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Objective

@ Explosion of research on theory of low-rank modeling

@ Our goal is to discuss some recent works

e Some of it is ours
e Some of it is not



Agenda

@ Matrix completion

@ Robust principal component analysis



Matrix Completion



The Netflix problem

NETELIX

NETFLI

@ Netflix database
- i b t
o About half a million users e the e

e About 18,000 movies $5759 8 monin — N0 LATE FeES!
@ People rate movies

@ Sparsely sampled entries

Welcome | How It Works | Brows




The Netflix problem

o Netflix database
e About half a million users

e About 18,000 movies
@ People rate movies

@ Sparsely sampled entries

Users

Movies
X X
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The Netflix problem

o Netflix database

o About half a million users Movies
o About 18,000 movies X X
. X X
@ People rate movies % %
@ Sparsely sampled entries Users % %
X
X X

Challenge
Complete the “Netflix matrix”

Many such problems — collaborative filtering, partially filled out surveys...




Global positioning from local distances

e Points {z;}1<j<n € R?

@ Partial information about distances

Lij = |lw; — =5

Example (Singer, Biswas et al.)
o Low-powered wirelessly networked sensors

@ Each sensor can construct a distance estimate
from nearest neighbor



Global positioning from local distances

e Points {z;}1<j<n € R?

@ Partial information about distances

— . . 2
Lij = |lzi — ;]|
: : J
Example (Singer, Biswas et al.) ~ ~
o Low-powered wirelessly networked sensors X X
@ Each sensor can construct a distance estimate i X X
from nearest neighbor X X
X
X X

Problem
Locate the sensors




Other problems of this kind

Linear system identification (Vandenberghe et al.)

Quantum-state tomography (Gross et al.)

Low-rank matrix completion in machine learning (Srebro et al. Vert et al.)

°
o

o Partially observed covariance matrix (Vaidyanathan et al.)

(]

@ Structure-from-motion problem in computer vision (Tomasi et al.)
("]



Matrix completion

o Matrix L € Rn1xn2
@ Observe subset of entries

@ Can we guess the missing entries?

o X

-~ X

o X
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Matrix completion

o Matrix L € Rn1xn2
@ Observe subset of entries

@ Can we guess the missing entries?

Everybody would agree this looks impossible

o X

-~ X

o X

0 X 0 X

X

-

oo XX

X

O 0 D ) 0 X

~J

[IECERENED 4



Massive high-dimensional data

Engineering/scientific applications: unknown matrix has often (approx.) low rank J
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Low-rank matrix completion?

Engineering/scientific applications: unknown matrix has often (approx.) low rank

Movies
X X
XX
X
Users
X X
X
X X
@ Netflix matrix
@ Sensor-net matrix: |lz; — z;||%, {z;} € R?

e rank 2ifd=2
e rank 3ifd=3

@ Many others (e.g. quantum-state tomography, computer vision, system id, ...)



COMMITTEE ON
APPLIED

THEORETICAL

TATISTICS:

Announcing a Joint Seminar of the Committee on Applied and Theoretical Stati:
and the Committee on National Statistics of The National Academies.

THE STory oF THE Netflix Prize
Friday, November 4, 2011 ¢ 3:00-5:00 pm

Reception to Follow
——

Keck Center of the National Academies, Room 100
500 Fifth Street NW
Washington, DC 20001

Just over five years ago, Netflix released more than 100 million movie
ratings as part of a data analysis contest to improve methods for
recommending movies to customers based on ratings they had provided
for previously rented movies. A prize of $1 million was offered for a
“recommender” algorithm that outperformed the existing Netilix system
Cinematch® by at least 10% in terms of root mean squared prediction
Robert Bell error. In a textbook example of “crowdsourcing,” more than 20,000 teams
ATAT Labs Research from over 150 countries submitted algorithms. By August 2009, after
almost three years of effort, two teams, BellKor's Pragmatic Chaos and The
Ensemble, had surpassed the 10% goal in a finish worthy of its own movie.

Lester Mackey Bob Bell (BellKor’s Pragmatic Chaos) and Lester Mackey (The Ensemble)
Unierstyof e, Will describe the overall set-up of the competiton, the challenges it posed,
atfornia, Berkeley the main ideas underlying their recommender algorithms, and the
interaction among the leading competitors. Emmanuel Candes will then
discuss the research avenues stimulated by the various algorithms
Emmanuel Candes developed in this competition, some of the resulting advances, and some
Stanford University difficult problems that remain.

