Written Assignment 1 Solution

- 1.1.1 Let $S = \sum_{i=0}^{\infty} i/4^i$. $3S = 4S - S = \sum_{i=0}^{\infty} (i+1)/4^i - \sum_{i=0}^{\infty} i/4^i$ $= \sum_{i=0}^{\infty} 1/4^i = 1/(1-1/4) = 4/3$. Therefore, S = 4/9.
- 1.1.4 $\sum_{i=1}^{n} i = n(n+1)/2$
- 1.1.5 If $a \neq 1$, $\sum_{i=1}^{n} a^{i} = a(a^{n} 1)/(a 1)$, otherwise $\sum_{i=1}^{n} a^{i} = n$.
- 1.2.1 T(1) = 1 T(2) = aT(1) + 2b = a + 2b $T(3) = aT(2) + 3b = a^2 + 2ab + 3b$ $T(4) = aT(3) + 4b = a^3 + 2a^2b + 3ab + 4b$ $T(n) = a^{n-1} + b\sum_{i=2}^{n} ia^{n-i}$ (You may verify by induction)
- 1.2.2 Suppose n is a power of 2. (You can make this assumption for homeworks and in exam. Also you may assume that the logarithm is in base 2) T(1) = 1 $T(2) = T(1) + 2 \cdot 1b$ $T(4) = T(2) + 4 \cdot 2b$ $T(8) = T(4) + 8 \cdot 3b$ $T(n) = 1 + \sum_{i=1}^{\log n} i2^{i}$
- 1.3.3 $\sum_{i=1}^{n} (2i-1) = 2 \sum_{i=1}^{n} i n = 2n(n+1)/2 n = n^2$ You may also prove by induction if you don't want to use the formula for arithmetic series.
- 1.3.4 For $n \ge 3$, $2n^2 = n^2 + n^2 \ge n^2 + 2n + 1$. Therefore, there exist *c* and n_0 , such that $\forall n \ge n_0, (n+1) \le cn^2$, i.e. $(n+1)^2 = O(n^2)$.

14		10		$100\log n$	5.6n	$n\log n$	0.25	n^2 0.1	n^3 0.001 ·	2^n
1.4	big-O	O((1)	$O(\log n)$	O(n)	$O(n\log n)$	n) $O(n^2)$	$O(n^2)$	$O(2^n)$	
[10	$100 \log n$	5.6n	$n \log n$	$0.25n^2$	$0.1n^3$	$0.001 \cdot 2^n$	
	10		-	-	-	-	-	-	-	
ĺ	$100\log n$		2	-	-	-	-	-	-	П
ĺ	5.6n		2	125	-			-	-	T
ĺ	$n\log n$		5	101	49	-	-	-	-	Π
ĺ	$0.25n^2$		7	48	23	17	-	-	-	Π
ĺ	$0.1n^3$		5	16	8	5	3	-	-	Π
ĺ	$0.001 \cdot 10001$	2^n	14	19	17	16	16	20	-	Π

- 1.5.3 $f(n) = \sum_{i=1}^{n} \sum_{j=1}^{n} j = i^n \sum_{k=1}^{j} 1 = \sum_{i=1}^{n} \sum_{j=1}^{n} j = \sum_{i=1}^{n} \frac{(n+i)(n-i+1)}{2} = \frac{1}{6}n(n+1)(2n+1) = O(n^3).$
- 1.5.4 $f(n) = \sum_{i=1}^{n} \sum_{j=i}^{n} \sum_{k=1}^{in} 1 = \sum_{i=1}^{n} \sum_{j=i}^{n} in = \sum_{i=1}^{n} in(n-i+1) = \frac{1}{6}n^2(n+1)(n+2) = O(n^4).$

1.8.1 Please calculate and show the characteristic points(e.g. discontinuous point) of the curves. To make it easier to plot and read, you can use non-uniform broken axis.

	n	10	20	30	50	70	100
1.8.2	time A	10	20	30	$1.25 \cdot 10^{5}$	$3.43 \cdot 10^{5}$	10^{6}
	time B	10	20	900	2500	$3.43 \cdot 10^{5}$	10^{6}
	space A	10	20	45	75	105	150
[space B	50	100	150	25	35	50

1.8.3

$$\bar{C}_A = \frac{1}{100} \sum_{n=1} 100 C_A(n) = 2.404 \cdot 10^5$$

 $\bar{C}_B = \frac{1}{100} \sum_{n=1} 100 C_B(n) = 1.981 \cdot 10^5$

B is better, by $4.23 \cdot 10^4$.

1.8.4 Use A for $1 \le n < 50$ and use B for $50 \le n \le 100$.

1.8.5

$$\bar{C}_{hyb} = \frac{1}{100} \sum_{n=1} 100 C_{hyb}(n) = 1.976 \cdot 10^5$$

The hybird algorithm is better than A by $4.28\cdot 10^4,$ and is better than B by $5\cdot 10^2.$

(Other answers are OK as long as they are consistent with 1.8.4)