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ABSTRACT 

The increasing availability of GPS-enabled devices is changing 

the way people interact with the Web, and brings us a large 

amount of GPS trajectories representing people’s location 

histories. In this paper, based on multiple users’ GPS trajectories, 

we aim to mine interesting locations and classical travel 

sequences in a given geospatial region. Here, interesting locations 

mean the culturally important places, such as Tiananmen Square 

in Beijing, and frequented public areas, like shopping malls and 

restaurants, etc. Such information can help users understand 

surrounding locations, and would enable travel recommendation. 

In this work, we first model multiple individuals’ location 

histories with a tree-based hierarchical graph (TBHG). Second, 

based on the TBHG, we propose a HITS (Hypertext Induced 

Topic Search)-based inference model, which regards an 

individual’s access on a location as a directed link from the user to 

that location. This model infers the interest of a location by taking 

into account the following three factors. 1) The interest of a 

location depends on not only the number of users visiting this 

location but also these users’ travel experiences. 2) Users’ travel 

experiences and location interests have a mutual reinforcement 

relationship. 3) The interest of a location and the travel experience 

of a user are relative values and are region-related. Third, we mine 

the classical travel sequences among locations considering the 

interests of these locations and users’ travel experiences. We 

evaluated our system using a large GPS dataset collected by 107 

users over a period of one year in the real world. As a result, our 

HITS-based inference model outperformed baseline approaches 

like rank-by-count and rank-by-frequency. Meanwhile, when 

considering the users’ travel experiences and location interests, 

we achieved a better performance beyond baselines, such as rank-

by-count and rank-by-interest, etc. 

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications - data 

mining. H.5.2 [Information Interface and Presentation]: User 

Interface. H.3.3 [Information Storage and Retrieval]: 

Information Search and Retrieval – clustering, retrieval model.  

General Terms 

Algorithms, Measurement, Experimentation. 

Keywords 

Spatial data mining, GPS trajectories, Location recommendation. 

1. INTRODUCTION 
GPS-enabled devices, like GPS-phones, are changing the way 

people interact with the Web by using locations as contexts. With 

such a device, a user is able to acquire present locations, search 

the information around them and design driving routes to a 

destination. In recent years, many users start recording their 

outdoor movements with GPS trajectories for many reasons, such 

as travel experience sharing, life logging, sports activity analysis 

and multimedia content management, etc. Meanwhile, a branch of 

Websites or forums [1][2][3], which enable people to establish 

some geo-related Web communities, have appeared on the 

Internet. By uploading GPS logs to these communities, 

individuals are able to visualize and manage their GPS trajectories 

on a Web map. Further, they can obtain reference knowledge from 

others’ life experiences by sharing these GPS logs among each 

other. For instance, a person is able to find some places that attract 

them from other people’ travel routes, hence, plan an interesting 

and efficient journey based on multiple users’ experiences.  

With the pervasiveness of the GPS-enabled devices, a huge 

amount of GPS trajectories have been accumulating unobtrusively 

and continuously in these Web communities. However, almost all 

of these applications still directly use raw GPS data, like 

coordinates and time stamps, without much understanding. Hence, 

so far, these communities cannot offer much support in giving 

people interesting information about geospatial locations. What’s 

more, facing such a large dataset in a community, it is impossible 

for a user to browse each GPS trajectory one by one.  

Typically, people would desire to know which locations are the 

most interesting places in a geospatial region. To define 

interesting location, we mean the culturally important places, such 

as Tiananmen Square in Beijing and the Statue of Liberty in New 

York (i.e. popular tourist destinations), and commonly frequented 

public areas, such as shopping malls/streets, restaurants, cinemas, 

bars etc. Further, given these interesting locations in a geospatial 

region like a city, users might also wonder what the most classical 

travel sequences are among them. For example, an individual 

would be more likely to go to a bar after visiting a cultural 

landmark than they would before, making landmark-to-bar a 

classical travel sequence.  

With the information mentioned above, an individual can 

understand an unfamiliar city in a very short period and plan their 

journeys with minimal effort. Meanwhile, such information would 

enable mobile guides [6][14]; given the recommendation of the 

interesting places and travel sequences around them, mobile users 

are more likely to enjoy a high quality travel experience while 

saving lots of time for location finding and trip planning. 

