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ABSTRACT

In this paper, we aim to provide a point-of-interests (POI)
recommendation service for the rapid growing location-based
social networks (LBSNs), e.g., Foursquare, Whrrl, etc. Our
idea is to explore user preference, social influence and geo-
graphical influence for POI recommendations. In addition
to deriving user preference based on user-based collabora-
tive filtering and exploring social influence from friends, we
put a special emphasis on geographical influence due to the
spatial clustering phenomenon exhibited in user check-in ac-
tivities of LBSNs. We argue that the geographical influence
among POIs plays an important role in user check-in behav-
iors and model it by power law distribution. Accordingly,
we develop a collaborative recommendation algorithm based
on geographical influence based on naive Bayesian. Further-
more, we propose a unified POI recommendation framework,
which fuses user preference to a POI with social influence
and geographical influence. Finally, we conduct a compre-
hensive performance evaluation over two large-scale datasets
collected from Foursquare and Whrrl. Experimental results
with these real datasets show that the unified collaborative
recommendation approach significantly outperforms a wide
spectrum of alternative recommendation approaches.
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H.3.3 [Information Search and Retrieval]: Information
Filtering; J.4 [Computer Applications]: Social and Be-
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General Terms

Algorithms, Experimentation.

Keywords

Collaborative Recommendation, Location-based Social Net-
works, Geographical Influence.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGIR ’11, July 24-28, 2011, Beijing, China.

Copyright 2011 ACM 978-1-4503-0757-4/11/07 ...$10.00.

325

2dlee @cse.ust.hk

1. INTRODUCTION

With the rapid development of mobile devices, wireless
networks and Web 2.0 technology, a number of location-
based social networking services, e.g., Loopt!, Brightkite?,
Foursquare® and Whrrl?, have emerged in recent years.®
These LBSNs allow users to establish cyber links to their
friends or other users, and share tips and experiences of their
visits to plentiful point-of-interests (POIs), e.g., restaurants,
stores, cinema theaters, etc. In LBSNs, a POI recommen-
dation service, aiming at recommending new POls to users
in order to help them explore new places and know their
cities better, is an essential function that has received a lot
of research momentum recently [25, 26].

Figure 1: Graph representation of user-user friend-
ship and user-location check-in activity in a LBSN

Indeed, facilitating POI recommendations in LBSNs is a
promising and interesting research problem because valuable
information such as the “cyber” connections among users
as well as the “physical” interactions between users and lo-
cations have been captured in the systems. Nevertheless,
these information have not been fully explored in prior re-
search studies relevant to POI recommendations. For ex-
ample, Zheng et. al. have extracted visited locations from
GPS trajectory logs of mobile users for location recommen-
dations [25, 26]. However, their studies consider neither the
social links between users nor the interactions between users
and locations in the recommendation process. In this paper,
we aim to exploit the unique geographical implications em-
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SThese services are often referred as location based social
networks and thus abbreviated as LBSNs in the paper.
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bedded in users’ interactions with locations, in addition to
applying the social influence from users’ friends, for POI
recommendations in LBSNs.

Users and POlIs are two essential types of entities in LB-
SNs. As illustrated in Figure 1, users in an LBSN, de-
noted as w1, uz2,us,us, are interconnected via social links
to form a user social network. Moreover, POIls, denoted as
l1,1l2,...,ls, are connected with users via their “check-in” ac-
tivities, which generally reflects the users’ tastes on various
POIs. Finally, as also logically illustrated in the figure, the
POIs, geocoded by (longitude, latitude), are constrained ge-
ographically. To make recommendations of POIs to users,
obviously the records of previous user check-in activities are
very useful. With the availability of such information in
LBSNs, an intuitive idea for supporting POI recommenda-
tions is to employ the conventional collaborative filtering
(CF) techniques by treating POIs as the “items” in many
successful CF-based recommender systems. The basic argu-
ment for this idea is that users’ tastes can be deduced by
other users who exhibit similar visiting behaviors to POIs
in previous check-in activities. Thus, user-based or item-
based collaborative filtering techniques may be applicable
to POI recommendations. Additionally, the social network
of users, which is handily available in the LBSN, can be
explored to enhance performance of POI recommendations.
Recent studies have argued that social friends tend to share
common interests and thus can be used in the process of
collaborative filtering for making recommendations [11, 12,
2, 13, 24].

While the ideas above aim to explore the essential infor-
mation available in LBSNs; i.e.; the user-location interactiv-
ities and user-user social links, we argue that the geographi-
cal influence naturally existing in the activities of users and
their geographical proximities cannot be ignored. According
to Tobler’s First Law of Geography “Everything is related
to everything else, but near things are more related than
distant things” [19]. Thus, a user intuitively tends to visit
nearby POIs. There are two major implications that can be
derived from this intuition for POI recommendations: (1)
people tend to visit POIs close to their homes or offices; and
(2) people may be interested in exploring nearby POIs of a
POI that they are in favor of, even if it is far away from
home, e.g., a user may explore some restaurants and shops
around Time Square when she goes there for a broadway
show. Due to the geographical nature of the LBSNs, we
believe the geographical influence between users and POlIs
as well as that amongst POIs are as important as the so-
cial influence amongst users, which as indicated earlier may
play a positive role for supporting POI recommendations
in LBSNs. In short, we are interested in studying the im-
pact of geographical influence and social influence on POI
recommendations in LBSNs.

