H

∂Q
and

∂H
∂L

in Eq. (5) are O(ρRd), O(ρRd + ρSd) and O(ρSd), re-
spectively. Therefore, the total computational complexity
in one iteration is O(ρRd + ρSd), which indicates that the
computational time of our method is linear with respect to
the number of observations in the two sparse matrices. This
complexity analysis shows that our proposed approach is
very efficient and can scale to very large datasets.

4. SIMILARITY PROPAGATION AND
QUERY SUGGESTION

Let us first consider the following problem: given a query
q which is issued by a user u, how can we recommend a set
of latent semantically relevant queries to this user? A base-
line method is to recommend to u the top 5 similar queries
of q. This method is simple and seems natural, but since
all the queries of clickthrough data are user-generated con-
tents, they contain a lot of noise. Some people are good at
formulating queries, but some are not. Simply recommend-
ing q’s top similar queries has a high probability to intro-
duce noise to u. To address this problem, in this section, we
propose a novel similarity propagation and query suggestion
model, which not only provides semantically relevant queries
to users, but also ranks the results.

4.1 Similarity Propagation
Our similarity propagation model is modeled on heat dif-

fusion. Heat diffusion is a natural physical phenomenon. In
a medium, heat always flows from a position with high tem-
perature to a position with low temperature. Recently, heat
diffusion-based approaches have been successfully applied in
various domains such as classification and dimensionality re-
duction problems [5, 18, 20]. Reference [20] approximated
the heat kernel for a multinomial family in a closed form,
from which great improvements were obtained over the use
of Gaussian or linear kernels. In [18], Kondor et al. proposed
the use of a discrete diffusion kernel for categorical data,
and showed that the simple diffusion kernel on the hyper-
cube can result in good performance for such data. Belkin
et al. employed a heat kernel to construct the weight of a
neighborhood graph, and apply it to a nonlinear dimension-
ality reduction algorithm in [5]. In [32], Yang et al. proposed
a ranking algorithm known as the DiffusionRank using heat
diffusion process; simulations showed that it is very robust
to Web spamming.

The heat flows throughout a geometric manifold with ini-
tial conditions can be described by the following second or-
der differential equation:{

∂f(x,t)
∂t

− Δf(x, t) = 0,
f(x, 0) = f0(x),

(6)

where f(x, t) is the temperature at location x at time t,

712



beginning with an initial distribution f0(x) at time zero, and
Δf is the Laplace-Beltrami operator on a function f [20].

In this paper, we model similarity propagation as a process
of heat diffusion. First, we construct the query similarity
graph G based on the query feature space learned in Sec-
tion 3. Consider a directed weighted graph G = (V, E, W ),
where V is the vertex or query set, and V = {q1, q2, ..., qn}.
E = {(qi, qj)| there is an edge from qi to qj , and qj is in the
set of qi’s k nearest neighbors}. The edge (qi, qj) is consid-
ered as a pipe that connects nodes qi and qj . W = {wij |
similarity that associated with edge (qi, qj), or it can be in-
terpreted as the probability that edge (qi, qj) exists}. The
value fi(t) describes the heat at node qi at time t, beginning
from an initial distribution of heat given by fi(0) at time
zero. f(t) denotes the vector consisting of fi(t).

On a directed graph G(V, E, W ), in the pipe (qi, qj), heat
flows only from qi to qj . Suppose at time t, each node qi

receives RH = RH(i, j, t, Δt) amount of heat from qj during
a period of Δt. We have four assumptions: (1) RH should
be proportional to the time period Δt; (2) RH should be
proportional to the weight wji of the directed edge (qj , qi);
(3) RH should be proportional to the heat at node qj ; and
(4) RH is zero if there is no link from qj to qi. As a result, qi

will receive
∑

j:(qj ,qi)∈E σjwjifj(t)Δt amount of heat from

all its neighbors that points to it.
At the same time, node qi diffuses DH(i, t, Δt) amount of

heat to its subsequent nodes. We assume that: (1) The heat
DH(i, t,Δt) should be proportional to the time period Δt;
(2) The heat DH(i, t,Δt) should be proportional to the heat
at node qi; (3) Each node has the same ability to diffuse heat;
(4) The heat DH(i, t, Δt) should be distributed to its sub-
sequent nodes proportional to the weight on each edge. As
a result, node qi will diffuse (αfi(t)Δt/di)