— Open to the Public * Please RSVP! —

For planning and building check-in purposes, please RSVP by October 31 to
Agnes Gaskin at agaskin@nas.edu or (202) 334-3096.




Low-rank matrix completion?

x 77 7 x 7

77 x ox 707

. x 77 x 7 7

L: nqy X ng matrix of rank r 2 9 % 7 7 %
x 77 7 7 7

707 x ox 707

o Singular value decomposition: L = UXV*

M = |U

o L depends upon (n; + ne — r)r degrees of freedom < ambient dimension



Low-rank matrix completion?

x 77 7 x 7

77 x ox 707

. x 77 x 7 7

L: nqy X ng matrix of rank r 2 7 % 7 7 x
x 77 7 7 7

707 x ox 707

o Singular value decomposition: L = UXV*

o L depends upon (n; + ne — r)r degrees of freedom < ambient dimension

Do we need to see all the entries to recover L?



Which entries do we get to see?

X
X
X
X

Rank-1 matrix L = xy*

Lij = xy;

X X X X
X X X X
X X X X
X X X X

If single row (or column) is not sampled — recovery is not possible

X

X X X X

X

X X X X



Which entries do we get to see?

X
X
X
X
X
X

Rank-1 matrix L = xy*

Lij = xy;

X X X X
X X X X
X X X X
X X X X
X X X X
X X X X

If single row (or column) is not sampled — recovery is not possible

What happens for almost all sampling sets?

m entries selected uniformly at random — Qgps



Which matrices can we complete?

Cannot be recovered from a small set of entries



Which matrices can we complete?

*
* %
jes)

Cannot be recovered from a small set of entries

o

o



Which matrices can we complete?

Tr1 X9 T3

0 0 0

L=cex" = 0 0 0
0 0 0

Cannot be recovered from a small set of entries



Which matrices can we complete?

xr1 T2 X3 Tn—1 Tn

0O 0 0 0 0

e —|0 0 0 0 0
0O 0 0 0 0

Cannot be recovered from a small set of entries

Intuition: column and row spaces cannot be aligned with basis vectors



Coherence

LeRY" =UXV" r = rank(L)

€ Roughly: small value of 11 — sing. vectors not sparse
Condition holds if |U;;|? V |V;;]* < u/n
o
‘ Random plane of dimension r > logn

max [|U%e[|* < O(1)r/n



What is information theoretically possible?

C. and Tao (09)

Roughly, no method whatsoever can succeed

m < p X nr X logn ~df x plogn

For rectangular matrices n = max dim

@ Fundamental role played by coherence parameter

e With = O(1) (incoherence), need m 2 nrlogn



Recovery algorithm

Hope: only one low-rank matrix consistent with the sampled entries

Recovery by minimum complexity

minimize rank(L)

subject to Lij = Lij (Z,]) € Qobs
NP-hard: not feasible for n > 10!




Recovery algorithm

Hope: only one low-rank matrix consistent with the sampled entries

Recovery by nuclear-norm minimization (SDP)

A

minimize 1L ]|« =>",0i(L)
subject to L = Lij  (i,7) € Qobs

@ Convex relaxation of the rank minimization program
e Ball {X : || X||« <1}: convex hull of rank-1 matrices obeying ||zy*|| < 1



Recovery algorithm

Hope: only one low-rank matrix consistent with the sampled entries

Recovery by nuclear-norm minimization (SDP)

A

minimize 1L ]|« =>",0i(L)
subject to L = Lij  (i,7) € Qobs

@ Convex relaxation of the rank minimization program
e Ball {X : || X||« <1}: convex hull of rank-1 matrices obeying ||zy*|| < 1

Trace norm heuristics
@ Mesbahi & Papavassilopoulos '97
@ Beck & D’'Andrea '98
o Fazel '02



Near-optimal matrix completion

x 77 7 x 7

707 x o ox 707

inimi 7 x 7 7 x 77
minimize | L]« b .

subject to Lij = Lij (i,7) € Q ; = A

i ij \Oy obs % 27 2 ? ?

