Rank aggregation via nuclear norm minimization

David F. Gleich Purdue University @dgleich

Lek-Heng Lim University of Chicago

> KDD2011 San Diego, CA

Lek funded by NSF CAREER award (DMS-1057064); David funded by DOE John von Neumann and NSERC

Which is a better list of good DVDs?

Lord of the Rings 3: The Return of ... Lord of the Rings 3: The Return of ... Lord of the Rings 1: The Fellowship Lord of the Rings 1: The Fellowship Lord of the Rings 2: The Two Towers Lord of the Rings 2: The Two Towers Lost: Season 1 Star Wars V: Empire Strikes Back Battlestar Galactica: Season 1 Raiders of the Lost Ark Fullmetal Alchemist Star Wars IV: A New Hope Trailer Park Boys: Season 4 Shawshank Redemption Star Wars VI: Return of the Jedi Trailer Park Boys: Season 3 Lord of the Rings 3: Bonus DVD Tenchi Muyo! Shawshank Redemption The Godfather

> Standard rank aggregation (the mean rating)

Nuclear Norm based rank aggregation (not matrix completion on the netflix rating matrix)

Rank Aggregation

Given partial orders on subsets of items, rank aggregation is the problem of finding an overall ordering.

Voting Find the winning candidate

Program committees Find the best papers given reviews

Dining Find the best restaurant in San Diego (subject to a budget?)

Ranking is **really** hard

Ken Arrow

All rank aggregations involve some measure of compromise

John Kemeny

A good ranking is the "average" ranking under a permutation distance Dwork, Kumar, Naor, Sivikumar

NP hard to compute Kemeny's ranking

Given a hard problem, what do you do?

Numerically relax!

It'll probably be easier.

Embody chair John Cantrell (flickr)

Suppose we had scores

Let s_i be the score of the ith movie/song/paper/team to rank

Suppose we can compare the ith to jth:

$$Y_{i,j} = s_i - s_j$$

Then $\mathbf{Y} = \mathbf{s}\mathbf{e}^T - \mathbf{e}\mathbf{s}^T = -\mathbf{Y}^T$ is skew-symmetric, rank 2.

Also works for $Y_{i,j} = s_i/s_j$ with an extra log.

Numerical ranking is intimately intertwined with skew-symmetric matrices

Kemeny and Snell, Mathematical Models in Social Sciences (1978)

David F. Gleich (Purdue)

Using ratings as comparisons

Ratings induce various skew-symmetric matrices.

$$Y_{i,j} = \frac{\sum_{u} R_{u,i} - R_{u,j}}{|\{u \mid R_{u,i} \text{ and } R_{u,j} \text{ exist}\}|} \qquad \text{Arithmetic Mean}$$
$$Y_{i,j} = \log \frac{\Pr_u(R_{u,i} \ge R_{u,j})}{\Pr_u(R_{u,i} \le R_{u,j})} \qquad \text{Log-odds}$$

David 1988 – The Method of Paired Comparisons

David F. Gleich (Purdue)

KDD 2011

Extracting the scores

Given **Y** with all entries, then $\mathbf{s} = \frac{1}{n} \mathbf{Y} \mathbf{e}$ is the *Borda count*, the least-squares solution to **s**

How many $Y_{i,j}$ do we have? **Most.**

Do we *trust* all Y_{i,j}? Not really.

Netflix data 17k movies, 500k users, 100M ratings– 99.17% filled

Only partial info? **Complete it!**

Let $\hat{Y}_{i,j}$ be known for $(i, j) \in \Omega$ We trust these scores.

Goal Find the simplest skew-symmetric matrix that matches the data $\hat{Y}_{i,j}$

noiseless

minimize rank(
$$\mathbf{Y}$$
)
subject to $\mathbf{Y} = -\mathbf{Y}^T$
 $Y_{i,j} = \hat{Y}_{i,j}$ for all $(i, j) \in \Omega$

noisy

minimize
$$\sum_{(i,j)\in\Omega} (Y_{i,j} - \hat{Y}_{i,j})^2 + \lambda \operatorname{rank}(\mathbf{Y})$$

subject to $\mathbf{Y} = -\mathbf{Y}^T$

Both of these are NP-hard too.

KDD 2011

Solution Go Nuclear

From a French nuclear test in 1970, image from http://picdit.wordpress.com/2008/07/21/8-insane-nuclear-explosions/ David F. Gleich (Purdue) KDD 2011 I0

The **nuclear** norm

The analog of the 1-norm or ℓ_1 for matrices.

For vectors

For matrices

minimize $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 + \lambda \operatorname{nnz}(\mathbf{x})$ Let $\mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T$ be the SVD.

is NP-hard while

$$nnz(\mathbf{x}) \sim rank(\mathbf{A}) = nnz(\mathbf{\Sigma})$$

minimize $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 + \lambda \|\mathbf{x}\|_1$

 $\|\mathbf{x}\|_1 \sim \|\mathbf{A}\|_* = \|\operatorname{diag}(\mathbf{\Sigma})\|_1 = \sum \sigma_i$

is convex and gives the same answer "under appropriate circumstances" **||Y**|| ∗ best convex underestimator of rank on unit ball.

