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Detecting Community Kernels
Motivation

• “Pareto Principle”

• Less than 1% of the Twitter users (e.g. Lady Gaga, Kaifu Lee) produce 
50% of its content, while the others (e.g. fans, followers, readers) have 
much less influence and completely different social behavior.

• 2 types of users: very different influence and behavior 
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Detecting Community Kernels
Motivation

• Challenges

• Distinguish stars (“kernels”) from others (“auxiliary community”)

• Distinguish among stars
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Detecting Community Kernels
Problem “Definition”

• Identify kernel members from auxiliary members

• Determine the “structure” of community kernels

PROBLEM DEFINITION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Problem: how to identify kernel members and auxiliary members, 
and how to determine the structure of community kernels? 

fig copied from this paper
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Detecting Community Kernels
Unbalanced Weakly-Bipartite (UWB) Structure

• Empirical property of many real-world networks

fig copied from this paper

UNBALANCED WEAKLY-BIPARTITE (UWB) STRUCTURE 

: 
 

   

   

Network 
Coauthor 14.19 5.34 4.42 0.37 

Wikipedia 1689.31 104.22 4.69 0.60 

Twitter 110.78 26.78 2.94 0.29 

Slashdot 180.90 84.56 10.75 0.64 

Citation 76.69 35.81 23.80 0.26 

Road network does not have UWB property  
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Detecting Community Kernels
Proposed Algorithms

• Greedy

• Weight-Balanced Algorithm
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Detecting Community Kernels
Greedy

• Input: graph G; kernel size (max # of vertices in a kernel): k.

• Output:  community kernels K = {K1, ..., KL}

• Algorithm

• init S to contain a random vertex

• iteratively (k times) add to S

• the vertex with most connections to S

• add S to community kernels: K={K,S}

• Fast: O(V+E). But no approximation bound.

• Prone to initialization. Need multiple random initializations.
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Detecting Community Kernels
WEBA

• Each vertex v has a weight vector:
to represent its relative importance for each community kernels

• Optimization framework:

• Intractable and thus need approximation

• by solving its 1-dim version L(w)

WEIGHT-BALANCED ALGORITHM (WEBA) 
Each vertex  has a weight vector  
to represent its relative importance for each community kernel 
 

Optimization Problem: 

 

   subject to     !
                     

                       
 

Intractable to solve  we approximate the solution by iteratively 
solving its one-dimensional version  

WEIGHT-BALANCED ALGORITHM (WEBA) 
Each vertex  has a weight vector  
to represent its relative importance for each community kernel 
 

Optimization Problem: 

 

   subject to     !
                     

                       
 

Intractable to solve  we approximate the solution by iteratively 
solving its one-dimensional version  
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Detecting Community Kernels
WEBA Properties

• Theorem 1. A global maximum of the objective function L(w) 
corresponds to a community kernel.

• However, maximizing L(w) is still NP-Hard (or is it?)

• Approximating L(w):

• init S using Greedy algorithm

• using local heuristic to update S until convergence
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Detecting Community Kernels
WEBA Pseudocode

WEBA 
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Detecting Community Kernels
WEBA Guarantees

• Theorem 2. 

• WEBA is guaranteed to converge.

• Theorem 3.

•

WEBA 
Theorem 2 (correctness):  

  WEBA is guaranteed to converge to a feasible solution.  
 

Theorem 3 (error bound):  
  For any assigned weights  and any , after  

 

  iterations, we have . 
 

Repeat  times to obtain steady state and reduce the 
effect of random selection of the initial point 
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Detecting Community Kernels
Find auxiliary community

FINDING AUXILIARY COMMUNITY 
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Detecting Community Kernels
Experiment: Setup

• Data sets

• Coauthor (kernel = PC member)

• Wikipedia (kernel = admins)

• Twitter

• 8 different compared algorithm
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Detecting Community Kernels
Experiment: Visualization

CASE STUDY ON TWITTER 
 

16

Tuesday, 10 January 2012



Detecting Community Kernels
Experiment: Results

• On average, WEBA improves Precision by 340% (wiki) and 70% 
(coauthor), and improves Recall by 130% (wiki) and 41% (coauthor).