However, it is not easy to infer the interest of a location because 

of the following two reasons. 1) The interest of a location does not 

only depend on the number of users visiting this location but also 

lie in these users’ travel experiences. Intrinsically, various people 

have different degrees of knowledge about a geospatial region. In 

a journey, the users, with more travel experiences about a region, 

would be more likely to visit some interesting locations in that 

region. For instance, the local people of Beijing are more capable 

than overseas tourists of finding out high quality restaurants and 

famous shopping malls in Beijing. 2) An individual’s travel 
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experience and interest of a location are relative values (i.e., it is 

not reasonable to judge whether or not a location is interesting), 

and are region-related (i.e., conditioned by the given geospatial 

region). A user, who has visited many places in a city like New 

York, might have no idea about another city, such as Beijing. 

Likewise, the most interesting restaurant in a district of a city 

might not be the most interesting one of the whole city (as other 

restaurants from the remaining districts might outperform it). 

In this paper, based on multiple users’ GPS trajectories, we aim to 

mine the top n interesting locations and the top m classical travel 

sequences in a given geospatial region, by taking into account 

users’ different travel experiences as well as the correlation 

between locations. At the same time, we are able to infer the most 

k experienced users in a geo-related community. Here, we regard 

a user’s visit to a location as an implicitly directed link from the 

user to that location, i.e., a user would point to many locations and 

a location would be pointed to by many users. Further, these links 

are weighted based on different individuals’ travel experiences in 

this region. Therefore, we are able to involve the key idea of the 

HITS model to infer users’ travel experiences and the relative 

interest of a location.  

In this HITS-based model, a geospatial region corresponds to a 

topic; an individual’s hub score stands for their travel experiences, 

and the authority score of a location represents the interest of the 

location. Users’ travel experiences and the interest of a place have 

a mutual reinforcement relationship. Intuitively, the user with rich 

travel experiences in a region might visit many interesting places 

in that region, and a very interesting place in that region might be 

accessed by many users with rich travel experiences. For 

simplicity’s sake, in the remainder of this paper, we call the user 

with rich travel experiences (i.e., relatively high hub score) in a 

region, an experienced user of that region, and a location that 

attracts people’s profound interests (relatively high authority score) 

is denoted as an interesting location. Further, considering a user’s 

experience of travel and the interest of a location, we mine the 

classical travel sequences from people’s GPS logs.  

The work reported in this paper is a step towards enhancing 

mobile Web by involving the knowledge mined from multiple 

users’ location histories. Also, this is an approach to improve the 

location-based services by integrating social networking into 

mobile Web. The contributions of this paper lie in four aspects: 

 We propose a tree-based hierarchical graph (TBHG), which 

can model multiple users’ travel sequences on a variety of 

geospatial scales based on GPS trajectories.  

 Based on the TBHG, we propose a HITS-based model to 

infer users’ travel experiences and interest of a location 

within a region. This model leverages the main strength of 

HITS to rank locations and users with the context of a 

geospatial region, while calculating hub and authority scores 

offline. Therefore, we can ensure the efficiency of our 

system while allowing users specify any regions on a map.  

 Considering individuals’ travel experiences and location 

interests as well as people’s transition probability between 

locations, we mine the classical travel sequences from 

multiple users’ location histories. 

 We evaluated our methodology using a large GPS dataset, 

which was collected by 107 users over a period of one year 

in the real world. The number of GPS points exceeded 5 

million and its total distance was over 160,000 kilometers. 

The remainder of this paper is organized as follows. Section 2 

gives an overview of our system. Section 3 presents the 

algorithms regarding location history modeling. Section 4 details 

the processes of location interest inference and classical travel 

sequence mining. In Section 4, we report on major experimental 

results and offer some discussions. Finally, in Section 5, we draw 

our conclusions and present the future work. 

2. OVERVIEW OF OUR SYSTEM 
In this section, we first clarify some terms used in this paper. Then, 

the architecture of our system is briefly introduced. Finally, we 

demonstrate the application scenarios of our system on desktops 

and GPS-phones using some snapshots of its user interfaces.  

2.1 Preliminary 

In this subsection, we will clarify some terms; including GPS log 

(P), GPS trajectory (Traj), stay point (s), location history (LocH), 

and tree-based hierarchical graph (TBHG). 