Only partial info? **Complete it!**

Let $\hat{Y}_{i,j}$ be known for $(i, j) \in \Omega$ We trust these scores.

Goal Find the simplest skew-symmetric matrix that matches the data $\hat{Y}_{i,j}$

Solving the nuclear norm problem

Use a LASSO formulation

 $\mathbf{b} = \operatorname{vec}(\hat{Y}_{i,j})$

minimize $\|\Omega(\mathbf{Y}) - \mathbf{b}\|$ subject to $\|\mathbf{Y}\|_* \le 2$ $\mathbf{Y} = -\mathbf{Y}^T$

Jain et al. propose SVP for this problem without $\mathbf{Y} = -\mathbf{Y}^{T}$

- 1. $\mathbf{Y}_0 = 0, t = 0$
- 2. REPEAT
- 3. $\boldsymbol{U}_t \boldsymbol{\Sigma}_t \boldsymbol{V}_t^T = \text{rank-k SVD of}$ $\Omega(\boldsymbol{Y}_t) - \eta(\Omega(\boldsymbol{Y}_t) - \mathbf{b})$

4.
$$\boldsymbol{Y}_{t+1} = \boldsymbol{U}_t \boldsymbol{\Sigma}_t \boldsymbol{V}_t^T$$

- 5. t = t + 1
- 6. UNTIL $\|(\Omega(\mathbf{Y}_t) \mathbf{b})\| < \varepsilon$

Skew-symmetric SVDs

Let $\mathbf{A} = -\mathbf{A}^T$ be an $n \times n$ skew-symmetric matrix with eigenvalues $i\lambda_1, -i\lambda_1, i\lambda_2, -i\lambda_2, \dots, i\lambda_j, -i\lambda_j$, where $\lambda_i > 0, \lambda_i \ge \lambda_{i+1}$ and $j = \lfloor n/2 \rfloor$. Then the SVD of \mathbf{A} is given by

for **U** and **V** given in the proof.

Proof Use the Murnaghan-Wintner form and the SVD of a 2x2 skew-symmetric block

This means that SVP will give us the skewsymmetric constraint "for free"

David F. Gleich (Purdue)

Exact recovery results

David Gross showed how to recover Hermitian matrices. *i.e. the conditions under which we get the exact* **s**

Note that *i***Y** is Hermitian. Thus our new result!

THEOREM 5. Let \mathbf{s} be centered, i.e., $\mathbf{s}^T \mathbf{e} = 0$. Let $\mathbf{Y} = \mathbf{s}\mathbf{e}^T - \mathbf{e}\mathbf{s}^T$ where $\theta = \max_i s_i^2/(\mathbf{s}^T \mathbf{s})$ and $\rho = ((\max_i s_i) - (\min_i s_i))/||\mathbf{s}||$. Also, let $\Omega \subset \mathcal{H}$ be a random set of elements with size $|\Omega| \ge O(2n\nu(1+\beta)(\log n)^2)$ where $\nu = \max((n\theta + 1)/4, n\rho^2)$. Then the solution of

 $\begin{array}{ll} \text{minimize} & \left\| \boldsymbol{X} \right\|_{*} \\ \text{subject to} & \operatorname{trace}(\boldsymbol{X}^{*}\boldsymbol{W}_{i}) = \operatorname{trace}((\imath\boldsymbol{Y})^{*}\boldsymbol{W}_{i}), \quad \boldsymbol{W}_{i} \in \Omega \end{array}$

is equal to $i\mathbf{Y}$ with probability at least $1 - n^{-\beta}$.

"nlog(n)"

Gross arXiv 2010.

Recovery Discussion and Experiments

Confession If $\mathbf{Y} = \mathbf{s}\mathbf{e}^T - \mathbf{e}\mathbf{s}^T$, then just look at differences from a connected set. Constants? Not very good.

The Ranking Algorithm

- 0. INPUT **R** (ratings data) and *c* (for trust on comparisons)
- 1. Compute **Y** from **R**
- 2. Discard entries with fewer than *c* comparisons
- 3. Set Ω , **b** to be indices and values of what's left
- 4. *U*, *S*, **V** T = SVP(Ω , *b*, 2)
- 5. OUTPUT $\mathbf{s} = (1/n) \mathbf{U} \mathbf{S} \mathbf{V}^T \mathbf{e}$

Synthetic Results

Construct an Item Response Theory model. Vary number of ratings per user and a noise/error level

David F. Gleich (Purdue)

Conclusions and Future Work

"aggregate, then complete"

Rank aggregation with the nuclear norm is

principled

easy to compute

The results are much better than simple approaches.

- 1. Compare against others
- 2. Noisy recovery! More realistic sampling.
- 3. Skew-symmetric Lanczos based SVD?

Google nuclear ranking gleich

https://dgleich.com/projects/skew-nuclear