EXPERIMENTAL RESULTS 
On average, WEBA improves Precision by 340% (wiki) and 70% (coauthor), 
and improves Recall by 130% (wiki) and 41% (coauthor). 

Precision! Recall!
wiki! coauthor! wiki! coauthor!

Talk ! User ! AI ! ! NC ! Average ! Talk! User! AI! ! NC! Average!

LSP  0.061! 0.085! 0.502! ! 0.342 0.573! 0.171 0.315 0.458  0.398 0.561 

d-LSP  0.051! 0.091! 0.528! ! 0.504 0.617! 0.427 0.273 0.519  0.463 0.609 
p-LSP  0.046! 0.082! 0.678! ! 0.403 0.641! 0.442 0.237 0.337  0.491 0.574 

METIS+MQI  0.049! 0.012! 0.847! ! 0.055 0.488! 0.062 0.361 0.089  0.077 0.379 
LOUVAIN 0.063! 0.122! 0.216! ! 0.272 0.437! 0.388 0.348 0.184  0.19 0.343 

NEWMAN1  0.033! 0.203! 0.4! ! 0.259 0.431! 0.009 0.077 0.306  0.174 0.311 
NEWMAN2  0.039! 0.085! 0.298! ! 0.613 0.463! 0.029 0.075 0.364  0.467 0.335 

-   0.324! 0.336! 0.443! ! 0.747 0.626! 0.422 0.427 0.602  0.568 0.654 
WEBA  0.456! 0.46! 0.852! ! 0.837 0.911! 0.589 0.57 0.577  0.582 0.664 

GREEDY  0.334! 0.403! 0.83! ! 0.746 0.752! 0.432 0.499 0.545  0.56 0.659 

87% 
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Detecting Community Kernels
Experiment: Other results

• F1-score and recall improved up to 300%

• not sensitive to parameters

• fast, parallelization etc.

18

Tuesday, 10 January 2012



Outline

• Detecting Community Kernels in Large Social Networks

• Who Will Follow You Back? Reciprocal Relationship Prediction
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• Related topics

• Summary and conclusions
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Reciprocal Relationship Prediction
Motivation

• Background: 2 kinds of relationship

• one-way (aka parasocial) relationship (Twitter)

• two-way (aka reciprocal) relationship (Facebook)

• usually developed from one-way relationships

• Problem: predict the formation of two-way relationships

• micro-level dynamics 

• underlying community structure?

• how users influence each other?

20

Tuesday, 10 January 2012



Reciprocal Relationship Prediction
Motivation

• Challenges

• How to model the formation of two-way relationships?

• Will Alice follow-back Bob?

• How to combine many social theories into the prediction model?
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Reciprocal Relationship Prediction
Problem Definition

• Given a network, G={V, E, X, Y}

• X: edge-specific features (fully observed)

• Y: follow-back behavior

• partially observed

• Goal: predict unknown Y.
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Reciprocal Relationship Prediction
Proposed Model

• Triad Factor Graph (TriFG) Model

• incorporate social theories over triads into factor graph model

• Goal: compute the posterior P(Y|X,G). By Bayes theorem,

• Problem: model P(Y|G) and P(xe|ye)

• Using Markov Random Field (MRF).

• Hammersly-Clifford theorem

P (Y |X, G) ∝ P (X|Y )P (Y |G)

∝ P (Y |G)
�

e

P (xe|ye)

P (xe|ye) =
1
Z1

exp

�
�

d

αdfd(xed, ye)

�

P (Y |G) =
1
Z2

exp

�
�

c

�

k

µkhk(Yc)

�

here combines social theories23
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Reciprocal Relationship Prediction
Proposed Model

• Triad Factor Graph (TriFG) Model

• incorporate social theories over triads into factor graph model

• Goal: compute the posterior P(Y|X,G). By Bayes theorem,

• Problem: model P(Y|G) and P(xe|ye)

• Using Markov Random Field (MRF).