∑
k:(qi,qk)∈E wik

amount of heat to its subsequent nodes, and each of its
subsequent nodes qk should receive αfi(t)wikΔt/di amount
of heat, where di is the outdegree of node i. Therefore
σj = α/dj . In the case that the outdegree of node i equals
zero, we assume that this node will not diffuse heat to oth-
ers. To sum up, the heat difference at node qi between time
t + Δt and t will be equal to the sum of the heat that it
receives, less what it diffuses. This is formulated as

fi(t + Δt) − fi(t)

Δt
=

α

⎛
⎝− τi

di
fi(t)

∑
k:(qi,qk)∈E

wik +
∑

j:(qj ,qi)∈E

wji

dj
fj(t)

⎞
⎠ , (7)

where τi is a flag to identify whether node i has any out-
links, such that τi = 0 if node i does not have any outlinks,
otherwise, τi = 1. Solving Eq. (7), we obtain

f(1) = eαHf(0), (8)

where

Hij =

⎧⎨
⎩

wji/dj , (qj , qi) ∈ E,
−(τi/di)

∑
k:(i,k)∈E wik, i = j,

0, otherwise.
(9)

Moreover, eαtH could be extended as:

eαtH = I + αtH +
α2t2

2!
H2 +

α3t3

3!
H3 + · · · . (10)

The matrix eαtH is called the diffusion kernel in the sense

that the heat diffusion process continues infinitely many
times from the initial heat diffusion.

Parameter α plays an important role in the diffusion pro-
cess. α is the thermal conductivity, i.e., the heat diffusion co-
efficient. If it has a high value, heat will diffuse very quickly.
Otherwise, heat will diffuse slowly. In the extreme case, if
it is infinitely large, then heat will diffuse from one node to
other nodes immediately.

In fact, there are random relations among different queries
even if these queries are unrelated in their literal meaning:
people of different cultures, genders, ages, and environments,
may implicitly link these queries together, but we do not
know these latent relations. To capture these relations, we
propose to add a uniform random relation among different
queries. More specifically, let γ denote the probability that
such phenomena happen, and (1 − γ) is the probability of
taking a “random jump”. Without any prior knowledge, we
set g = 1

n
1, where g is a uniform stochastic distribution

vector, 1 is the vector of all ones, and n is the number of
queries. Based on the above consideration, we modify our
model to

f(1) = eαRf(0), R = γH + (1 − γ)g1T . (11)

Following the setting of γ in PageRank [9, 21], we set γ =
0.85 in all of our experiments conducted in Section 5.

4.2 Query Suggestion
With the diffusion model proposed in the above section,

we can now make query suggestions by the following three
steps.

(1) First, for a given query q, we select a set of n queries
S = {q̂1, q̂2, ..., q̂n}, each of which contains at least one word
in common with query q, as the heat sources. Then we
employ Eq. (12) to calculate the similarities between q and
all of the queries in set S as the initial heat values.

fq̂i(0) =
|W(q) ∩W(q̂i)|
|W(q) ∪W(q̂i)| , (12)

where W(q) is the set of all the words that query q contains.
For an example, if a user submits the query “Sony”, and
suppose we have three previous queries containing “Sony”:
“Sony”, “Sony Electronics”, and “Sony Vaio Laptop”. We
treat these three queries as the heat sources, and the initial
heat values are 1, 1/2, and 1/3, respectively.

(2) Then, we employ Eq. (11) to start the similarity prop-
agation process, and calculate the value of each query in
vector f(1).

(3) Finally, we sort the results of f(1) in decreasing order,
and recommend the Top-N queries to the user who issued
the search task.