Definition 1. GPS log: Basically, as depicted in the left part of 

Figure 1, a GPS log is a collection of GPS points P={p1, p2, … , 

pn}. Each GPS point pi ∈ P contains latitude (pi.Lat), longitude 

(pi.Lngt) and timestamp (pi.T). 

Definition 2. GPS trajectory: As shown in the right part of Figure 

1, on a two dimensional plane, we can sequentially connect these 

GPS points into a curve based on their time serials, and split this 

curve into GPS trajectories (Traj) if the time interval between 

consecutive GPS points exceeds a certain threshold ∆𝑇 . Thus, 

Traj= p1→ p2 →…→ pn, where pi ∈  P, 𝑝𝑖+1 .𝑇 > 𝑝𝑖 .𝑇  and 

𝑝𝑖+1. 𝑇 − 𝑝𝑖 .𝑇 < ∆𝑇 (1 ≤ 𝑖 < 𝑛).  

 

Figure 1. a GPS log, a GPS trajectory and a stay point 

Definition 3. Stay point: A stay point s stands for a geographic 

region where a user stayed over a certain time interval. The 

extraction of a stay point depends on two scale parameters, a time 

threshold (Tthreh) and a distance threshold (Dthreh). Thus, like the 

points { p3, p4, p5, p6} demonstrated in Figure 1, a single stay 

point s can be regarded as a virtual location characterized by a 

group of consecutive GPS points P={pm, pm+1, … , pn}, where 

∀𝑚 < 𝑖 ≤ 𝑛, 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑝𝑚 ,𝑝𝑖 ≤ 𝐷𝑡𝑕𝑟𝑒𝑕  and  𝑝𝑛 .𝑇 − 𝑝𝑚 . 𝑇 ≥
𝑇𝑡𝑕𝑟𝑒𝑕 . Formally, conditioned by P, Dthreh and Tthreh, a stay point 

s=(Lat, Lngt, arvT, levT), where                               

 𝑠. 𝐿𝑎𝑡 =  𝑝𝑖 .𝐿𝑎𝑡
𝑛
𝑖=𝑚  𝑃  ,                    (1)       

                                 𝑠. 𝐿𝑛𝑔𝑡 =  𝑝𝑖 .𝐿𝑛𝑔𝑡
𝑛
𝑖=𝑚  𝑃  ,               (2) 

respectively stand for the average latitude and longitude of the 

collection P, and 𝑠. 𝑎𝑟𝑣𝑇 = 𝑝𝑚 . 𝑇 and 𝑠. 𝑙𝑒𝑣𝑇 = 𝑝𝑛 .𝑇 represent a 

user’s arrival and leaving times on s. 

Typically, these stay points occur in the following two situations. 

One is that an individual remains stationary exceeding a time 

threshold. In most cases, this status happens when people enter a 

building and lose satellite signal over a time interval until coming 

back outdoors. The other situation is when a user wanders around 

within a certain geospatial range for a period. In most cases, this 

situation occurs when people travel outdoors and are attracted by 

the surrounding environment. As compared to a raw GPS point, 

each stay point carries a particular semantic meaning, such as the 

shopping malls we accessed and the restaurants we visited, etc. 

Definition 4. Location history: Generally, a location history is a 

record of locations that an entity visited in geographical spaces 
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over a period of time. In this paper, an individual’s location 

history (LocH) is represented as a sequence of stay points (s) they 

visited with corresponding arrival and leaving times. 

𝐿𝑜𝑐𝐻 = (𝑠1

∆𝑡1
  𝑠2

∆𝑡2
  ,… ,

∆𝑡𝑛−1
    𝑠𝑛); ∆𝑡𝑖 = 𝑠𝑖+1. 𝑎𝑟𝑣𝑇 − 𝑠𝑖 . 𝑙𝑒𝑣𝑇. 

However, the location histories of various people are inconsistent 

and incomparable as the stay points pertaining to different 

individuals are not identical. To address this issue, we propose a 

structure, called tree-based hierarchical graph (TBHG), to model 

multiple users’ location histories. Generally speaking, a TBHG is 

the integration of two structures, a tree-based hierarchy H and a 

graph G on each level of this tree. The tree expresses the parent-

children (or ascendant-descendant) relationship of the nodes 

pertaining to different levels, and the graphs specify the peer 

relationships among the nodes on the same level.  