• Hammersly-Clifford theorem

P (Y |X, G) ∝ P (X|Y )P (Y |G)

∝ P (Y |G)
�

e

P (xe|ye)

P (xe|ye) =
1
Z1

exp

�
�

d

αdfd(xed, ye)

�

P (Y |G) =
1
Z2

exp

�
�

c

�

k

µkhk(Yc)

�
also know as

Conditional Random Field

here combines social theories24

Tuesday, 10 January 2012



Reciprocal Relationship Prediction
Learning and Prediction

• Framework

• maximize log-likelihood to find best parameters 
(using gradient descent)

• using estimated parameters to predict unknown variables

• Challenges

• logZ is intractable: even compute the gradient is NP-hard

• using Loopy Belief Propagation as an approximation

O(θ) =
�

e

�

d

αdfd(xed, ye) +
�

c

�

k

µkhk(Yc)− log Z

25
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Reciprocal Relationship Prediction
Learning and Prediction

• Framework

• maximize log-likelihood to find best parameters 
(using gradient descent)

• using estimated parameters to predict unknown variables

• Challenges

• logZ is intractable: even compute the gradient is NP-hard

• using Loopy Belief Propagation as an approximation

O(θ) =
�

e

�

d

αdfd(xed, ye) +
�

c

�

k

µkhk(Yc)− log Z

standard MRF 
learning problem

standard MRF 
MAP problem

standard MRF 
learning approach

sum over all triads!
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Reciprocal Relationship Prediction
Features

• Edge-specific features

• Geographic distance between users

• Link homophily:  users with common friends tend to follow each other

• Status homophily: elite users tend to follow each other.

• Retweet-reply-network is correlated with two-way relationships

• Triad features

• structural balance social theory

balanced not-balanced27
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Reciprocal Relationship Prediction
Experiment: Setup

• Data sets

• Twitter (with time-stamp)

• Baseline

• SVM, Logistic regression, CRF (without unlabeled data)

28
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Reciprocal Relationship Prediction
Experiment: Case Study
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(b) SVM
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(c) Our approach (TriFG)

Figure 12: Case study. Portion of the Twitter network during the 10th-13th time stamps. The two numbers associated with each user are
respectively the number of followees and that of followers. Black arrows indicate following links created 4 time stamps (we use 4 time stamps as the
time span for prediction) before. Blue arrows indicate new following link in the past 4 time stamps. Dash arrows indicate follow-back links in our
data set (a), predicted by SVM (b), and predicted by our model TriFG (c), with green color denoting a correct one and red color denoting a mistake
one. Red colored! indicates there should be a follow-back link, which the approach did not predict.

fective diameter, and low reciprocity, marking a deviation from
known characteristics of human social networks. 2) the Twitter
users. Work of this category mainly focus on identifying influen-
tial users in Twitter [30, 3, 13] or examining and predicting tweet-
ing behaviors of users [10, 25]. 3) the Tweets. Sakaki et al. [24]
propose to utilize the real-time nature of Twitter to detect a target
event; while Mathioudakis and Koudas [19] present a system, Twit-
terMonitor, to detect emerging topics from the Twitter content.

7. CONCLUSION
In this paper, we study the novel problem of two-way relation-

ship prediction in social networks. We formally define the problem
and propose a Triad Factor Graph (TriFG) model, which incorpo-
rates social theories into a semi-supervised learning model. We
evaluate the proposed model on a large Twitter network. We show
the proposed factor graph model can significantly improve the per-
formance (+22%-+27% by F1-Measure) for two-way relationship
prediction comparing with several alternative methods. Our study
also reveals several interesting phenomena.
The general problem of reciprocal relationship prediction rep-

resents a new and interesting research direction in social network
analysis. There are many potential future directions of this work.
First, some other social theories can be further explored and vali-
dated for reciprocal relationship prediction. Looking farther ahead,
it is also interesting to develop a real friend suggestion system
based on the proposed method. We can validate the proposed
method based on user feedbacks. We can also further study the-
oretical methodologies for improving the predictive performance
by incorporating user interactions. Finally, building a theory of
why and how users create relationships with each other in different
kinds of networks is an intriguing direction for further research.
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Reciprocal Relationship Prediction
Experiment: Result

• Inferred 90% follow-back behavior
Table 1: Follow-back prediction performance of different
methods in the two test cases. Test Case 1: predicting follow-back
actions in the 9th-12th time stamps; and Test Case 2 for the 10th-13th
time stamps.