Our approach for supporting POI recommendation ser-
vice in LBSNs is to develop effective collaborative recom-
mendation techniques that discover POls of users’ interests
by incorporating the three complementary factors: i) user
preference of POIs; ii) social influence; and iii) geographical
influence. Notice that users’ implicit preferences of POIs can
be derived from their check-in activities on POIs. By con-
sidering two users who have checked into a lot of common
POIs as similar users, we may discover the implicit prefer-
ence of a user through the previous check-in activities of her
similar users. Recall the example in Figure 1. Since u; and
u2 shares many commonly visited POIs, they may be con-
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sidered as similar users who are assumed to share similar
check-in behaviors, i.e., preference of POIs. As a result, [1
is a good candidate for recommendation to user us since u1
has visited this POI before. On the other hand, social influ-
ence of friends can be incorporated in the recommendation
process. For example, when considering l4 as a recommen-
dations candidate for u1, the social influence of w4 on u; may
contribute to the decision making. Finally, the geographical
influence of POIs on nearby POIs can be considered. As
shown in the example, since uz has visited l2 and I3 before,
their nearby POls [; and l5 may be considered positively
due to the geographical influence.

As discussed earlier, the conventional item recommenda-
tion techniques based on user preference [9, 18, 14, 15, 13]
and social influence [12, 13] seem to be applicable for POI
recommendation. Nevertheless, their effectiveness on POI
recommendations in LBSNs have not been studied. Most
importantly, the idea of incorporating the geographical in-
fluence between POls, which is refreshing and promising for
POI recommendation, has not been investigated previously.
In this paper, we examine the “geographical clustering phe-
nomenon” of user check-in activities in LBSNs and propose
a power-law probabilistic model to capture geographical in-
fluence among POIs. Accordingly, we realize the targeted
collaborative POI recommendation service for LBSNs by in-
corporating the geographical influence of POIs via Bayesian
theory. Finally, we propose a unified location recommenda-
tion framework to fuse user preference to POIs along with
the social influence among users and the geographical influ-
ence among POls.

In summary, the contributions we made in this research
work are four-fold.

e We study the problem of supporting POI recommenda-
tion in location-based social networking systems (LB-
SNs), where POIs are uniquely different from other
recommended items in conventional recommender sys-
tems because of the fact that “physical” interactions
are required between users and POIs. Hence, we in-
vestigate the geographical influence between POls and
propose to incorporate geographical influence along
with user preference and social influence in the col-
laborative recommendation techniques we develop for
POI recommendations in LBSNs.

e We develop a novel idea to capture the geographical
influence by investigating the geographical clustering
phenomenon of user check-in activities in LBSNs. We
propose to employ a power-law probabilistic model to
capture the geographical influence among POIls, and
realize our collaborative POI recommendations based
on geographical influence via naive Bayesian method.

e We propose a unified recommendation framework for
POI recommendations by fusing user preference, social
influence and geographical influence to devise a check-
in probability prediction model for a given user to visit
a POL

e Finally, we evaluate the proposed recommendation tech-
nique over large-scale datasets we collected from two
well known LBSNs, i.e., Foursquare and Whrrl. Exper-
imental results show that our proposed collaborative
recommendation technique exhibits superior POI rec-
ommendation performance against other approaches.
Important findings of our evaluation are summarized
below.



— Geographical influence shows a more significant
impact on the effectiveness of POI recommen-
dations in LBSNs than social influence, improv-
ing the recommendation performance by at least
13.8% against social influence.

— Random Walk and Restart [12] may not be suit-
able for POI recommendation in LBSNs. Based
on our analysis over the real data and the ex-
perimental results, we find that friends still re-
flect significantly different preferences and social
tie cannot reflect the similarity of check-in behav-
ior among users.

— Item-based collaborative filtering do not provide
results comparable to user-based collaborative fil-
tering, because many POlIs, in the current state
of LBSNs, only show a few user check-ins. Thus
item similarity is not as accurate as user similar-

ity.

The rest of this paper is organized as follows. In Section 2,
we provide some background on conventional recommenda-
tion techniques according to user’s own preference and so-
cial influence and review related works in the literature. In
Section 3, we describe the location recommendation process
according to geographical influence. In Section 4, we pro-
pose a location recommendation framework, which unifies all
three factors together. In Section 5, we perform an empirical
study on the different location recommendation algorithms
upon two large scale datasets crawled from Foursquare and
Whrrl, respectively. Finally, in Section 6, we conclude the

paper.

2. PRELIMINARIES

In this section, we first provide background on user-based

collaborative filtering and friend-based recommendation, which

serve as the building blocks in our fusion approach to exploit
user preference and social influence. Next we review some
relevant studies in recommender systems.

2.1 User-based Collaborative Filtering

Based on collaborative filtering, users’ implicit preference
can be discovered by aggregating the behaviors of similar
users. Let U and L denote the user set and the POI set in an
LBSN, which keeps track of check-in activities in the system.
The check-in activity a user u; € U has at a POI [; € L is
denoted as ¢;,; where ¢; ; = 1 represents u; has a check-in at
l; before and ¢; ; = 0 means there is no record of u; visiting
l;. These recorded user check-in activities at POIs are thus
used to discover a user’s implicit preference of a POI, which
can be represented as a probability to predict how likely
the user would like to have a check-in at an unvisited POI.
We denote this prediction by ¢; ; and obtain this predicted
check-in probability of u; to [; as follows.

A 2w, Witk * Chyj
Cij= —w——" (1)
wy, Wi,k
where w; i, is the similarity weight between users u; and uy.
To compute the similarity weights w; , between users u;
and wuy, several similarity measures can be adopted, e.g.,
cosine similarity and Pearson correlation. In our study, we
choose cosine similarity due to its simplicity. The cosine

similarity weight between users u; and wuj, denoted as wg ks
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is defined as follows.
2, er CingChig
Wik = ‘ 2 2
\/ZlJeL Cij \/leeL Ck,j
2.2 Friend-based Collaborative Filtering

Friends tend to have similar behavior because they are
friends and might share a lot of common interests, thus lead-
ing to correlated check-in behaviors [15, 13]. For example,
two friends may hang out to see a movie together sometimes,
or a user may go to a restaurant highly recommended by her
friends. All those possible reasons suggest that friends might
provide good recommendation for a given user due to their
potential correlated check-in behavior. In other words, we
can turn to user’s friends for recommendation, and we call
it recommendation based social influence from friends.