4.3 Complexity Analysis
Since query suggestion is computed online, the computa-

tional complexity of suggestion algorithm should be as small
as possible. Search engine users also do not have the patience
to wait for suggestions for a long time. In this section, we
will analyze the complexity of our proposed method, and
introduce some very efficient techniques to reduce the com-
plexity, and to ensure our algorithm is scalable for very large
query similarity graphs.

When the graph of the query similarity graph is very large,
a direct computation of eαH is very time-consuming. We

713



Table 2: Examples of LSQS Query Suggestion Results (k = 50)

Testing Queries
Suggestions

α = 10 α = 1000
Top 1 Top 2 Top 3 Top 4 Top 5

michael jordan michael jordan shoes michael jordan bio pictures of michael jordan nba playoff nba standings
travel travel insurance abc travel travel companions hotel tickets lowest air fare
java sun java java script java search sun microsystems inc virtual machine

global services ibm global services global technical services staffing services temporary agency manpower professional
walt disney land world of disney disney world orlando disney world theme park disneyland grand hotel disneyland in california

intel intel vs amd amd vs intel pentium d pentium centrino
job hunt jobs in maryland monster job jobs in mississippi work from home online monster board

photography photography classes portrait photography wedding photography adobe elements canon lens
internet explorer ms internet explorer internet explorer repair internet explorer upgrade microsoft com security update

fitness fitness magazine lifestyles family fitness fitness connection womens health magazine family fitness
m schumacher schumacher red bull racing formula one racing ferrari cars formula one
solar system solar system project solar system facts solar system planets planet jupiter mars facts
sunglasses replica sunglasses cheap sunglasses discount sunglasses safilo marhon

search engine audio search engine best search engine search engine optimization song lyrics search search by google
disease grovers disease liver disease morgellons disease colic in babies oklahoma vital records

pizzahut pizza hut menu pizza coupons pizza hut coupons papa johns pizza coupon papa johns
health care health care proxy universal health care free health care great west healthcare uhc

flower delivery global flower delivery online florist flowers online send flowers virtual flower
wedding wedding guide wedding reception ideas wedding decoration unity candle centerpiece ideas

astronomy astronomy magazine astronomy pic of the day star charts space pictures comet

adopt its discrete approximation to compute the heat diffu-
sion equation:

f(1) =
(
I +

α

P
R

)P

f(0), (13)

where P is a positive integer. In order to reduce the compu-
tational complexity, we introduce three techniques: (1) Since
f(0) is a vector, we iteratively calculate (I + α

P
R)P f(0) by

applying the operator (I + α
P
R) to f(0). (2) For matrix R,

we employ a data structure which only stores the informa-
tion of non-zero entries, since it is a very sparse matrix.
(3) For every heat source, we constrain it by only diffus-
ing heat to its neighbors within three steps, which indicates
that P = 3 in Eq. (13). This consideration is feasible since
a query far from the heat sources would be less similar than
the queries near the heat sources. Thus, since every query in
query similarity graph G has less than k neighbors (see the
definition of G in Section 4.1), the complexity of our query
suggestion algorithm is O(h · k3), where h is the number of
heat sources. This shows that our algorithm is very efficient
since k ∈ [20, 50] can generally suggest queries with very
good qualities, as shown in Section 5. We will show the im-
pact of parameters k and P in Section 5.4 and Section 5.5,
respectively.

5. EXPERIMENTAL EVALUATION
We conduct several experiments to measure the effective-

ness and efficiency of our proposed query suggestion frame-
work. In Section 5.1, we describe the statistics of the dataset
we utilize. Section 5.2 shows the recommendation results
generated by our online query suggestion algorithm of 20
sample queries. In Section 5.3, we design two measure meth-
ods to both manually and automatically evaluate the effec-
tiveness of our algorithm. At the same time, we compare our
Latent Semantic Query Suggestion (LSQS) method with the
query suggestion method using SimRank [13]. Section 5.4
analyzes the impact of parameters k. Finally, Section 5.6
presents the empirical analysis of the efficiency of our online
suggestion algorithm.