Data Algorithm Prec. Rec. F1 Accu.

Test Case 1

SVM 0.6908 0.6129 0.6495 0.9590
LRC 0.6957 0.2581 0.3765 0.9510

CRF-balance 0.9968 0.5161 0.6801 0.9670
CRF 1.0000 0.6290 0.7723 0.9770
wTriFG 0.9691 0.5483 0.7004 0.9430
TriFG 1.0000 0.8548 0.9217 0.9910

Test Case 2

SVM 0.7323 0.6212 0.6722 0.9534
LRC 0.8333 0.3030 0.4444 0.9417

CRF-balance 0.9444 0.5151 0.6667 0.9114
CRF 1.0000 0.6333 0.7755 0.9717
wTriFG 0.9697 0.5697 0.7177 0.9389
TriFG 1.0000 0.8788 0.9355 0.9907

Table 2: Follow-back prediction performance of TriFG with
three different algorithms (#degree, PageRank and (α,β)) for
finding elite users from ordinary users.

Data Algorithm Prec. Rec. F1 Accu.

Test Case 1
(α,β) 1.0000 0.8548 0.9217 0.9910
#degree 1.0000 0.7903 0.8829 0.9870
pagerank 1.0000 0.7581 0.8624 0.9850

Test Case 2
(α,β) 1.0000 0.8788 0.9355 0.9907
#degree 1.0000 0.8363 0.9109 0.9874
pagerank 1.0000 0.8181 0.9000 0.9860

All algorithms are implemented in C++, and all experiments are
performed on a PC running Windows 7 with Intel(R) Core(TM) 2
CPU 6600 (2.4GHz and 2.39GHz) and 4GB memory. All algo-
rithms have a good efficiency performance: the CPU time needed
for training and prediction by all methods on the Twitter network
ranges from 2 to 5 minutes.

5.2 Prediction Performance
We now describe the performance results for the different meth-

ods we considered. Table 1 show the results in the two test cases
(prediction performance for the 9th-12th time stamps and that for
the 10th-13th time stamps).
It can be clearly seen that our proposed TriFG model signif-

icantly outperforms the four comparison methods. In terms of
F1-Measure, TriFG achieves a +27% improvement compared with
the (SVM). Comparing with the other three graph-based methods,
TriFG also results in an improvement of 22-25%. The advantage
of TriFG mainly comes from the improvement on recall. One im-
portant reason here is that TriFG can detect some difficult cases by
leveraging the structural balance correlation and homophily corre-
lation. For example, without considering the two kinds of social
correlations, the performance of wTriFG decreases to 70-72% in
terms of F1-Measure in the two test cases. Another advantage of
TriFG is that it makes use of the unlabeled data. Essentially, it fur-
ther considers some latent correlation in the data set, which cannot
be leveraged with only the labeled training data.

5.3 Analysis and Discussions
Now, we perform several analyses to examine the following as-

Test Case 1 Test Case 20

0.2
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0.8

1

F1
−M

ea
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TriFG
TriFG−B
TriFG−BI
TriFG−BIS
TriFG−BISL

Figure 9: Factor contribution analysis. TriFG-B stands for ig-
noring structural balance correlation. TriFG-BI stands for ignoring
both structural balance correlation and implicit network correlation.
TriFG-BIS stands for further ignoring status homophily and TriFG-
BISL stands for further ignoring link homophily.

pects of the TriFGmodel: (1) contribution of different factors in the
TriFG model; (2) convergence property of the learning algorithm;
(3) Effect of different settings for the time span; and (4) Effect of
different algorithms for elite user finding.