707 x o ox 707

Theorem (C. and Tao '09 improving C. and Recht '08)

@ rank(L) =r
o Qgps random set of size m

Solution to SDP is exact with probability at least 1 —n=10 jf
m 2 pnrlog®n a <6 (sometimes 2)
Gross' near-optimal improvement

m > pnrlog?n




Related work

@ Related results

o Recht Parrilo Fazel '07
o Keshavan, Oh and Montanari '09

@ Earlier result [C. and Recht '08]:

6/5

m 2 un’’°rlogn

@ Other contributions

Cai, C. and Shen '08
Mazumder, Hastie and Tibshirani '09
Ma and Goldfarb '09



Geometry

*

Lij = Lij

minimize
subject to

(i,5) € Q



Geometry

minimize
subject to
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General formulation

@ Aj,..., Ax (orthonormal) basis of R"*" (N = n?)
e QC{l,...,N}

minimize 1 X |1
subject to (A, X) = (Ag, L) ke

If incoherence between sensing matrices {A;} and col. 4+ row space

everything should work...



Example: C. and Recht '08

e Two orthonormal bases F' = [f1,..., fn], G =[91,-- - Gn)
o Orthobasis of n x n matrices: {f;g; }1<ij<n

minimize (| X ] «
subject to fiXg; = fiLg; (i,5)€Q

Succeeds if col. (resp. row) space of L incoherent with {f;} (resp. {g;})




Example: C. and Recht '08

e Two orthonormal bases F' = [f1,..., fn], G =[91,-- - Gn)
@ Orthobasis of n x n matrices: {fig;}lgi’jgn

minimize (| X1«
subject to fiXg; = fiLg; (i,5)€Q

Succeeds if col. (resp. row) space of L incoherent with {f;} (resp. {g;})

Why? Because fXg; = el (F*XG)e,



Quantum-state tomography

@ k spin-1/2 system in an unknown quantum state L € C"*" (density matrix)
n=2% ‘trace(L)=1, L0
@ Quantum measurements (data)
[E[measurement with observable A;] = (A;, L) = trace(Aj L)

e.g. {A,}: tensor Pauli matrices

QR7 Can we reduce # measurements by using the structure of special classes of
quantum states?

@ pure state — rank(L) =1
@ interesting mixed states — (approx) low rank




Quantum-state tomography

@ k spin-1/2 system in an unknown quantum state L € C"*" (density matrix)
n=2% ‘trace(L)=1, L0
@ Quantum measurements (data)
[E[measurement with observable A;] = (A;, L) = trace(Aj L)

e.g. {A,}: tensor Pauli matrices

QR7 Can we reduce # measurements by using the structure of special classes of
quantum states?

@ pure state — rank(L) =1
@ interesting mixed states — (approx) low rank

A. Yes. Sample in proportion to the rank of the quantum state (Gross '09) J




General statement
Aq, ..., A,z (orthonormal) basis of R"*™ and observe (L = UXV™*)

Y = <Ak,L> keQ

) random set of size m

@ Coherence assumption
max |1Po A% < pr/n max [ Ak Py ||% < pr/n
@ At least one of the two conditions
max || 4 |? < p/n

max | (Ay, UV < pr fn?



General statement
Aq, ..., A,z (orthonormal) basis of R"*™ and observe (L = UXV™*)

Y = <Ak,L> keQ

) random set of size m

@ Coherence assumption
max |1Po A% < pr/n mgXHAkaH?F < pr/n
@ At least one of the two conditions
e [ A4 < o/

max | (Ay, UV < pr/n®

Theorem (Gross '09)

Min nuclear-norm solution is exact with high prob. provided

m > px nrxlogin




Robust PCA



Matrix completion from noisy entries

Yij = Lij + Zij, (i,5) € Qobs  Zij iid N(0,07)

Recovery by SDP with relaxed constraints

minimize L]
subject to 3. (Lij — Yij)? < (14 e)no?




Matrix completion from noisy entries

Yij = Lij + Zij, (i,5) € Qobs  Zij iid N(0,07)

Recovery by SDP with relaxed constraints

minimize L]
subject to 3. (Lij — Yij)? < (14 e)no?