5.1 Data Collection
We construct our dataset based on the clickthrough data

of AOL search engine [23]. In total, this dataset spans 3
months from 01 March, 2006 to 31 May, 2006. There are a
total of 19,442,629 lines of clickthrough information, 657,426
unique user IDs, 4,802,520 unique queries, and 1,606,326
unique URLs.

This dataset is the raw data recorded by search engine,
and contains a lot of noise which will potentially affect the
effectiveness of our query suggestion algorithm. Hence, we
conduct a similar method employed in [29] to clean the raw
data. We clean the data by only keeping those frequent,
well-formatted, English queries (queries which only contain
characters ‘a’, ‘b’, ..., ‘z’, and space, and appear more than
3 times). After removing duplicates and cleaning, we get
19,2371 unique users, 224,165 unique queries and 343,302
unique URLs in our data collection in total. After the con-
struction of two bipartite graphs using this data collection,
we observe that a total of 5,220,660 edges exist in the user-
query bipartite graph, which indicates that each user has
at least issued 27.14 queries. we also observe that a total
of 1,333,798 edges exist in the query-URL bipartite graph,
which indicates that each query has 5.95 distinct clicks, and
each URL is clicked by 3.89 distinct queries. Moreover,
taken as a whole, this data collection has 69,937 unique
words which appear in all the queries.

5.2 Examples of Query Suggestion Results
Before presenting the query suggestion results, let us first

discuss some interesting characteristics of parameter α. As
mentioned in Section 4.1, α is the thermal conductivity, and
it plays an important role in the propagation process.

Following physical intuition, when α tends to infinity, the
heat diffusion process will become stable, and does not de-
pend on the initial temperature distribution, but only on the
graph structure, the same as in PageRank. On the other
hand, in the extreme case when α = 0, then no heat will
diffuse, and temperature distribution will remain exactly at
the initial values.

714



Table 3: Comparisons between LSQS and SimRank

Top 1 Top 2 Top 3 Top 4 Top 5

jaguar
LSQS jaguar cat jaguar commercial jaguar parts jaguarundi leopard

SimRank american black bear bottlenose dolphin leopard margay jaguarundi
apple

LSQS apple computers apple ipod apple diet apple vacations apple bottom
SimRank ipod troubleshooting apple quicktime apple ipods apple computers apple software

In the intermediate case, when α is small, the diffusion
results will depend more on the initial temperature than
the graph structure. In this case, queries suggested by our
algorithm will have higher literal similarities with the initial
query issued by a user. If α is relatively large, the results will
depend more on the query graph structure, the the latent
sematic relations hidden in the underlying query graph will
be uncovered.

Hence, in our experiments, in order to recommend more
latently similar queries to users, we combine the results gen-
erated from small α and large α together. Empirically, in
our dataset, we set the small α to 10 and the relatively large
α to 1000. For every test query, we conduct the similarity
propagation (i.e, heat diffusion) process twice, the first us-
ing α = 10 and another using α = 1000. Then we combine
the top 3 queries from the first diffusion process and the top
2 queries from the second diffusion process together, as the
final top 5 suggestion results which will be recommended to
users.

In total, we create a set of 50 queries as the testing queries,
covering a wide range of topics, such as Computers, Arts,
Business, and others. The recommendation results are shown
in Table 2. All the results in this table are generated based
on the query similarity graph built using parameter k = 50,
which indicates that in this directed graph, the outdegree of
each query is less than or equal to 50. Due to space limita-
tion, we only list the results of 20 testing queries generated
by our query suggestion method. All the queries are con-
verted to lowercase.

From the results, we observe that our suggestion algo-
rithm not only suggests queries which are literally similar to
the test queries, but also provides latent semantically rele-
vant recommendations. For instance, as to the results using
α = 1000, if the test query is a company, such as “intel”, we
suggest “pentium” and “centrino”, which are two most suc-
cessful sub-brands of semiconductor company Intel. If the
test query is a technique, such as “java”, we recommend“sun
microsystems inc” and “virtual machine”. The former sug-
gestion is the company who owns the Java Platform, and the
latter suggestion is a key feature of the Java programming
language. They both have high latent semantic relations to
query “java”. If the test query is a human name, such as
“m schumacher”, the most successful Formula 1 driver, the
latent semantic suggestions are “ferrari cars” and “formula
one”. All of the results show that our latent semantic query
suggestion algorithm has a promising future.