As demonstrated in Figure 2, in our system two steps need to be 

performed when building a TBHG. 1) Formulate a tree-based 

Hierarchy H: We put together the stay points detected from users’ 

GPS logs into a dataset. Using a density-based clustering 

algorithm, we hierarchically cluster this dataset into some 

geospatial regions (set of clusters C) in a divisive manner. Thus, 

the similar stay points from various users would be assigned to the 

same clusters on different levels. 2) Build graphs on each level: 

Based on the tree-based hierarchy H and users’ location histories, 

we can connect the clusters of the same level with directed edges. 

If consecutive stay points on one journey are individually 

contained in two clusters, a link would be generated between the 

two clusters in a chronological direction according to the time 

serial of the two stay points.  

 

Figure 2. Building a tree-based hierarchical graph 

Definition 5. Tree-Based Hierarchy H: H is a collection of stay 

point-based clusters C with a hierarchy structure L.  𝐻 =  𝐶, 𝐿 , 
𝐿 =  𝑙1 , 𝑙2 ,… , 𝑙𝑛  denotes the collection of levels of the hierarchy 

and 𝐶 =  𝑐𝑖𝑗  1 ≤ 𝑖 ≤  𝐿 , 1 ≤ 𝑗 ≤  𝐶𝑖    means the collection of 

clusters on different levels. Here, 𝑐𝑖𝑗  represents the jth cluster on 

level 𝑙𝑖 ∈ 𝐿, and 𝐶𝑖  is the collection of clusters on level 𝑙𝑖 .   

Definition 6. Tree-Based Hierarchical Graph (TBHG): Formally, 

a TBHG is the integration of H and G, TBHG=(H, G). H is defined 

in Definition 5, and G={ 𝑔𝑖 =  𝐶𝑖 ,𝐸𝑖 , 1 < 𝑖 ≤ |𝐿|}. On each layer 

𝑙𝑖 ∈ 𝐿 , gi  ∈G includes a set of vertexes Ci and the edges Ei 

connecting 𝑐𝑖𝑗 ∈ 𝐶𝑖 . 

Notations: In the rest of this paper, we use the following notations 

to simplify the descriptions. 𝑈 = {𝑢1 , 𝑢2, … , 𝑢𝑛}  represents the 

collection of users in a community, 𝑢𝑘 ∈ 𝑈, 1 ≤ 𝑘 ≤ |𝑈|denotes 

the kth user, and 𝑃𝑘 ,𝑇𝑟𝑎𝑗𝑘 ,𝑆𝑘and 𝐿𝑜𝑐𝐻𝑘  respectively stand for 

the uk’s GPS logs, GPS trajectory, stay points and location history.  

2.2 Architecture 
Figure 3 shows the architecture of our system, which is comprised 

of the following three parts; location history modeling, location 

interest and sequence mining, and recommendation. The first two 

operations can be performed off-line, while the last process should 
be conducted on-line based on the region specified by a user. 

 

 Figure 3. Architecture of our system 

Location history modeling: Given multiple users’ GPS logs, we 

build a TBHG off-line. In this structure, a graph node stands for a 

cluster of stay points, and a graph edge represents a directed 

transition between two locations (clusters). In contrast to raw GPS 

points, these clusters denote the locations visited by multiple users, 

hence would carry more semantic meanings, such as culturally 

important places and commonly frequented public areas. In 

addition, the hierarchy of the TBHG denotes different geospatial 

scales (alternatively, the zoom level of a Web map), like a city, a 

district and a community. In short, the tree-based hierarchical 

graph can effectively model multiple users’ travel sequences on a 

variety of geospatial scales. 

HITS-based inference model: With the TBHG, we propose a 

HITS-based inference model to estimate users’ travel experiences 

and location interests in a given region. In this model, an 

individual’s visit to a location (cluster) is regarded as a directed 

link from the individual to that location. Thus, a user is a hub if 

they have visited many locations, and a location is an authority if 

it has been accessed by many users. Further, a user’s travel 

experience (hub score) and interest of a location (authority score) 

have a mutual reinforcement relationship. Using a power iteration 

method, we can generate the final scores for each user and 

location, and find out the top n interesting locations and the top k 

experience users in a given region. (See Section 4.2 for details) 

As a user’s travel experience is region-related, we need to specify 

a geospatial region as the context for the inference model. 