Factor Contribution Analysis In TriFG, we consider five differ-
ent factor functions: Geographic distance (G), Link homophily (L),
Status homophily (S), Implicit network correlation (I), and struc-
tural Balance correlation (B). Here we examine the contribution of
the different factors defined in our model. We first rank the indi-
vidual factors by their predictive power6, then remove them one
by one in reversing order of their prediction power. In particular,
we first remove structural balance correlation denoted as TriFG-B,
followed by further removing the implicit network correlation de-
noted as TriFG-BI, status homophily denoted as TriFG-BIS, and
finally removing link homophily denoted as TriFG-BISL. We train
and evaluate the prediction performance of the different versions
of TriFG. Figure shows the average F1-Measure score of the dif-
ferent versions of the TriFG model. We can observe clear drop on
the performance when ignoring each of the factors. This indicates
that our method works well by combining the different factor func-
tions and each factor in our method contributes improvement in the
performance.

Convergence Property We conduct an experiment to see the ef-
fect of the number of the loopy belief propagation iterations. Figure
10 illustrates the convergence analysis results of the learning algo-
rithm. We see on both test cases, the BLP-based learning algorithm
can converges in less than 10 iterations. After only seven learning
iterations, the prediction performance of TriFG on both test cases
becomes stable. This suggests that learning algorithm is very effi-
cient and has a good convergence property.

Effect of Time Span Figure 8 already shows the distribution of
follow-backs in different time stamps. Now, we quantitatively ex-
amine how different settings for the time span will affect the pre-
diction performance. Figure 11 lists the average prediction perfor-
mance of TriFG in the two test cases with different settings of the
time span. It shows that when setting the time span as two or less
time stamps, the prediction performance of TriFG drops sharply;

6We did this by respectively removing each particular factor from
our model and evaluated the decrease of the prediction performance
by the TriFG model. A larger decrease means a higher predictive
power.

27%
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Reciprocal Relationship Prediction
Experiment: Other Result

• Better than other graph-based algorithm

• Fast, convergence, etc.
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Outline

• Detecting Community Kernels in Large Social Networks

• Who Will Follow You Back? Reciprocal Relationship Prediction

• Inferring Social Ties Across Heterogeneous Networks 
(very briefly)

• Related topics

• Summary and conclusions
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Inferring Social Ties (in 5 slides)
Motivation

• Background 

• Many different types of social “ties” (aka. relationship).  

• Many different types of online social networks. 

• Labeled relationships are scare.

• Problem

• Leverage labeled relationships from one network to infer type of 
relationships in another different network

33
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Inferring Social Ties
Motivating Example
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Figure 1: Example of inferring social ties across two heteroge-
neous networks: a reviewer network and a mobile communica-
tion network.

right sub-figure shows the output of our problem: the inferred so-
cial ties in the two networks. In the reviewer network, we infer the
trust/distrust relationships and in the communication network, we
identify friendships, colleagues, and families. The middle of Figure
1 is the component of knowledge transfer for inferring social ties
in different networks. This is the key objective of this work. The
fundamental challenge is how to bridge the available knowledge
from different networks to help infer the different types of social
relationships.
The problem is non-trivial and poses a set of unique challenges.

First, what are the fundamental factors that form the structure of
different networks? Second, how can we design a generalized
framework to formalize the problem in a unified way? Third, as
real social networks are getting larger with hundreds of millions of
nodes, how to scale up the model learning algorithm to adapt to the
growth of large real networks?