Theorem (C. and Plan, '09)

Same assumptions as before. With very high prob.

n~?|IL - L|% S no”

When exact recovery occurs, noisy variant is stable



Matrix completion from noisy entries

Yij = Lij + Zij, (i,5) € Qobs  Zij iid N(0,07)

Recovery by SDP with relaxed constraints

minimize L]
subject to 3. (Lij — Yij)? < (14 e)no?

Theorem (C. and Plan, '09)

Same assumptions as before. With very high prob.

n~?|IL - L|% S no”

When exact recovery occurs, noisy variant is stable

Some other works
@ Koltchinskii, Lounici & Tsybakov ('10) @ Negahban & Wainwright ('10)
@ Bunea, She & Wegkamp ('10) @ Rohde & Tsybakov ('10)



Gross errors

Movies
NETFLIX g7

X
is the best way

X
2 2
)
Users =
X X
X
g x

Observe corrupted samples from L + F
@ L low-rank matrix

@ F entries that have been tampered with — impulsive noise

Recover L: make approach robust vis a vis gross errors




The separation problem

M=L+FE

e M: data matrix (observed)
e L: low-rank (unobserved)
e E: sparse (unobserved)



The separation problem

M=L+FE

e M: data matrix (observed)
e L: low-rank (unobserved)

e E: sparse (unobserved)

Problem: can we recover L and E accurately?

Again, seems impossible




Classical PCA
M=L+N
o L: low-rank (unobserved)
e N: (small) perturbation

Dimensionality reduction (Schmidt 1907, Hotelling 1933)

minimize |M — L]

subject to rank(L) < k

Solution given by truncated SVD

M=UXV* = Zaiuiv;‘ = L= ZUiUz‘Uf
i i<k



Classical PCA
M=L+N
o L: low-rank (unobserved)

e N: (small) perturbation

Dimensionality reduction (Schmidt 1907, Hotelling 1933)

minimize |M — L]

subject to rank(L) < k

Solution given by truncated SVD

M=UXV* = Zaiuiv;‘ = L= ZUiUz‘Uf
i i<k

Fundamental statistical tool: enormous impact



PCA and corruptions/outliers

PCA: very sensitive to outliers




PCA and corruptions/outliers

PCA: very sensitive to outliers

Breaks down with one (badly) corrupted data point




Robust PCA

Gross errors frequently occur in many applications

@ Image processing @ Occlusions

o Web data analysis @ Malicious tampering
@ Bioinformatics @ Sensor failures

o ... o

Important to make PCA robust

Influence function techniques: Huber; De La Torre and Black
Multivariate trimming: Gnanadesikan and Kettenring
Alternating minimization: Ke and Kanade

Random sampling techniques: Fischler and Bolles



Example: Face recognition under varying illuminations
Face Subspaces Training Images

015+ / »
0.1 - :
005 ;

0- m y

®

-0.05+

-0.1+

0,15-. iy
05 2

S e e
05 -015 -0.1

Images of same face under varying illuminations ~ 9D harmonic plane (Basri and
Jacobs, 03)



Occlusions and other corruptions in computer vision

Real data are corrupted, have missing blocks — classical methods break down

How do we develop provably correct and efficient algorithms for recovery of
low-dimensional linear structure from non-ideal observations?



When does separation make sense?

What if M = L 4+ F is both low-rank and sparse?
00
0 0

M =ejel =

n

o O



When does separation make sense?

What if M = L 4+ F is both low-rank and sparse?

0 0
0 0

o O

Low-rank component cannot be sparse

Will assume L € R™*"™ obeys previous incoherence condition

“sing. vectors are not sparse”



What if the sparse component has low-rank?

E.g. first column of E is minus that of L

¥ 0 - 00 0
x 0 - 00 0
E=|. . . | = M=L+E-=



What if the sparse component has low-rank?

E.g. first column of E is minus that of L

* 0 --- 0 O 0 =

* 0 --- 0 O 0 =
E={ . . . . = M=L+E=

* 0 0 0 0 =

Sparsity pattern will be assumed (uniform) random



Principal Component Pursuit (PCP)

M=L+FE

o L unknown (rank unknown)

@ E unknown (# of entries # 0, locations, magnitudes all unknown)



Principal Component Pursuit (PCP)

M=L+FE

o L unknown (rank unknown)

@ E unknown (# of entries # 0, locations, magnitudes all unknown)

Recovery via (convex) PCP

minimize L« + NI E]l1
subject to L+E=M

See also Chandrasekaran, Sanghavi, Parrilo, Willsky ('09)

@ nuclear norm: ||L||. =", 0s(L) (sum of sing. values)

o (1 norm: [[S|[1 = >_;; S| (sum of abs. values)



Main result: M =L + FE

Theorem (C., Li, Ma and Wright, 09)
o Lisn xn of rank(L) < p,nu~'(logn)~

2

e E isn x n, random sparsity pattern of cardinality m < psn?