POI recommendations based on social influence can be
realized by the friend-based collaborative filtering approach
as described in [13].

1y = S Sl oy ®)
N ZukeFi Sjkai
where ¢; ; is the predicted check-in probability of w; at [;,
F; is the friends set of w;, and Sy, is directional social
influence weight uy has on u; [14, 15, 13].

On the one hand, we think friends who have closer social
tie may have better trust in terms of their recommendation;
on the other hand, friends who show more similar check-
in behavior should have more similar tastes with the active
user, thus suggestions from those friends are more worthy.
Thus, in the following, we introduce how to derive the social
influence weight by combining the above two aspects.

One way to derive the social influence weight between two
friends is based on both of their social connections and sim-
ilarity of their check-in activities [12].

|kaFi| |LkmL1|

Shea=n 150w T Lo “

where 7 is a tuning parameter ranging within [0, 1], and

Fi and Ly denote the friend set and POI set of user wug,
respectively.®

Another way of measurement is via the Random Walk
with Restart (RWR) technique [20] over the graph that cap-
tures both the social connections among users as well as the
check-in activities between users and POIs [24]. Starting
from a node k, an RWR is performed by randomly following
a link to another node at each step. Notice that there is
a probability a in every step to restart at node k. By it-
erating RWR repeatedly until the whole process converges,
a stationary (or steady-state) probability for each node can
be obtained. The stationary probabilities of nodes give us a
long-term visit rate for each user node (e.g., user u;) given a
bias towards a particular starting node (e.g. user uy). This
can be interpreted as the social influence weight user uy have
on uj, i.e., SIj ;.

2.3 Related Work

Content-based and collaborative filtering techniques are
two widely adopted approaches for recommender systems [1].
A content-based system selects items for recommendation
based on the similarity between item content (e.g., key-
words/tags describing the items) and user profile [3, 8, 17].

5The friend set of a user refers to the socially connected
friends of the user in the LBSN, while her POI set refers to
the set of POIs she has check-in activities.



Since it mainly relies on dictionary-bound relations between
the terms used in user profiles and item content, implicit
associations between users are not considered.

The collaborative filtering systems are divided into two
categories, i.e., memory-based and model-based. Memory-
based systems can be further classified into user-based and

item-based systems. For user-based systems [9], the simi-
larity between all pairs of users is computed based on their
ratings on associated items using some selected similarity
measurement such as cosine similarity or Pearson correla-
tion. Based on the user similarity, missing rating corre-
sponding to a given user-item pair can be derived by com-
puting a weighted combination of the ratings upon the same
item from similar users. For item-based systems [18], instead
of using similarity between users to predict missing rating,
predications are made by finding similarly rated items first
in order to compute a weighted combination of user ratings
upon similar items. On the other hand, the model-based
collaborative filtering systems assume that users may form
clusters based on their similar behavior in rating items. A
model can be learned based on patterns recognized in the
rating behaviors of users using machine learning techniques
such as clustering algorithms or Bayesian networks [5, 23].

Under the context of social networking systems, social
friendship is shown to be beneficial for collaborative filtering
based recommendation systems, e.g., memory-based [11, 12]
and random walk based [2, 11, 12]. These works argue that
social friends tend to share common interests and thus their
relationships should be considered in the process of collab-
orative filtering. Random walk captures a social network as
a graph with probabilistic weighted links to represent social
relations and thus is able to accurately predict user prefer-
ences to items [12] and social influence to other users [24].
On the other hand, social friendship has also been explored
in the model-based systems [14, 13]. These work mostly
focus on conventional recommendation systems for recom-
mending items such as movies.

Recently, location recommendation and mining has at-
tracted a lot of attentions from the research community [27,
26, 7, 25, 22]. Among them, [27, 26, 7, 25] are mainly fo-
cused on GPS datasets which do not consider social rela-
tionships among users. In these works, unfortunately, the
geographical influence among POls are not explored [27, 26,
25]. Recently, the correlation of locations in GPS trajecto-
ries are explored [7]. In this work, however, locations are
still treated as conventional items. As such, the correlations
between locations are established through users’ activities
instead of their geographical influence. [22] is the first re-
search to provide location recommendations services in LB-
SNs, but with the goal of improving efficiency of location
recommendation.

Our study differentiates itself from all these prior works
in four aspects: i) the application domain of location-based
social networking systems, embracing both social and geo-
graphical features in the captured data, is new and unique;
ii) the study of social influence and geographical influence in
recommender systems for LBSNs is unexplored previously;
iii) the proposal of unified collaborative recommendation
approach, which incorporates geographical influence along
with user preference and social influence, is new and inno-
vative; iv) two large-scale real dataset collected from well
known LBSNs, namely, Foursquare and Whrrl datasets, are
adopted for performance evaluation.
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Figure 2: Geographical influence probability distri-
bution

3. RECOMMENDATION VIA GEOGRAPH-
ICAL INFLUENCE

As mentioned earlier, the check-in activities of users in
LBSNs record their physical interactions (i.e., visits) at POIs,
Thus, we argue that the geographical proximities of POlIs
have a significant influence on users’ check-in behavior. To
better understand this geographical influence on users, we
perform a spatial analysis on real datasets of user check-in

10

10°

activities collected from two well known LBSNs, i.e., Foursquare

and Whrrl. Specifically, we aim to study the implication of
distance on user check-in behavior by measuring how likely
two of a user’s check-in POIs are within a given distance.
To obtain this measurement, we calculate the distances be-
tween all pairs of POIs that a user has checked in and plot
a histogram (actually probability density function) over the
distance of POIs checked in by the same user. As shown in
Figure 2, a significant percentage of POIs pairs checked in
by the same user appears to be within short distance, indi-
cating a geographical clustering phenomenon in user check-in
activities.” This phenomenon may be attributed to the ge-
ographical influence which may be intuitively explained by
the following tendencies: (1) people tend to visit POIs close
to their homes or offices; and (2) people may be interested
in exploring nearby POIs of a POI that they are in favor
of, even if it is far away from home. As a result, the POIs
visited by the same user tend to be clustered geographically.
We believe that this geographical clustering phenomenon in
user check-in activities can be exploited for POI recommen-
dations in LBSNs. Thus, in the following, we study and
model this geographical influence on user check-in behavior
at POlIs, aiming to utilize it in POI recommendations.