Actually, each cluster of the TBHG specifies an implied region for 

its descendant clusters (locations). Therefore, we are able to mine 

in advance each individual’s travel experience and interests of 

locations conditioned by the regions of clusters on different levels. 

In other words, a user would have multiple hub scores based on 

different regions, and a location would have multiple authority 

scores specified by their ascendant clusters on different levels. 

This strategy takes the advantage of a HITS model in ranking 

locations and users based on a region context (query topic), while 

making the calculations of authority and hub scores offline. 
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Mining classical travel sequence: We calculate a classical score 

for each location sequence within a given region considering two 

factors; the travel experiences of the users taking this sequence 

and the interests of the locations contained in the sequence. Since 

there would be multiple paths starting from a location, the interest 

of this location should be shared among all the paths, with which 

it points to other locations. The interest of a location to different 

paths is based on the probability of users’ taking these paths. Later, 

the sequences with relatively high classical score will be retrieved 

as classical travel sequences. As people would not travel to too 

many places in a journey, classical sequences containing two or 

three locations would be more useful than longer ones. 

Recommendation: By changing the zoom level of a Web map and 

moving the map, an individual can specify any geospatial regions 

with the present view of the map. This region can cover a whole 

country or a part of a city. With the received zoom level, our 

recommender can find out the corresponding level of hierarchy in 

the TBHG, and then collect the locations (clusters) fall in the 

given region on this level. The hub and authority scores 

conditioned by the first shared ascendant cluster by these 

locations will be used to rank locations and users (refer to Figure 

9). Finally, the most k experienced users, top n interesting 

locations and top m classical travel sequences within the specified 

region can be returned to the users with desktop PCs and mobile 

devices like GPS-phones.  

2.3 Application Scenarios 
The work reported in this paper is an important component of our 

project GeoLife [12][19][20][21], whose prototype has been 

internally accessible within Microsoft since Oct. 2007. So far, we 

have had 107 individuals using this system.  

Figure 4 shows its user interface for desktop computers. In the 

right part of this figure, we can view the top five interesting 

locations and the most five experienced users in the region 

specified by the present view of the Web map shown in the left 

part. Meanwhile, the top five classical travel sequences within this 

region are displayed on the Web map. By changing the zoom level 

and/or moving this Web map, an individual can retrieve such 

results within any regions. In addition, the photos taken at an 

interesting location will be presented on the bottom of the window 

after a user clicks the icon representing the location on the map. 

Also, the sub-locations contained in this region will be presented. 

 

Figure 4. The user interface regarding location recommendation 

As shown in Figure 5, a user with a GPS-phone can find out the 

top five interesting locations as well as the most five classical 

sequences nearby their present geographic position (the red star). 

In addition, when the user reaches a location, our system would 

provide them with a further suggestion by presenting the top three 

classical sequences start from this location. 

   

Figure 5. Location recommendations on a GPS-phone 

3. Modeling Location History 
In this Section, we detail the process of modeling multiple users’ 

location histories with a tree-based hierarchical graph. Figure 6 

gives a formal description of this operation. 

Algorithm LocHisModeling(𝛗, 𝑫𝒕𝒉𝒓𝒆𝒔𝒉,𝑻𝒕𝒉𝒓𝒆𝒔𝒉) 

 Input: The collection of users’ GPS logs: φ = {𝑃𝑘 , 1 ≤ 𝑘 ≤ |𝑈|}. 

Output: a tree-based hierarchical graph: TBHG 

1.  Foreach 𝑢𝑘 ∈ 𝑈 do 

2.           𝑇𝑟𝑎𝑗𝑘= LogParsing(𝑃𝑘);   
3.           𝑆𝑘= StayPointDetection( 𝑇𝑟𝑎𝑗𝑘 , 𝐷𝑡𝑕𝑟𝑒𝑠𝑕 ,𝑇𝑡𝑕𝑟𝑒𝑠𝑕);  

4.           𝐿𝑜𝑐𝐻𝑘=PersonalLocHis(𝑆𝑘 );  // individual location history  

5.           SP.Add( 𝑆𝑘);                           //the collection of stay points 

6.   H= HierarchicalClustering (SP); 

7.   Foreach 𝑙𝑖 ∈ 𝐻. 𝐿 do                     // build a graph on each level 

8.             𝑔𝑖 .𝐶𝑖 = 𝐻. 𝐶𝑖; 