5.3 Evaluation of Suggestion Results
In this section, we first compare our Latent Semantic

Query Suggestion (LSQS) method with the approach us-
ing SimRank [13]. Then we employ two different metrics to
evaluate these two methods.

Table 4: Accuracy Comparisons

Accuracy LSQS SimRank

By Experts 0.8413 0.7101
By ODP 0.6823 0.5789

In the method of SimRank, we use the query-URL bi-
partite graph to calculate the similarities between queries.
Then based on the similarities, recommend the top-5 simi-
lar queries to users. SimRank based on the intuition that
two queries are very similar if they link to a lot of similar
URLs. On the other hand, two URLs are very similar if they
are clicked as a result of several similar queries. Based on
this intuition, in SimRank, we first calculate the similarities
between URLs, then we compute the similarities for queries
based on the similarities of URLs. We iteratively update the
similarities until they converge.

In Table 3, we show the query suggestions of LSQS and
SimRank using two ambiguous word “jaguar” and “apple”.
We can observe that when using “jaguar” as the keyword,
our LSQS algorithm can basically suggest more diverse and
relevant queries, while all the suggestions using SimRank
are different creatures. “apple” is another example to show
the suggestion results. SimRank only suggest queries that
related to the “apple company”, while our LSQS can suggest
more kinds of queries related to “apple”.

Evaluating the quality of semantic relations is difficult,
in particular for the contents that generated by users, as
there are no linguistic resources available. In this paper,
we conduct both a manual evaluation by a panel of three
human experts, and automatic evaluation based on the ODP
database.

In the evaluation by human experts, we ask all the experts
to rate the query suggestion results (we use the same 50
testing queries adopted in Section 5.2). We define a 6-point
scale (0, 0.2, 0.4, 0.6, 0.8, and 1) to measure the relevance
between the testing queries and the suggested queries, in
which 0 means “totally irrelevant”while 1 indicates “entirely
relevant”. The average values of evaluation results are shown
in Table 4. We observe that, when measuring the results by
human experts, our LSQS algorithm increases the accuracy
for about 18.47% than the SimRank algorithm.

For the automatic evaluation, we utilize the ODP database.
ODP, also known as dmoz, is the largest, most compre-
hensive human-edited directory of the Web. In this pa-
per, we adopt the same method used in [2] to evaluate the
quality of suggested queries. When a user types a query
in ODP, besides site matches, we can also find categories
matches in the form of paths between directories. More-
over, these categories are ordered by relevance. For instance,
the query “Java” would provide the hierarchical category

715



0 10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Parameter k

A
cc

ur
ac

y 
m

ea
su

re
d 

by
 h

um
an

 e
xp

er
ts

  

 

 

LSQS

(a) Evaluation by Experts

0 10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

Parameter k

A
cc

ur
ac

y 
m

ea
su

re
d 

by
 

O
D

P
 d

at
ab

as
e 

   
   

  

 

 

LSQS

(b) Evaluation by ODP Database

Figure 2: Impact of Parameter k (P = 3)

1 2 3 4 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Parameter P

A
cc

ur
ac

y 
m

ea
su

re
d 

by
 

hu
m

an
 e

xp
er

ts
   

   
  

 

 

LSQS

(a) Evaluation by Experts

1 2 3 4 5
0.5

0.55

0.6

0.65

0.7

0.75

Parameter P

A
cc

ur
ac

y 
m

ea
su

re
d 

by
 

O
D

P
 d

at
ab

as
e 

   
   

  

 

 

LSQS

(b) Evaluation by ODP Database

Figure 3: Impact of Parameter P (k = 50)