To achieve our goal, we would like to compute the like-
lihood that a user w; would check in both POI I; and .
Based on Figure 2, we intuitively think the check-in proba-
bility may follow the power-law distribution. Nevertheless,
we observe that the check-in probability of POI pairs vis-
ited by the same person over distance is not a standard
power-law distribution. Even though the left part of the
figure decreases linearly (i.e., decreases exponentially in reg-
ular scale) and thus fits power-law distribution very well, the
right part may sometimes deviate irregularly (i.e., the prob-
ability is high at some points). A reasonable explanation is
that users may travel to different places and thus create mul-
tiple check-in spatial clusters. Generally speaking, the fact
that a user’s check-in POIs tend to be in a short distance is
confirmed in our data analysis. As mentioned earlier, nearby
POIs are more related to each other, which exhibits strong
geographical influence. Moreover, the linear portion of the

"Note that the figure has been shown in log-log scale.



plot in Figure 2 covers the majority (90%) of the POI pairs.
Thus, we propose to use power law distribution to model
the check-in probability to the distance between two POls
visited by the same user as follows.

y=axa’ (5)
where a and b are parameters of a power-law distribution,
and x and y refer to the distance between two POls visited
by the same user and its check-in probability, respectively.

Equation (5) can transformed into Equation (6) in “log-
log” scale to fit a linear model.

logy = wo + w1 log (6)
Thus, the original power-law distribution can be recovered
via the following equation.

a=2"° b=w: (7)

Hence, we can simply apply a linear curve fitting method

to realize regression as follows. More specifically, let vy’ =
logy and z’ = log z. We shall fit data as follows

y' (2", w) = wo + w1 -2’ (8)
where wo and w; are the linear coefficients, collectively de-
noted by w. In other words, the model can be learned in
form of w. In order to avoid over-fitting, we approach the
weight coefficients by least square error method and add a
penalty term (i.e., regularization term) to discourage the
coefficients from reaching large values as below [6].

Blw) = 3 Sy @how) — ta} + I 9)

where F(w) denotes the loss function, N presents the cardi-
nality of input dataset, ¢, is the ground truth corresponding
to x,,, and X is the regularization term.

Accordingly, the optimal values of a and b form the setting
which minimizes the loss function E(w) as below.

opt{a,b} = arg rgngl E(w) (10)

In the following, we introduce a collaborative recommen-
dation method based on the naive Bayesian method to real-
ize POI recommendation in LBSNs. For a given user u; and
its visited POI set L;, we define the probability that u; has
check-in activities at all locations in L; by considering the
pair-wise distances of POIs in L; as follows.

Pr[Li]| = 11 Prid(lm, )]
I, ln€L; Am#n
where d(ln, 1) denotes the distance between POIs I,, and
ln, and Pr[d(lm,1,)] = a X d(lm,1,)® which follows the pow-
law distribution model we obtained above. Note that here
we assume the distances of POI pairs are independent.

Thus, for a given POI [; (i.e., the recommendation can-
didate), user u;, and her visited POI set L;, we have the
likelihood probability for u; to check in l; as follows.

P?“[lj U LZ]
PT[ZJ|L1] - P’I’[Li]
PrL] x T, .y, Prid(,1,)

11 Priad;,iy)]

lyeL;

(11)

(12)

To make a POI recommendation, we sort all the POIs in
L — L; in accordance with their Pr[l;|L;] (I; € L — L;) to
return the POI with the highest Pr[l;|L;] to the user.
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4. UNIFIED COLLABORATIVE POI REC-
OMMENDATION

In this section, we propose a unified framework to perform
collaborative recommendation, which fuses ideas factors of
user preference, social influence and geographical influence
in POI recommendation. Notice that, different from pre-
dicting a POI’s rating, we aim to return a ranked list of
candidate POIs, which is very similar to conventional infor-
mation retrieval [4].

4.1 Fusion Framework

As discussed, each factor, i.e., user preference, social in-
fluence or geographical influence, can be utilized to realize
POI recommendation. Thus, we intuitively can implement
three different recommender systems. We propose to use a
linear fusion framework to integrate ranked lists provided
by the three above-mentioned recommenders into the final
ranked list [4, 21]. By integrating multiple recommenders,
top-ranked POIs from each of the recommendation algo-
rithms could increase both recall (due to the different highly
ranked POIs) and precision (giving that the recommender
systems have a high density of user-preferred POIs on top
of the results lists.

Let S;,; denote the check-in probability score of user u; at
POI [, i.e., the more likely u; has a check-in activity at [;,
the larger S;; is. Let Si;, Sj; and S}, denote the check-
in probability scores of user u; at POI [;, corresponding
to recommender systems based on user preference, social
influence and geographical influence, respectively. We have
Si,; as follows.

Si’j = (1 - — ﬁ)s;fj + OCSZ]' + ﬂSZ] (13)
where the two weighting parameters a and 8 (0 < a+8 < 1)
denote the relative importance of social influence and ge-
ographical influence comparing to user preference. Here
o = 1 states that S; ; depends completely on the prediction
based on social influence; = 1 states that S;; depends
completely on the predication based on geographical influ-
ence; while a = 3 = 0 states that S; ; counts only on user
preference.