Results In this work, we aim to conduct a systematic investiga-
tion of the problem of inferring social ties across heterogeneous
networks. We precisely define the problem and propose a transfer-
based factor graph (TranFG) model. The model incorporates social
theories into a semi-supervised learning framework, which can be
used to transfer supervised information from a source network to
help infer social ties in a target network.
We evaluate the proposed model on five different genres of net-

works: Epinions, Slashdot, Mobile, Coauthor, and Enron. We show
that the proposed model can significantly improve the performance
(averagely +15% in terms of F1-Measure) for inferring social ties
across different networks comparing with several alternative meth-
ods. Our study also reveals several interesting phenomena for so-
cial science:

• Social balance is satisfied well on friendship (or trust) net-
works; but not (< 20% with a large variance) on user com-
munication networks (e.g., mobile communication network).

• Users are more likely (+10%-+98% higher than chance) to
have the same type of relationship with a user who spans
a structural hole. Disconnected users have an even higher
likelihood.

• It was validated that social status is satisfied in many net-
works. We further discover that several frequent forms of
triads have a similar distribution in different networks (Coau-
thor and Enron).

• Opinion leaders are more likely (+71%-+84%) to have a
higher social status than ordinary uses.

Organization Section 2 formulates the problem; Section 3 intro-
duces the data set and our observations over different networks.
Section 4 explains the proposed model and describes the algorithm
for learning the model; Section 5 gives the experimental setup and
Section 6 presents the results; finally, Section 7 discusses related
work and Section 8 concludes.

2. PROBLEM DEFINITION
In this section, we first give several necessary definitions and

then present the problem formulation. To simplify the explanation,
we frame the problem with two social networks: a source network
and a target network, although the generalization of this framework
to multiple network setting is straightforward.
Let G = (V,EL, EU ,X) denote a partially labeled social net-

work, where EL is a set of labeled relationships and EU is a set
of unlabeled relationships with EL ∪ EU = E; X is an |E| × d
attribute matrix associated with edges in E with each row corre-
sponding to an edge, each column an attribute, and an element xij

denoting the value of the jth attribute of edge ei. The label of edge
ei is denoted as yi ∈ Y , where Y is the possible space of the labels
(e.g., family, colleague, classmate).

Input: The input to our problem consists of two partially la-
beled networksGS (source network) andGT (target network) with
|EL

S | $ |EL
T |. In other words, the number of labeled relationships

in the source network is more larger than that of the target network,
with an extreme case of |EL

T | = 0.
In real social networks, the relationship could be undirected

(e.g., friendships in a mobile network) or directed (e.g., manager-
subordinate relationships in an enterprise email network). To keep
things consistent, we will first introduce the problem in the con-
text of undirected network and then discuss how to extend the pro-
posed framework to the directed ones. In addition, the label of a
relationship may be static (e.g., the family-member relationship) or
change over time (e.g., the manager-subordinate relationship). In
this work, we focus on static relationships.

Learning Task: Given a source network GS with abundantly la-
beled relationships and a target networkGT with a limited number
of labeled relationships, the goal is to learn a predictive function
f : (GT |GS) → YT for inferring the type of relationships in the
target network by leveraging the supervised information (labeled
relationships) from the source network.
Without loss of generality, we assume that for each possible type

yi of relationship ei, the predictive function will output a proba-
bility p(yi|ei); thus our task can be viewed as obtaining a triple
(ei, yi, p(yi|ei)) to characterize each link ei in the social network.
There are several key issues that make our problem formulation dif-
ferent from existing works on social relationship mining [4, 6, 29,
30]. First, the source network and the target network may be very
different, e.g., a coauthor network and an email network. What are
the fundamental factors that form the structure of the networks?
Second, the label of relationships in the target network and that of
the source network could be different. How reliably can we infer
the labels of relationships in the target network using the informa-
tion provided by the source network? Third, as both the source and
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Reciprocal Relationship Prediction
Proposed Model

• Triad Factor Graph (TriFG) Model

• incorporate social theories over triads into factor graph model

• Goal: compute the posterior P(Y|X,G). By Bayes theorem,

• Problem: model P(Y|G) and P(xe|ye)

• Using Markov Random Field (MRF).