9.             Foreach 𝑢𝑘 ∈ 𝑈 do 

10.                     𝑔𝑖 = GraphBuilding( 𝑔𝑖 ,  𝐿𝑜𝑐𝐻
𝑘  ); 

11.         G.Add(𝑔𝑖);     

12.         TBHG=(H, G); 

13.  Return TBHG;   
Figure 6. The procedure of modeling users’ location histories 

First, for each user 𝑢𝑘 ∈ 𝑈, we parse their GPS logs (𝑃𝑘 ) into  

GPS trajectories (𝑇𝑟𝑎𝑗𝑘), and extract stay points (𝑆𝑘 ) from each 

trajectory by seeking the spatial regions where 𝑢𝑘  spent a period 

exceeding a certain threshold (refer to [12] for details). Then, 𝑢𝑘  

can formulate a location history (𝐿𝑜𝑐𝐻𝑘) with these stay points. 

Second, we put these stay points together into a dataset 𝑆𝑃 =
{𝑆𝑘 , 1 ≤ 𝑘 ≤ |𝑈|} . Using a density-based clustering algorithm, 

this dataset 𝑆𝑃  will be hierarchically clustered into several 

geospatial regions C in a divisive manner. Thus, the similar stay 

points from various users will be assigned to the same clusters on 

different levels of the hierarchy. In addition, we would filter away 

the clusters, which might represent users’ homes. If an individual 

has visited to a cluster with a frequency exceeding a threshold, we 

believe this cluster may be the individual’s home or working place.  

Third, with the tree-based hierarchy H and each user’s location 

history 𝐿𝑜𝑐𝐻𝑘 , we build connections among the clusters on the 

same level. A directed link would be generated for two clusters if 

they contain consecutive stay points pertaining to an individual’s 

location history.   

4. LOCATION INTEREST INFERENCE 
In this Section, we first give a brief introduction on the key idea of 

HITS. Second, we describe our HITS-based inference model. 

Third, by involving such inference results, we mine the classical 

travel sequences from each graph of the TBHG. 

4.1 Basic Concepts of HITS 
HITS stands for hypertext induced topic search, which is a search-

query-dependent ranking algorithm for Web information retrieval. 



When the user enters a search query, HITS first expands the list of 

relevant pages returned by a search engine and then produces two 

rankings for the expanded set of pages, authority ranking and hub 

ranking. For every page in the expanded set, HITS assigns them 

an authority score and a hub score. As shown in Figure 7, an 

authority is a Web page with many in-links, and a hub is a page 

with many out-links. The key idea of HITS is that a good hub 

points to many good authorities, and a good authority is pointed to 

by many good hubs. Thus, authorities and hubs have a mutual 

reinforcement relationship. More specifically, a page’s authority 

score is the sum of the hub scores of the pages it points to, and its 

hub score is the integration of authority scores of the pages 

pointed to by it. Using a power iteration method, the authority and 

hub scores of each page can be calculated. The main strength of 

HITS is ranking pages according to the query topic, which may 

provide more relevant authority and hub pages. However, HITS 

needs some time consuming operations, such as on-line expanding 

page sets and calculating the hub and authority scores. 

 

Figure 7. The basic concept of HITS model 

4.2 Our HITS-Based Inference Model 

4.2.1 Model Description 
Using the third level of the TBHG shown in Figure 2 as a case, 

Figure 8 illustrates the main idea of our HITS-based inference 

model. Here, a location is a cluster of stay points, like 𝑐31 and 𝑐32. 

We regard an individual’s visit to a location as an implicitly 

directed link from the individual to that location. For instance, 

cluster 𝑐31 contains two stay points respectively detected from 𝑢1 

and 𝑢2’s GPS trajectories, i.e., both 𝑢1  and 𝑢2  have visited this 

location. Thus, two directed links are generated respectively to 

point to 𝑐31 from 𝑢1 and 𝑢2. Similar to HITS, in our model, a hub 

is a user who has accessed many places, and an authority is a 

location which has been visited by many users. Therefore, users’ 

travel experiences (hub scores) and the interests of locations 

(authority scores) have a mutual reinforcement relationship.  