4.2 Check-in Probability Score Estimation

According to the above fusion framework, in order to esti-
mate the check-in probability score S; ;, we need to predict
the check-in probability score of S};, S7, and Sﬁ ; corre-
sponding to user preference, social influence and geograph-
ical influence, respectively. Accordingly, we estimate the
check-in probability p;';, p7 ; and pf!j for a user u; to visit a
POI I; in order to obtain Sj!;, S;; and S7;, respectively.

First, the predication of p;’; can be estimated based on the
idea of user-based collaborative filtering as discussed before.
More specifically, we utilize the behavior of similar users to
realize the predication as Equation (1). Thus we have

Dy Wik " Chyj

Pij = (14)

Wi,k

wp ’

where w; i, is the similarity weight between users u; and wy.
Similarly, the prediction of p;; can be estimated based

on based on the idea of friend-based collaborative filtering.

Thus, according to Equation (3), we have
Duper; ki Cr

Zuk cF; Slk!z
where Fj is the friends set of u;, Sy, ; is the weight measuring
social influence from uy, to w;.

p;j = (15)



Finally, p{ ; can be directly obtained from Equation (12)
pl; = Pri|Lil = [] Priac;,i)] (16)

lyeL;
where L; is the visited POI set of u;, and d(l;,1,) denotes
the distance between POIs [; and [,.
After we get the check-in probability estimation, we ob-
tain the corresponding scores as follows.

u
u _ Piy u _ v
Si; = > where Z;" = max;;er—r,{pi’; }
7
P
s _ Pig s i
Sii = 75 where Z7 = max; er—r,{p; ;} (17)
i
pe.
g _ Pij g _ 9
i = e where 77 = maXl]EL—Li{pi,j}
i

where Zi*, Z7 and Z{ are normalization terms.

S. EMPIRICAL EVALUATION

In this section, we design and conduct several experiments
to compare the recommendation qualities of the proposed
collaborative recommendation algorithms with some state-
of-the-art recommendation techniques, including collabora-
tive filtering and random walk with restart, and to investi-
gate several interesting questions. Specifically, the design of
the experiments aims to achieve the following goals. (1) As
our proposed method factors in user preference, social in-
fluence from friends and geographical influence from nearby
location, we intent to study parameters « and (5 to under-
stand the roles/weights of the above-mentioned factors in
obtaining optimal recommendations. (2) We intend to val-
idate our ideas by comparing the effectiveness of the pro-
posed approach with other state-of-the-art techniques. (3)
Due to the growing research interests in social influence from
friends, we intend to further study the similarity of check-in
behaviors in terms of the strength of “social ties” between
two friends. (4) In our proposal, user-based collaborative
filtering approach has been employed to discover user pref-
erence. We intend to explore the feasibility and necessity
of integrating item-based collaborative filtering approach to
further enhance the recommendation quality. (5) We would
like to understand how data sparsity may affect POI rec-
ommendations in LBSNs. (6) How well our techniques deal
with cold start users, who do not have many check-in records
for discovery of their interests [10].

5.1 Dataset Description

We crawled the websites of Foursquare and Whrrl, two
of the most representative LBSNs, for a month to collect
two datasets consisting of 153,577 users and 96,229 POls
in Foursquare, and 5,892 users and 53,432 POIs in Whrrl,
respectively. Our performance evaluation is conducted on
these two large-scale real datasets. After summarizing the
check-in records, we get the user-POI check-in matrix densi-
ties as 4.24 x 10~° for Foursquare dataset and 2.72x 104 for
Whrrl datasets, respectively. Note that, the effectiveness of
recommendation service for sparse dataset (i.e., low density
user-POI check-in matrix) is usually not high due to the lim-
ited information provided by the dataset. For example, the
reported precision in [12] is 0.17 over a pre-prossed dataset
with 7.8 x 10™* density. Thus, in our experiments, we focus
on observing the relative performance of algorithms instead
of their absolute effectiveness measures, which we expect to
improve as the number of LBSN users continues to grow and
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more check-in activities are logged. To facilitate our evalu-
ation, for each individual user in the datasets, we randomly
mark off z% (xz = 10,30, 50 (with 30 as the default value) of
all POIs visited by the user. In the experiments, the eval-
uated POI recommendation algorithms are used to recover
the missing user-POI pairs that have been marked off.

5.2 Performance Metrics

A POI recommendation algorithm under evaluation com-
putes a ranking score for each candidate POI (i.e., POI that
user has not visited) and returns the top- N highest ranked
POIs as recommendations to a targeted user. To evalu-
ate the prediction accuracy, we are interested in finding out
how many POlIs previously marked off in the preprocessing
step recovered in the returned POI recommendations. More
specifically, we examine two metrics: (1) the ratio of recov-
ered POIs to the N recommended POIls, and (2) the ratio of
recovered POIs to the set of POIs deleted in preprocessing.
The former is precision@N while the latter is recall@N, and
collectively referred as performance@N. In our experiment,
we test the performance when N = 5,10,20 with 5 as the
default value.

5.3 Evaluated Recommendation Approaches

Three factors, namely user preference (U), social influence
from friends (S) and geographical influence from POIs (G),
are incorporated in our unified collaborative recommenda-
tion algorithm, denoted by USG in our evaluation. A num-
ber of state-of-the-art and new collaborative filtering ap-
proaches, some of which can be configured by controlling the
weight parameters, 0 < «, 8 < 1, in USG, are also evaluated
for comparison. In addition of USG, the recommendation
approaches under evaluation are listed below.

e user-based CF (denoted by U) - this is a special case
of USG by setting both o and 3 as zeros. In other words,
only user preference is considered for recommendation.

e friend-based CF (denoted by S) - thisis also a spe-
cial case of USG, where a = 1. Here, only friends of the
targeted user are used in making a specific recommen-
dation. As introduced before, there are two alterna-
tive methods to derive the social influence weight be-
tween friends. One is to compute the social influence
weight based on friends based on Equation( 4) [12]
and the other is to derive social influence weight be-
tween friends using Random Walk and Restart tech-
nique [24]. To differentiate these two approaches, we
denote them as S and Sy, respectively.