• Hammersly-Clifford theorem

P (Y |X, G) ∝ P (X|Y )P (Y |G)

∝ P (Y |G)
�

e

P (xe|ye)

P (xe|ye) =
1
Z1

exp

�
�

d

αdfd(xed, ye)

�

P (Y |G) =
1
Z2

exp

�
�

c

�

k

µkhk(Yc)

�
also know as

Conditional Random Field

here combines social theories

Y: follow-back?
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Reciprocal Relationship Prediction
Proposed Model

• Triad Factor Graph (TriFG) Model

• incorporate social theories over triads into factor graph model

• Goal: compute the posterior P(Y|X,G). By Bayes theorem,

• Problem: model P(Y|G) and P(xe|ye)

• Using Markov Random Field (MRF).

• Hammersly-Clifford theorem

P (Y |X, G) ∝ P (X|Y )P (Y |G)

∝ P (Y |G)
�

e

P (xe|ye)

P (xe|ye) =
1
Z1

exp

�
�

d

αdfd(xed, ye)

�

P (Y |G) =
1
Z2

exp

�
�

c

�

k

µkhk(Yc)

�
also know as

Conditional Random Field

here combines social theories

Y: follow-back?
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Inferring Social Ties
Proposed Model

• Triad Factor Graph (TriFG) Model

• Transfer-based Factor Graph (TranFG) Model

• Goal: compute the posterior P(Y|X,G). By Bayes theorem,

• Problem: model P(Y|G) and P(xe|ye)

• Using Markov Random Field (MRF).

• Hammersly-Clifford theorem

P (Y |X, G) ∝ P (X|Y )P (Y |G)

∝ P (Y |G)
�

e

P (xe|ye)

P (xe|ye) =
1
Z1

exp

�
�

d

αdfd(xed, ye)

�

P (Y |G) =
1
Z2

exp

�
�

c

�

k

µkhk(Yc)

�

here combines social theories

also know as
Conditional Random Field

Y: type of social tie

37

Tuesday, 10 January 2012



Inferring Social Ties
Learning and Prediction

• Framework

• maximize log-likelihood (using Loopy Belief Propagation)

• “learn across heterogeneous networks”

O(θ) =
�

e

�

d

αdfd(xed, ye) +
�

c

�

k

µkhk(Yc)− log Z

source network target network

Objective in “Reciprocal Relationship Prediction”

O(α,β, µ) = OS(α, µ) + OT (β, µ)

=
�

e∈ES

�

d

αdgd(xS
ed, y

S
e ) +

�

e∈ET

�

d�

βd�g
�
d�(xT

ed� , y
T
e )

+
�

k

µk

�
�

c

hk(Y S
c ) +

�

c�

hk(Y T
c� )

�

− log Z

38

Tuesday, 10 January 2012



Inferring Social Ties
Experiment

• Data sets

• Epinions, Slashdot, Mobile, Coauthor, Enron

• Baseline methods

• SVM, CRF, PFG (CRF which uses unlabeled data proposed by Jie Tang) 

• Results

• 8-28% improvements over alternative method on F1-score

• fast, convergence, etc. 
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Outline

• Detecting Community Kernels in Large Social Networks

• Who Will Follow You Back? Reciprocal Relationship Prediction

• Inferring Social Ties Across Heterogeneous Networks 
(very briefly)

• Related topics

• Summary and conclusions
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Related topics

• Community detection (DCK)

• Leader detection (DCK)

• Link prediction (RRP) (IST)

• Link classification (RRP) (IST)

• Each of these topic is very popular in recent years and have 
hundreds of related papers.

DCK: Detecting Community Kernels
RRP: Reciprocal Relationship Prediction
IST: Inferring Social Ties
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Summary and conclusion
• Three papers in decent conferences produced in 6~8 months

• Common feature

• Very consistent, careful and professional writing style

• Almost same section titles:

• Carefully distinguish with existing problems and solutions

• A good name to the problem and solution.

• Extensive experiments and in depth data analysis

Introduction Problem 
Definition

Data and 
Observation

Model 
Framework

Experiments
+ 

Result and 
Analysis

Related Work Conclusions
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Thanks!
Question?
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