“Computers : Programming : Languages : Java”, where
“:” is used to separate different categories. One of the re-
sults for “Virtual Machine” would be “Computers : Pro-
gramming : Languages : Java : Implementations”. Hence,
to measure how related two queries are, we can use a no-
tion of similarity between the corresponding categories (as
provided by ODP). In particular, we measure the similar-
ity between two categories D and D′ as the length of their
longest common prefix F(D,D′) divided by the length of the
longest path between D and D′. More precisely, denoting
the length of a path with |D|, this similarity is defined as:
Sim(D,D′) = |F(D,D′)|/max{|D|, |D′|}. For instance, the
similarity between the two queries above is 4/5 since they
share the path “Computers : Programming : Languages :
Java” and the longest one is made of five directories. We
have evaluated the similarity between two queries by mea-
suring the similarity between the most similar categories of
the two queries, among the top 5 answers provided by ODP.

As shown in Table 4, we observe that, when evaluating us-
ing ODP database, our proposed LSQS algorithm increases
the suggestion accuracy for about 17.86% than the SimRank
algorithm. This indicates that our proposed query sugges-
tion algorithm is very effective.

5.4 Impact of Parameter k

The parameter k defines the maximal outdegree of each
query in the query similarity graph, and it performs as an
important role in terms of both effectiveness and efficiency.

Figure 2(a) shows the impact of parameter k on the accu-

racy measured by human experts. The X-axis is parameter
k, while the Y -axis is the accuracy measured by human ex-
perts. As increasing the number of k, the accuracy of LSQS
raises, until k = 50. If k > 50, the performance drops
a little bit. This is because when k > 50, and especially
when k = 100, the possibility that noisy queries are becom-
ing added into the query similarity graph is increased, which
will potentially affect the quality of query suggestion results.
Nevertheless, it still shows very good suggestion quality.

The evaluation results measured using ODP database is
shown in Figure 2(b). It generally has the same trend as
that observed in Figure 2(a). The main difference is that the
accuracy scores using ODP database are generally smaller
than the scores rated by the human experts. The reason is
straightforward: human experts have a better understanding
of the latent semantic similarities between two queries than
does the ODP measure method.

5.5 Impact of Parameter P

The parameter P indicates how far the heat diffuses. From
Figure 3, we observe that when P = 3, our algorithm achieves
the best performance, and then the suggestion quality de-
creases as the increase of P . This phenomenon is consistent
with the intuition that a query far from the heat sources
would be less similar with the original queries.

5.6 Evaluation of Efficiency
Efficiency is a very crucial measurement for evaluating

online algorithms, especially for online query suggestion al-
gorithm. If a query suggestion algorithm is not fast, then no

716



0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Parameter k

C
P

U
 t
im

e
 (

se
co

n
d
s)

 

 

LSQS

(a) P = 3

1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Parameter P

C
P

U
 t
im

e
 (

se
co

n
d
s)

 

 

LSQS

(b) k = 50

Figure 4: Efficiency Analysis

one would use it any more. We use the same testing set with
previous experiments containing 50 testing queries to evalu-
ate the efficiency of our proposed algorithm. The number of
diffusion sources for each testing query scales from only a few
to several hundreds. We record the average computational
time for online suggestions. The computational time in-
cludes the similarity propagation time and the ranking time
after the propagation. All the experiments are computed by
a personal computer consisting of an Intel Pentium D CPU
(3.0 GHz, Dual Core) and 1 Giga memory. The results are
shown in Figure 4. We observe that when k = 10, the av-
erage computational time is less than 0.01 second, and this
number only increases to 0.09 second if k = 50. Since k = 50
is the best parameter setting in terms of suggestion quality
in our data collection, we can draw the conclusion that our
algorithm is efficient.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a novel query suggestion frame-

work incorporating two parts: an offline computation part
and an online computation part. The offline computation
part employs a novel joint matrix factorization method us-
ing user-query and query-URL bipartite graphs. The on-
line part is implemented by a similarity propagation process
modeled on the heat diffusion process, and can recommend
both literally similar queries and latent semantically rele-
vant queries to search engine users. The simulation results
show that our proposed query suggestion framework is both
effective and efficient.