e GI-based recommendation (denoted by G) - this ap-
proach, considering only the factor of geographical in-
fluence, is a special case of USG where 5 = 1.

e Random Walk with Restart (denoted by RWR) - this
is a state-of-the-art algorithm recently developed for
collaborative item recommendation based on social net-
works [12]. Users’ preferences to items are predicted
by Random Walk and Restart over a graph capturing
social graph and user-item matrix.

e User preference/social influence based recommen-
dation (denoted by US) - this method, considering
both user preference and social influence from friends,
is a special case of USG, where 0 < a < 1 and 8 = 0.

e User preference/geographical influence based rec-—

ommendation (denoted by UG) - this approach, con-
sidering both user preference and geographical influ-
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ence, is a special case of USG, where 0 < 8 < 1 and
a=0.
5.4 Tuning Parameters

As mentioned, two parameters « (for social influence fac-
tor) and B (for geographical influence factor) can be con-
trolled to tune the performance of USG and to configure it
into other recommendation approaches for evaluation. Here
we vary them in USG to understand the roles of user pref-
erence, social influence from friends and geographical influ-
ence from POIs played in achieving the optimal USG per-
formance. Similarly, we tune « in US and /3 in UG to findout
their optimal settings as well. Figure 3 shows the perfor-
mance@5 results of USG under different @ and 3 settings,
where the best parameter settings are indicated in the fig-
ures. The optimal settings for US and UG can also be observed
in the figures, i.e., dashed line for US and solid line for UG.
Those optimal parameter settings are also summarized in
Table 1.

Precision@5 || Recall@5

a ] B a | B

Us 0.1 — 0.1 —

Foursquare | UG — 0.2 - | 0.2
UsG || 0.1 0.1 0.2 | 0.1

Us 0.1 — 0.1 —

Whrrl UG — 0.1 — 0.1
UsG || 0.1 0.2 0.1 | 0.1

Table 1: Optimal parameter settings

Through this study, we can easily observe that user pref-
erence plays a dominate role in contributing to the optimal
recommendation, while both social influence and geograph-
ical influence are innegligible. More specifically, as shown
in Table 1, the factor of user preference contributes at least
70% in making the best recommendation, while both social
influence and geographical influence contribute at least 10%.
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5.5 Performance Comparison
Next, we compare the effectiveness of the recommendation

approaches under evaluation. Figure 4 shows the performance@N

(N = 5,10, 20) of all approaches in terms of their best per-
formance (i.e., the performance under the optimal param-
eter settings). The experiments used both Foursquare and
Whrrl datasets. The precision and recall for them are plot-
ted in Figure 4(a) and Figure 4(b), and Figure 4(c) and
Figure 4(d), respectively. In these figures, USG always ex-
hibits the best performance in terms of precision and recall
under all values of Ns, showing the strength of combines
all three factors of user preference, social influence and ge-
ographical influence. Notice that both of our real datasets
(i.e., Foursquare and Whrrl) have low density. According to
the empirical study in [12], the reported precision is about
0.17 over a pre-processed dataset with 7.8 x 10~* density of
user-item matrix. Thus, the measured low precision over our
datasets (which are not preprocessed) is reasonable. Most
importantly, USG outperforms the baseline approach U (i.e.,
user-based CF) by about 50% percentage of performance
improvement in both datasets.

Between the two alternative social influence measurement
methods (i.e., S and Sr.r) for friend-based CF, we find S
to have much better performance than S,,,. Moreover,
RWR shows poor performance for POI recommendation in
these experiments. This raises a very interesting question of
whether Random Walk and Restart technique is suitable for
POI recommendations. In a later section, we shall answer
this question by analyzing the correlation between (i) the
similarity of check-in behavior among friends and (ii) social
ties among friends. For the rest of the experiments, we use S
as the component of social influence from friends in US and
USG.

Figure 4 also indicates that both social influence and ge-
ographical influence can be utilized to perform POI recom-
mendation. As shown, both S and G provide comparable
results against U. Notice that, in LBSNs, since the check-
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in activities involve physical interaction between users and
POlIs, geographical influence matters a lot, which is con-
firmed in the study. As shown, G usually outperforms S and
sometimes even performs better than U, e.g., when N = 20.
Also, UG always show better performance than US. This is
due to the spatial clustering phenomenon appearing in user
check-in activities. Thus, when N is relatively large, there
is very good chance to discover most of user’s check-in ac-
tivities based on social influence.

In both Foursquare and Whrrl datasets, we find that when
more factors are considered the performance turns out to be
better. For example, US is better than U and S, UG is better
than U and G, and USG shows the best performance.

5.6 Study on Item-based CF

In addition to user-based CF, item-based CF can also es-
timate a user’s preference to an item, by exploring the sim-
ilarity between items instead of users [18]. In [21], a CF
technique has been proposed to fuse both user-based and
item-based similarity to overcome the data sparsity prob-
lem [10]. Thus, a potential idea for POI recommendations is
to employ the item-based CF (denoted by L). Additionally,
geographical influence, which models the influence among
POIs, may be seemingly similar to “item similarity” in item-
based CF. However, we would like to point out that they
are conceptually different and thus should not be mistaken.
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In this section, we explore the idea of further incorporating
L into our framework by examining whether fusing L with U
and G respectively into new approaches denoted by UL and
GL would outperform U and G alone.