Then with probability 1 — O(n=1°), PCP with A\ = 1//n is exact:

L=L E=E

Same conclusion for rectangular matrices with A = 1/v/max dim

: x & B & x 3
° e 2 e
xact g B x x & ;9%
i | L) L)
o whatever the magn!tudes of L! x B B x g; g;
o whatever the magnitudes of E! 2 € x € 2 «
) < =~
@ No tuning parameter! x 2 8 82 2 2
A A
2 &8 «x x g2 B8
|~ == ~ 5



Connections with matrix completion (MC)

Missing vs. corrupted data

e e & x &if eif
X o &3 & & &)
& x x e e x

e X & x & x

RPCA: corrupted

o oo & & & &)

x & X & x &

e O e X0 0

D G~ T~ R N N

o XX oo X

o X X X

MC: missing

X o X X

Harder to detect and correct than to fill in



Phase transitions in probability of success

0.5 0.5

0.4

0.4

03

0.3

» »
Q %
0.2 0.2

0.1 0.1

0
0 0.1 0.2 03 0.4 05 0 0.1 0.2 03 0.4 0.5
rank(Lu) /n rank(Lu)/ n

0

(a) PCP, Random Signs (b) PCP, Coherent Signs
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(c) Matrix Completion

L = XY* is a product of independent n x r i.i.d. A'(0,1/n) matrices



Other works

Chandrasekaran, Sanghavi, Parrilo and Willsky (09): deterministic results

@ Hsu, Kakade and Zhang (10)
@ Chen, Jalali, Sanghavi and Caramanis (11)
e Li(11)



Tying it together

min ||l + A £y
s. t. Lij + By = Ly + Eyj (4,7) € Qobs

0 X o X o X

o v @

X J@ X o X

o - o X @ -

SRS EESCEESCEFECID 'Y

ESREC (*: JECERURER]



Tying it together

x & 7 7 x 7

? ? X ;% ? ?

x 77 x 7 7

. ~ 2 ? ? X ? 7 2
min L. + Al x 7 og 2 o7
s. t. LU aF EZ] = Lz] 4F E” (l,j) € Qobs 2 ? t: ;’g 7 7

Theorem (C., Li, Ma and Wright, 09)

o L as before, rank(L) < pon pu~(logn)=2
@ Qops random set of size m = 0.1n? (missing frac. is arbitrary)

@ Each observed entry corrupted with prob. T < 7
Then with prob. 1 — O(n=1%), PCP with A\ = 1/1/0.1n is exact:

L=1L

Same conclusion for rectangular matrices with A = 1/+/0.1max dim




Gross errors + noise

Extension (C., Li, Ma, Wright & Zhou '10)

5/1']' :Lij +Eij+Z¢j (’L,j) =5y

o L low rank
e F sparse (gross errors)

@ / stochastic or deterministic perturbation



Gross errors + noise

Extension (C., Li, Ma, Wright & Zhou '10)

}/ij :Lij +Eij+Z¢j (’L,]) =5y

o L low rank
e F sparse (gross errors)

@ / stochastic or deterministic perturbation

PCP with relaxed constraints = error as if no impulsive noise



Other models: Xu, Caramanis & Sanghavi '10

X X X X X X

X X X X X X

Yo Jo Jo Jo Jo Jo

x x B
x x B
Observe all entries of Y/ x x B
x x B
Y=L+C(+2) x x 2
x x B

@ L low rank °

o C column of outliers

@ Z stochastic or deterministic perturbation * % .