The user IDs in clickthrough data are only used for the
matrix factorization part. Actually, user ID information
is very useful for improving the recommendation qualities,
since some users can expertly formulate queries, while some
are not experts. Hence, in the future, we plan to incorpo-
rate the rank information of all the users in the clickthrough
data based on link information.

In Section 4.2, Eq. (12) is employed to calculate the initial
similarity scores for the diffusion sources. Different calcula-
tion methods will definitely generate different query recom-
mendation results. This is also a problem that is worth
investigating.

Finally, due to the fact that question-answering services
are becoming popular, we plan to develop a similar method

to that proposed in this paper to match the question issued
by a user to the most relevant question previously answered
by human experts.

7. ACKNOWLEDGMENTS
The authors appreciate the anonymous reviewers for their

extensive and informative comments for the improvement
of this paper. The work described in this paper was fully
supported by two grants from the Research Grants Coun-
cil of the Hong Kong Special Administrative Region, China
(Project No. CUHK4150/07E and GRF #412507).

8. REFERENCES

[1] E. Agichtein, E. Brill, and S. Dumais. Improving web
search ranking by incorporating user behavior
information. In SIGIR ’06: Proceedings of the 29th
annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 19–26, New York, NY, USA, 2006. ACM.

[2] R. Baeza-Yates and A. Tiberi. Extracting semantic
relations from query logs. In KDD ’07: Proceedings of
the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 76–85,
New York, NY, USA, 2007. ACM.

[3] R. A. Baeza-Yates, C. A. Hurtado, and M. Mendoza.
Query recommendation using query logs in search
engines. In EDBT Workshops, pages 588–596, 2004.

[4] D. Beeferman and A. Berger. Agglomerative clustering
of a search engine query log. In KDD ’00: Proceedings
of the sixth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages
407–416, New York, NY, USA, 2000. ACM.

[5] M. Belkin and P. Niyogi. Laplacian eigenmaps for
dimensionality reduction and data representation.
Neural Computation, 15(6):1373–1396, 2003.

[6] P. A. Chirita, C. S. Firan, and W. Nejdl. Personalized
query expansion for the web. In SIGIR ’07:
Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 7–14, New York, NY,
USA, 2007. ACM.

717



[7] H. Cui, J.-R. Wen, J.-Y. Nie, and W.-Y. Ma. Query
expansion by mining user logs. IEEE Trans. Knowl.
Data Eng., 15(4):829–839, 2003.

[8] G. Dupret and M. Mendoza. Automatic query
recommendation using click-through data. In IFIP
PPAI, pages 303–312, 2006.

[9] N. Eiron, K. S. McCurley, and J. A. Tomlin. Ranking
the web frontier. In WWW ’04: Proceedings of the
13th international conference on World Wide Web,
pages 309–318, New York, NY, USA, 2004. ACM.

[10] W. Gao, C. Niu, J.-Y. Nie, M. Zhou, J. Hu, K.-F.
Wong, and H.-W. Hon. Cross-lingual query suggestion
using query logs of different languages. In SIGIR ’07:
Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 463–470, New York, NY,
USA, 2007. ACM.

[11] D. Gleich and L. Zhukov. Svd subspace projections for
term suggestion ranking and clustering. In Technical
Report of Yahoo! Research Labs, 2004.

[12] B. J. Jansen, A. Spink, J. Bateman, and T. Saracevic.
Real life information retrieval: A study of user queries
on the web. SIGIR Forum, 32(1):5–17, 1998.

[13] G. Jeh and J. Widom. SimRank: a measure of
structural-context similarity. In KDD ’02: Proceedings
of the 8th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 538–543,
New York, NY, USA, 2002. ACM.

[14] J. Jeon, W. B. Croft, and J. H. Lee. Finding similar
questions in large question and answer archives. In
CIKM ’05: Proceedings of the 14th ACM international
conference on Information and knowledge
management, pages 84–90, New York, NY, USA, 2005.
ACM.

[15] T. Joachims. Optimizing search engines using
clickthrough data. In KDD ’02: Proceedings of the 8th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 133–142, New York,
NY, USA, 2002. ACM.