Similar to [21], we introduce a weighting parameter A in
UL. When X\ = 1, UL is reduced to U; and when A = 0, L is
obtained. Similarly, we introduce a weighting parameter -y
in GL. Figure 5 and Figure 6 show the performance of UL and
GL on Foursquare and Whrrl datasets under various settings
of A\ and ~. Surprisingly, these figures show that L brings no
advantage at all in enhancing U or L in POI recommenda-
tions, indicating item-based CF is not an effective approach
in our application. Our explanation is that, at the current
stage, POIs in LBSNs may not have been visited by suffi-
cient many users to make item-based CF work well. In other
words, the computed similarity between two POIs may not
provide a good clue to decide whether a user likes a POI or
not. Since U or G alone show much better performance than
L, we don’t integrate L in our recommendation framework.

5.7 Study on Social Influence

As shown earlier, Random Walk with Restart [12] does not
perform well for POI recommendations. To obtain a com-
prehensive understanding of the reasons behind, we analyze
the correlation between the similarity of user check-in be-
haviors and the user similarity calculated based on Random



v
B
0.15 [ e]
e C_RWR
® w [Jus
c ® o1 UG
5 E ElUSG
2 g
3 i
o 0.05
0 0.1 0.5 0 0.1 0.5

0.3 0.3
Mark Rate Mark Rate

(a) Precision@5 - Foursquare

(b) Recall@5 - Foursquare

Figure 8: Impact of Data Sparsity

0.2
=z > 0.15
®
s ©
2 7 01
8 &
o 0.05
0
5 10 20 5 10 20
N N

(a) Precision@5 - Foursquare

(b) Recall@5 - Foursquare

0.08 02 Y
s
[Ic]
© 0.06 0.15 CIRWR
@ : =
= = uG
g 004 7 o1 EUSG
(53 Q
2 o«
% 0.02 0.05
01 03 05 0 01 03 05
Mark Rate Mark Rate
(c) Precision@N - Whrrl (d) Recall@N - Whrrl
02
Z0.15
®
g 0.1
Q
o
0.05
0
5 10 20 5 10 20
N N

(c) Precision@5 - Whrrl (d) Recall@5 - Whrrl

Figure 9: Performance for cold start users

Walk and Restart. Note that, based on [12], user similarity
can be derived from the social graph matrix and user-POI
check-in matrix. Figure 7(a) and Figure 7(d) show the plots
on Foursquare and Whrrl datasets under the best RWR set-
tings. Both figures show that similar users do not necessarily
have high similarity in their check-in behaviors. For exam-
ple, user pairs with similarity larger than 0.1 usually share
nothing in their check-in behavior in both Foursquare and
Whrrl datasets. The results indicate that the tastes of a
user’s friends may actually vary significantly, which has also
be discussed in [16] recently. To further verify this finding,
we also examine the correlation between the similarity of
check-in behaviors between two friends and the strength of
their social ties. In our tests, the social tie is defined in
two forms: 1) number of common friends (see Figure 7(b)
and Figure 7(e) for experimental results) and common friend
ratio (see Figure 7(c) and Figure 7(f) for experimental re-
sults), where common friend ratio is measured by Jaccard
coefficient. For friends who have very strong social tie (i.e.,
larger number of common friends or larger common friend
ratio), we again find their check-in behaviors are not neces-
sarily similar as shown in the figures.

From the above observations, we conclude that friends
have different tastes. The similarity in friends’ check-in
behaviors may not necessarily be reflected in terms of the
strength of their social ties. As a matter of fact, in measur-
ing the social influence between friends, we find the factor
of check-in behavior to be more important than the fac-
tor of social tie. Through our experiments on the S algo-
rithm, we find the optimal setting for 7 in Equation (4) to
be smaller than 0.05 in both Foursquare and Whrrl datasets,
which indicates the factor of check-in behavior weighs more
than the factor of social tie. While RWR treats both factors
equally, thus degrading the performance in our Foursquare
and Whrrl datasets.

5.8 Impact of Data Sparsity

Here, we study how USG deals with the data sparsity prob-
lem. In order to produce user-POI check-in matrix with
different sparsity, we mark off x% = 10%, 30% and 50%

333

of user’s check-in activity records from the original check-
in datasets for three groups of tests as shown in Figure 8.
The larger the mark-off ratio x is, the sparser the user-POI
check-in matrix is. As shown, USG always exhibits the best
performance@5 under all mark-off ratios. Particularly, when
the data is very sparse, e.g., x% = 50%, geographical influ-
ence plays an extremely important role in recommending
interesting POls to users. The reason is that both users and
their social friends have relatively small check-in logs. Thus,
the similarity weight or social influence score derived from
such sparse data may be misleading. On the other hand, ge-
ographical influence, reflecting a global behavior affected by
geography, fits the behaviors of most users in LBSNs. Thus,
the approaches incorporating geographical influence factor,
i.e., G, UG and USG, show great strengths under various data
sparsity scenarios.

5.9 Test for Cold Start Users

Finally, we test the performance of POI recommendations
for cold start users. Here, we consider those users who have
less than 5 check-in activities in the user-POI check-in ma-
trix after removing 30% check-ins as cold start users. As
shown in Figure 9, in all cases we tested, USG always shows
the best performance. Note that in POI recommendations
for cold start users, user preference is hard to capture as
POIs visited by this user are few. Consequently, U shows
the worst performance as it only considers user preference.
G, which explores the spatial clusters of user check-in activi-
ties, is also affected. On the other hand, S overcomes the lack
of user’s check-ins as social friends may supply many use-
ful check-ins, potentially useful for POI recommendations.
Thus, in this experiment, we find that the recommendation
performance of S usually works better than U and G do. No-
tice that, we find the performance of G to be better than
S in extremely sparse scenario in Figure 8 because in that
scenario, social friends’ check-in records are very limited as
well. Thus, geographical influence prevails due to its appli-
cability to most of the people. However, it is noteworthy
that all three factors are very important for the POI recom-
mendations to cold start users, as USG is always the best.