Achieve segmentation (noiseless case):

o Identify columns in low-dim subspace
o Identify outliers




Computational issues

Wish to solve the SDP

minimize LI« + Al £
subject to L+E=M

o Off-the-shelf algorithms (SDPT3, SeDuMi) need n < 80,100
@ Customized IPMs don't do much better

Have developed a simple and scalable algorithm via the Alternating Direction
Method of Multipliers (ADMM) J




Empirical performance

| o [rank(@) [ B0 | rank(Z) | B0 | YZFlE [ % SVD | Time(s) |
500 25 12,500 25 12,500 1.1 x107° 16 2.9
1,000 50 50,000 50 50,000 1.2 x 1078 16 12.4
2,000 100 200,000 100 200,000 | 1.2 x 107° 16 61.8
3,000 250 450,000 250 450,000 | 2.3 x 107° 15 185.2

rank(L) = 0.05 x n, ||E|jo = 0.05 x n?.

| o [rank(@) [ B0 | rank(D) | B0 | EZElE [ % SVD | Time(s) |
500 %5 25,000 25 25000 | 12x10° | 17 2.0
1,000 | 50 | 100,000 | 50 | 100,000 | 24 x 10 ° | 16 13.7
2,000 | 100 | 400,000 | 100 | 400,000 | 24x 10 ° | 16 645
3,000 | 150 | 900,000 | 150 | 900,000 | 25x10° | 16 191.0

rank(L) = 0.05 x n, ||E|lo = 0.10 x n?.

Computational cost higher than classical PCA but not by a large factor!



Implementation status

n X n matrices
@ Implementation on desktop for n ~ 103, 10*
e Distributed implementation for n ~ 105 on Redmond HPC clusters (MSRA)

@ Support applications with real high-dim. data
e images

videos

audio

text documents



Some Applications



Application to video surveillance

Sequence of 200 video frames (144 x 172 pixels) with a static background

Problem: detect any activity in the foreground




Background modeling from surveillance video, |

(a) Original (b) Low-rank I,  (c) Sparse 2 (d) Low-rank I,  (e) Sparse E

PCP Alternating minimization

Alternating minimization of an M-estimator (De La Torre and Black, '03)



Background modeling from surveillance video, Il

(a) Original  (b) Low-rank L  (c) Sparse £ (d) Low-rank L  (e) Sparse E

PCP Alternating minimization

Three frames from a 250 frame sequence taken in a lobby, with varying
illumination (Li et al., '04).



APPLICATIONS — Repairing vintage movies

Original D Repaired

AV IS FILMS AVIS FILMS
INC. INC. 5

PRESENHS PRESENNS

Corruptions Frame 1 480x620 pixels




APPLICATIONS — Repairing vintage movies

Original D Repaired

ARSI LEMES AV IS FILMS
INC INC. "M

PRESENHS PRESENHS

Corruptions Frame 2




APPLICATIONS — Repairing vintage movies

Original D Repaired

AVIS FILMS AVIS FILMS
INC. 7\@, INC. ”.‘h-ﬁf
PRESENTS PRESENTS

Corruptions Frame 3




APPLICATIONS — Repairing vintage movies

Original D Repaired

AVIS FILMS AVIS FILMS
INC. o i INC. %

PRESENHIS — PRESENNS

Corruptions Frame 4




APPLICATIONS — Repairing vintage movies

Original D Repaired

ANIS FILMS AVIS FILMS
INZ. Bty TS INC. S e
“RESENIS PRESENTS

Corruptions Frame 5




APPLICATIONS — Repairing vintage movies

Original D Repaired

Ah—

AVIS FILMS o AVIS FILMS
INC. INC. 5

PRESENHS PRESENNS

Corruptions Frame 6




APPLICATIONS — Repairing vintage movies

Original D Repaired

AVIS FILMS AVIS FILMS
INC. INC. %
PRESE NS PRESENNS

Corruptions Frame 7




APPLICATIONS — Faces under varying illumination

58 images of one person
under varying lighting:

Candes, Li, Ma, and Wright, Journal of the ACM, May 2011.



APPLICATIONS — Faces under varying illumination

58 images of one person
under varying lighting:

Candes, Li, Ma, and Wright, Journal of the ACM, May 2011.