 

Figure 8. Our HITS-based inference model  

4.2.2 Strategy for Data Selection 
Intrinsically, a user’s travel experience is region-related, i.e., a 

user who has much travel knowledge in a city might have no idea 

about another city. Also, an individual, who has visited many 

places in a part of a city, might know little about another part of 

the city (if the city is very large, like New York). This feature is 

aligned with the query-dependent property of HITS. Thus, before 

conducting the HITS-based inference, we need to specify a 

geospatial region (a topic query) for the inference model and 

formulate a dataset that contains the locations falling in this region.  

However, using an online data selection strategy, (i.e., specify a 

region based on an individual’s input), we need to perform lots of 

time consuming operations, which may reduce the feasibility of 

our system. Actually, on a level of the TBHG, the shape of a graph 

node (cluster of stay points) provides an implicit region for its 

descendent nodes. These regions covered by clusters on different 

level of the hierarchy might stand for various semantic meanings, 

such as a city, a district and a community. Therefore, we are able 

to calculate in advance the interest of every location using the 

regions specified by their ascendant clusters. In other words, a 

location might have multiple authority scores based on the 

different region scales it falls in. Also, a user might have multiple 

hub scores conditioned by the regions of different clusters.   

Definition 7. Location Interest: In our system, the interest of a 

location (𝑐𝑖𝑗 ) is represented by a collection of authority scores 

𝑎𝑖𝑗 = {𝑎𝑖𝑗
1 , 𝑎𝑖𝑗

2 , … , 𝑎𝑖𝑗
𝑙 } . Here, 𝑎𝑖𝑗

𝑙  denotes the authority score of 

cluster 𝑐𝑖𝑗 based on the region specified by its ascendant nodes on 

level l, where 1 ≤ 𝑙 ≤ 𝑖 − 1. 

Definition 8. User Travel Experience: In our system, a user’s 

(e.g., 𝑢𝑘) travel experience is represented by a set of hub scores 

𝑕𝑘 = {𝑕𝑖𝑗
𝑘 |1 ≤ 𝑖 <  𝐿 , 1 ≤ 𝑗 ≤  𝐶𝑖 } (refer to definition 5), where 

𝑕𝑖𝑗
𝑘  denotes 𝑢𝑘’s hub score conditioned by the region of 𝑐𝑖𝑗 . 

Figure 9 gives a demonstration of these definitions. In the region 

specified by cluster 𝑐11 , we can respectively calculate an authority 

score (𝑎21
1  and 𝑎22

1 ) for cluster 𝑐21  and 𝑐22 . Meanwhile, within 

this region, we are able to infer authority scores (𝑎31
1 , 𝑎32

1 , 𝑎33
1 , 

𝑎34
1  and 𝑎35

1 ) for cluster  𝑐31, 𝑐32, 𝑐33, 𝑐34 and 𝑐35. Further, using 

the region specified by cluster 𝑐21, we can also calculate another 

authority score ( 𝑎31
2  and 𝑎32

2 ) for 𝑐31 and 𝑐32 . Likewise, the 

authority scores (𝑎33
2 , 𝑎34

2  and 𝑎35
2 ) of 𝑐33, 𝑐34 and 𝑐35 can be re-

inferred with the region of 𝑐22. Therefore, each cluster on the third 

level has two authority scores, which would be used in various 

occasions based on users’ inputs. For instance, as depicted in the 

Figure 9 A), when a user selects a region only covering location 

𝑐31and 𝑐32 , the authority score 𝑎31
2  and 𝑎32

2  can be used to rank 

these two locations. However, as illustrated in Figure 9 B), the 

region selected by a user covers the locations from two different 

parent clusters (𝑐21 and 𝑐22). At this moment, the authority value 

𝑎32
1 , 𝑎33

1  and 𝑎34
1  should be used to rank these locations.  

 

Figure 9. Some cases demonstrating the data selection strategy 

The strategy, which sets multiple hub scores for a user and 

multiple authority scores for a location, has the following two 

advantages. First, we are able to leverage the main strength of 

HITS to rank locations and users with the contexts of geospatial 

region (query topic). Second, these hub and authority scores can 

be calculated offline. Therefore, we can ensure the efficiency of 

our system while allowing users specify any regions on a map.  
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4.2.3 Inference     
Given the set of locations pertaining to the same ascendant cluster, 

we are able to build an adjacent matrix M between users and 

locations based on the users’ accesses on these locations. In this 

matrix, an item 𝑣𝑖𝑗
𝑘  stands for the times that 𝑢𝑘  (a user) has visited 

to cluster 𝑐𝑖𝑗 (the jth cluster on the ith level). Such matrixes can be 

built offline for each non-leaf node. For example, the matrix M 

formulated for the case shown in Figure 8 can be represented as 

follows, where all the five clusters pertain to 𝑐11 . 