6. CONCLUSIONS AND FUTURE WORK

This research attempts to facilitate a POI recommenda-
tion service in location-based social networks. Our idea is to
incorporate user preference, social influence and geograph-
ical influence in the recommendation. In addition to de-
riving user preference by user-based collaborative filtering
and capturing social influence from friends, we model the
geographical influence among POIs by employing power law
distribution to uncover the spatial clustering phenomenon in
user check-in activities. Furthermore, we propose a unified
POI recommendation framework, which fuses user prefer-
ence to a POI with social influence and geographical influ-
ence. We conduct a comprehensive performance evaluation
over two large-scale real datasets collected from Foursquare
and Whrrl. Experimental results show that the unified col-
laborative recommendation technique is superior to all other
recommendation approaches evaluated. Additional findings
have been uncovered through analysis of the experimental
results, including 1) geographical influence shows a more
significant impact on the effectiveness of POI recommenda-
tions than social influence; 2) Random Walk and Restart
may not be suitable for POI recommendation in LBSNs, be-
cause friends exhibit significantly different preferences (i.e.,
the strength of social ties do not reflect the similarity of
check-in behavior among users in LBSNs; 3) Item-base CF
is not an effective approach in our application due to insuf-
ficient number of visitors to many locations at the current
state of LBSNs.

The semantic tags of POIs contain very rich information
brought in by LBSN users. As for the next step, we plan
to incorporate the semantic tags of POIs to further improve
the unified POI recommendation framework we proposed in
this paper.

7. REFERENCES

[1] G. Adomavicius and A. Tuzhilin. Toward the Next
Generation of Recommender Systems: A Survey of the
State-of-the-Art and Possible Extensions. IEEE
TKDE, 17(6):734-749, 2005.
R. Andersen, C. Borgs, J. T. Chayes, U. Feige, A. D.
Flaxman, A. Kalai, V. S. Mirrokni, and
M. Tennenholtz. Trust-based recommendation
systems: an axiomatic approach. In WWW, pages
199-208, 2008.
M. Balabanovic and Y. Shoham. Content-based
collaborative recommendation. CACM, 40(3):66-72,
1997.
B. T. Bartell, G. W. Cottrell, and R. K. Belew.
Automatic combination of multiple ranked retrieval
systems. In SIGIR, pages 173-181, 1994.
D. Billsus and M. J. Pazzani. Learning collaborative
information filters. In ICML, pages 46-54, 1998.
C. M. Bishop. Pattern Recognition and Machine
Learning. 2006.
X. Cao, G. Cong, and C. S. Jensen. Mining significant
semantic locations from gps data. PVLDB,
3(1):1009-1020, 2010.
A. M. Ferman, J. H. Errico, P. van Beek, and M. I.
Sezan. Content-based filtering and personalization
using structured metadata. In JCDL, page 393, 2002.
J. L. Herlocker, J. A. Konstan, A. Borchers, and
J. Riedl. An algorithmic framework for performing
collaborative filtering. In SIGIR, pages 230-237, 1999.

2]

[9]

334

[10] Z. Huang, H. Chen, and D. D. Zeng. Applying
associative retrieval techniques to alleviate the
sparsity problem in collaborative filtering. ACM
TOIS, 22(1):116-142, 2004.

M. Jamali and M. Ester. TrustWalker: a random walk
model for combining trust-based and item-based
recommendation. In KDD, pages 397-406, 2009.

I. Konstas, V. Stathopoulos, and J. M. Jose. On social
networks and collaborative recommendation. In
SIGIR, pages 195202, 2009.

H. Ma, I. King, and M. R. Lyu. Learning to
recommend with social trust ensemble. In SIGIR,
pages 203-210, 2009.

H. Ma, M. R. Lyu, and I. King. Learning to
recommend with trust and distrust relationships. In
RecSys, pages 189-196, 2009.

H. Ma, H. Yang, M. R. Lyu, and I. King. SoRec:
social recommendation using probabilistic matrix
factorization. In CIKM, pages 931-940, 2008.

H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King.
Recommender Systems with Social Regularization. In
WSDM, 2011.

P. Melville, R. J. Mooney, and R. Nagarajan.
Content-Boosted Collaborative Filtering for Improved
Recommendations. In AAAI/TAAI pages 187-192,
2002.

B. M. Sarwar, G. Karypis, J. A. Konstan, and

J. Riedl. Item-based collaborative filtering
recommendation algorithms. In WW W, pages
285295, 2001.

W. R. Tobler. A Computer Movie Simulating Urban
Growth in the Detroit Region. Economic Geography,
46:234-240, 1970.

H. Tong, C. Faloutsos, and J.-Y. Pan. Fast Random
Walk with Restart and Its Applications. In ICDM,
pages 613-622, 2006.

J. Wang, A. P. de Vries, and M. J. T. Reinders.
Unifying user-based and item-based collaborative
filtering approaches by similarity fusion. In SIGIR,
pages 501-508, 2006.

M. Ye, P. Yin, and W.-C. Lee. Location
Recommendation in Location-based Social Networks.
In GIS, pages 458-461, 2010.

H. Yildirim and M. S. Krishnamoorthy. A random
walk method for alleviating the sparsity problem in
collaborative filtering. In RecSys, pages 131-138, 2008.
Q. Yuan, S. Zhao, L. Chen, S. Ding, X. Zhang, and
W. Zheng. Augmenting collaborative recommender by
fusing explicit social relationships. In ACM
RecSys-Workshop, pages 49-56, 2009.

V. W. Zheng, B. Cao, Y. Zheng, X. Xie, and Q. Yang.
Collaborative filtering meets mobile recommendation:
A user-centered approach. In AAAI 2010.

V. W. Zheng, Y. Zheng, X. Xie, and Q. Yang.
Collaborative location and activity recommendations
with gps history data. In WWW, pages 1029-1038,
2010.

Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining
interesting locations and travel sequences from gps
trajectories. In WW W, pages 791-800, 2009.

(11]

(12]

(13]

(16]

(17]

[22]

23]

(24]