Robust batch image alignment (Ma et al.)

o Input. M corrupted and misaligned batch of images (data)

@ Output: L aligned low-rank images; S sparse errors

(Model) M o7 =Lo+So

7: parametric deformation (rigid, affine, projective)



Robust batch image alignment (Ma et al.)

o Input. M corrupted and misaligned batch of images (data)

@ Output: L aligned low-rank images; S sparse errors

(Model) M o7 =Lo+So

7: parametric deformation (rigid, affine, projective)

Bootstrap: find L and S and 7 solution to

minimize | L]« + Al S]]
subjectto L+ S=Mor



APPLICATIONS - 2D lmage matchmg and 3D modelmg

T & 2D homographies

mm!mm [mm mm
I Lm;. M [T, 1

mm mm mm mm
_[[ILJL[[I» m mm

L

rl'[l TD\ I'DH'D\ I'[IHTI\ I'DH'D[
I [[h, lIh, ] EDL[[M

| mﬂ myrﬁtmrm i /| ) mm
]ED mi LD}(D] mL ml L. Lmlf-LmhALmb | Lml

Peng, Ganesh, Wright, Ma, CVPR’10



APPLICATIONS — Batch face alignment: accuracy evaluation

100 misaligned
corrupted images:

Vedaldi CVPR’08
direct/gradient

Mean error | Error std. | Max error

nitial misalignment
Vedaldi (direct/gradient) 1.97/1.66 1.11/0.85 | 5.71/4.02

RASL (this work)

Peng, Ganesh, Wright, and Ma, CVPR’10



APPLICATIONS — Simultaneous Alignment and Repairing

Peng, Ganesh, Wright, Ma, CVPR’10



APPLICATIONS — Celebrities from the Internet

Average face before alignment & repairing

Gloria Macapagal Arroyo
Jennifer Capriati

Laura Bush

Serena Williams

Barack Obama

Ariel Sharon

Arnold Schwarzenegger
Colin Powell

Donald Rumsfeld
George W Bush
Gerhard Schroeder
Hugo Chavez

Jacques Chirac

Jean Chretien

John Ashcroft

Junichiro Koizumi
Lleyton Hewitt

Luiz Inacio Lula da Silva
Tony Blair

Vladimir Putin

9 -

Peng, Ganesh, Wright, Ma, CVPR’10



APPLICATIONS — Face recognition with less controlled data?

Average face after alignment & repairing

Gloria Macapagal Arroyo
Jennifer Capriati

Laura Bush

Serena Williams

Barack Obama

Ariel Sharon

Arnold Schwarzenegger
Colin Powell

Donald Rumsfeld
George W Bush
Gerhard Schroeder
Hugo Chavez

Jacques Chirac

Jean Chretien

John Ashcroft

Junichiro Koizumi
Lleyton Hewitt

Luiz Inacio Lula da Silva
Tony Blair

Vladimir Putin

Peng, Ganesh, Wright, Ma, CVPR’10
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Vedaldi CVPR’08
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Peng, Ganesh, Wright, Ma, CVPR’10



world we see (through camera) is tilted!

augmented reality

A8 | QuickMark O Y, ¢ x

TechieLobang:com

world lens

~W.W.H.
N WINE HIGHWAY W
e CULTURAL AREAS (AVA) AHEAD
AMERICAN VIT!
i RT OF WINE~
~THE A -
*1CH VOLCANIC SOILS AND NORTHE
vaKMA VALLEY { EXrue FoR FRIME GROWING "
HT DURI
COLUMBIA VALLEY {éa%%?ﬁs“é’é’.{‘?of«’ﬁﬁﬂﬂ%ﬂumum

WARM DAYS ALLOW GRAPES TO RIPEN
WALLA WALLA {001 NGk CREATE RICH FLAVOR




Transform Invariant Low-rank Textures (TILT)

D- corrupted & deformed A- rectified low-rank E - sparse errors

observation textures

BT ART AT 4T 4
bttt
PPN NS
&P

S b g
— cdp it - dp e B

'L"r+"r+"r+"r+"r+“‘
-dp - dp - dp e dp
PO ASPAT
PPN L L Lo

Problem: Given Do 7T = Ay + Ey, recover 7,4, E,

Parametric deformations
(affine, projective...)