[16] T. Joachims and F. Radlinski. Search engines that
learn from implicit feedback. Computer, 40(8):34–40,
2007.

[17] R. Jones, B. Rey, O. Madani, and W. Greiner.
Generating query substitutions. In WWW ’06:
Proceedings of the 15th international conference on
World Wide Web, pages 387–396, New York, NY,
USA, 2006. ACM.

[18] R. I. Kondor and J. D. Lafferty. Diffusion kernels on
graphs and other discrete input spaces. In ICML ’02:
Proceedings of the 19th International Conference on
Machine Learning, pages 315–322, 2002.

[19] R. Kraft and J. Zien. Mining anchor text for query
refinement. In WWW ’04: Proceedings of the 13th
international conference on World Wide Web, pages
666–674, New York, NY, USA, 2004. ACM.

[20] J. D. Lafferty and G. Lebanon. Diffusion kernels on
statistical manifolds. Journal of Machine Learning
Research, 6:129–163, 2005.

[21] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
In Technical Report Paper SIDL-WP-1999-0120
(version of 11/11/1999), 1999.

[22] M. Pasca and B. V. Durme. What you seek is what
you get: Extraction of class attributes from query
logs. In IJCAI ’07: Proceedings of International Joint
Conferences on Artificial Intelligence, pages
2832–2837, 2007.

[23] G. Pass, A. Chowdhury, and C. Torgeson. A picture of
search. In The First International Conference on
Scalable Information Systems, Hong Kong, June, 2006.

[24] D. Shen, M. Qin, W. Chen, Q. Yang, and Z. Chen.
Mining web query hierarchies from clickthrough data.
In AAAI ’07: Proceedings of the 22th Conference on
Artificial Intelligence, pages 341–346, 2007.

[25] C. Silverstein, M. R. Henzinger, H. Marais, and
M. Moricz. Analysis of a very large web search engine
query log. SIGIR Forum, 33(1):6–12, 1999.

[26] J.-T. Sun, D. Shen, H.-J. Zeng, Q. Yang, Y. Lu, and
Z. Chen. Web-page summarization using clickthrough
data. In SIGIR ’05: Proceedings of the 28th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 194–201,
New York, NY, USA, 2005. ACM.

[27] M. Theobald, R. Schenkel, and G. Weikum. Efficient
and self-tuning incremental query expansion for top-k
query processing. In SIGIR ’05: Proceedings of the
28th annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 242–249, New York, NY, USA, 2005. ACM.

[28] B. Vélez, R. Weiss, M. A. Sheldon, and D. K. Gifford.
Fast and effective query refinement. SIGIR Forum,
31(SI):6–15.

[29] X. Wang and C. Zhai. Learn from web search logs to
organize search results. In SIGIR ’07: Proceedings of
the 30th annual international ACM SIGIR conference
on Research and development in information retrieval,
pages 87–94, New York, NY, USA, 2007. ACM.

[30] J.-R. Wen, J.-Y. Nie, and H. Zhang. Query clustering
using user logs. ACM Trans. Inf. Syst., 20(1):59–81,
2002.

[31] J. Xu and W. B. Croft. Query expansion using local
and global document analysis. In SIGIR ’96:
Proceedings of the 19th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 4–11, New York, NY,
USA, 1996. ACM.

[32] H. Yang, I. King, and M. R. Lyu. DiffusionRank: a
possible penicillin for web spamming. In SIGIR ’07:
Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 431–438, New York, NY,
USA, 2007. ACM.

[33] D. Zhou, S. Zhu, K. Yu, X. Song, B. L. Tseng, H. Zha,
and C. L. Giles. Learning multiple graphs for
document recommendations. In WWW ’08:
Proceedings of the 17th international conference on
World Wide Web, pages 141–150, New York, NY,
USA, 2008. ACM.

[34] S. Zhu, K. Yu, Y. Chi, and Y. Gong. Combining
content and link for classification using matrix
factorization. In SIGIR ’07: Proceedings of the 30th
annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 487–494, New York, NY, USA, 2007. ACM.

718



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