Low-rank component Sparse component

Solution: estimate the deformation and low-rank texture simultaneously

Iteratively solving the linearized convex program:

min |All« + A|F]|l1 subj A+ FE=Dot,+ JAT



h, Ma, ACCV’10
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TILT: Examples of Symmetric Patterns and Textures

Input (red window)

BB
BSBB
BBSB
BB

Zhang, Liang, Ganesh, Ma, ACCV’'10
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and Corrup
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Robust to Background,

TILT -

Zhang, Liang, Ganesh, Ma, ACCV’'10




TILT: All Types of Regular Geometric Structures in Images

an ideal edge an ideal corner symmetry man-made

y -
|

Rectified Low-rank Textures

LV L ' v v
X4\x“xf‘xl\x
4 v Al v .
" N N Ax" N
NN
TALYL
X0 S X —2¢
N X

Zhang, Liang, Ganesh, Ma, ACCV’'10



TILT: Examples of Characters, Signs, and Texts

Input (red window)

6010 ko DROUCES (0 gwer el Ghree puars Bt be el G S — ———
W0 Marie Hrl who  withe Uve puar Chim okl overiame s oy Sl a———
Company, Ube GO ai, ottty Wb Jagas 04 4 b Jo cupe W L —
e COmpanIES 00 16 rale research, Maving ¢ secum amy o e M M e M —
Coma. “A Sryearokd  Unied Siakes e ——
DT (0 BN (0 AKMMMGS RpRITS Sy b Chma | g — - ————
L T e T e —
e My M (e g G e A ———

D (A0 11 BOYRE [ MOES o WSS R oy S g i ——— o —
T e — o —
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racale s Whal WOr! Wil WAk © W0 o) o o (——"— ——
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Jeciric opened 8 larpe 7 3 Chuiese competier » prodhec: caiager s+ b . a——
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15 by DX year AR palents and (e mecrens % g s i i

N tniepione maker  Ueaien 1o quit Chsd bor s i o e |

Zhang, Liang, Ganesh, Ma, ACCV’10




TILT: More Examples

Input (red window)

NE HIGHW
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VOLCAN
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Zhang, Liang, Ganesh, Ma, ACCV’10




TILT — 3D Geometry from a Single Image

Zhang, Liang, Ganesh, Ma, ACCV’10



Augmented Reality
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Other Applications: Web Document Corpus Analysis

Latent Semantic Indexing: the classical solution (PCA)

Documents D A -+ 7
T T
B — Ul ) 1 Vl -+ U2 22 V2

Chrysler Corp said its board declared a three-for-two stock split in the
form of a 50 pct stock dividend and raised the quarterly dividend by
seven pct.

T he company said the dividend was raised to 37.5 cts a share from

35 cts on a pre-split basis, e 25 ct dividend on a post-split Dense’ difﬁcu It to inte rpret

basis.
Words Chrysler said the stock divfdendfs payable April 13 to holders
record March 23 while the caShr dividend is payable April 15 to holders

of record March 23. It said cash will be paid in lieu of fractional shares.
With the split, Chrysler said 13.2 mlIn shares remain to be purchased

in its stock repurchase program that began in late 1984. T hat program

now has a target of 56.3 min shares with the latest stock split.
Chrysler said in a statement the actions "re® ect not only our out-

standing performance over the past few years but also our optimism a bette r mod e I/so I ution ?

about the company's future."

dz'j word frequency (or TF/IDF) D _ A _|_ E’

Low-rank
“background”
topic model




Other Applications: Sparse Keywords Extracted

Reuters-21578 dataset: 1,000 longest documents; 3,000 most frequent words

CHRYSLER SETS STOCK SPLIT, HIGHER DIVIDEND

Chrysler Corp said its board declared a three-for-two stock split in the
form of a 50 pct stock dividend and raised the quarterly dividend by
seven pct.

T he company said the dividend was raised to 37.5 cts a share from
35 cts on a pre-split basis, equal to a 25 ct dividend on a post-split
basis.

Chrysler said the stock dividend is payable April 13 to holders of
record March 23 while the cash dividend is payable April 15 to holders
of record March 23. It said cash will be paid in lieu of fractional shares.

With the split, Chrysler said 13.2 mln shares remain to be purchased
in its stock repurchase program that began in late 1984. T hat program
now has a target of 56.3 mln shares with the latest stock split.

Chrysler said in a statement the actions "re’ ect not only our out-
standing performance over the past few years but also our optimism
about the company's future.”

Min, Zhang, Wright, Ma, CIKM 2010.



Summary

@ Lots of exciting work in theory of low-rank models (matrix completion)

@ Lots more needs to be done