 𝑀 =

𝑐31  𝑐32  𝑐33  𝑐34  𝑐35

𝑢1
𝑢2

𝑢3
𝑢4

 

1 1 0 0 0
1 1 2 0 0
0 0 1 2 0
0 0 0 1 1

 
              (3)            

Then, the mutual reinforcement relationship of user travel 

experience 𝑕𝑖𝑗
𝑘  and location interest 𝑎𝑖𝑗

𝑙  is represented as follows: 

                              𝑎𝑖𝑗
𝑙 =  𝑣𝑗𝑖

𝑘
𝑢𝑘∈𝑈 × 𝑕𝑙𝑞

𝑘 ;                       (4) 

                            𝑕𝑙𝑞
𝑘 =  𝑣𝑖𝑗

𝑘 × 𝑎𝑖𝑗
𝑙

𝑐𝑖𝑗 ∈𝑐𝑙𝑞 ;                     (5) 

Where 𝑐𝑙𝑞 is 𝑐𝑖𝑗 ’s ascendant node on the lth level, 1 ≤ 𝑙 < 𝑖. For 

instance, as shown in Figure 9, 𝑐31’s ascendant node on the first 

level  of the hierarchy is 𝑐11 , and its ascendant node on the second 

level is 𝑐21 . Thus, if 𝑙 = 2, 𝑐𝑙𝑞  stands for 𝑐21  and  (𝑐31  ,  𝑐32) ∈

𝑐21. Also, if 𝑙 = 1, 𝑐𝑙𝑞  denotes 𝑐11 , (𝑐31 , 𝑐32 , … , 𝑐35) ∈ 𝑐11. 

Writing them in the matrix form, we use a to denote the column 

vector with all the authority scores, and use h to denote the 

column vector with all the hub scores. Conditioned by the region 

of cluster 𝑐11 , a=(𝑎31
1 , 𝑎32

1 , … , 𝑎35
1 ), and h=(𝑕11

1 , 𝑕11
2 , . . . , 𝑕11

4 ). 

                                    𝒂 = 𝑴T ∙ 𝒉                                  (6) 

  𝒉 = 𝑴 ∙ 𝒂                                    (7) 

If we use 𝒂𝑛  and 𝒉𝑛  to denote authority and hub scores at the nth 

iteration, the iterative processes for generating the final results are                             

  𝒂𝑛 = 𝑴T ∙ 𝑴 ∙ 𝒂𝑛−1                    (8) 

  𝒉𝑛 = 𝑴 ∙ 𝑴T ∙ 𝒉𝑛−1                    (9) 

Starting with 𝒂0 = 𝒉0 = (1,1,… ,1), we are able to calculate the 

authority and hub scores using the power iteration method. 

Algorithm LocationInterestInference (𝑇𝐵𝐻𝐺, 𝐿𝑜𝑐𝐻) 
Input:     A tree-based hierarchy graph TBHG=(H, G), and  

collection of users’ location histories LocH  
Output: the collection of users’ hub scores, 𝒉, and the collection of 

locations’ authority scores, 𝒂. 

1.  𝒉=𝒂 = ∅; 

2.  For 𝑖 = 1; 𝑖 <  𝐿 ; 𝑖 + +                //for each level  

3.        For 𝑗 = 1; 𝑗 ≤  𝐶𝑖  ; 𝑗 + +       // for each cluster on this level 

4.              For 𝑥 = 𝑖 + 1;𝑥 ≤  𝐿 ;𝑥 + + //search the descendant levels 

5.                          𝐶𝑥 ′=LocationCollecting (x, 𝑐𝑖𝑗, 𝐻); 

6.                          M=MatrixBuilding(𝐶𝑥 ′, 𝐿𝑜𝑐𝐻);  

7.                          ( 𝑕𝑖𝑗
𝑘
 ,  𝑎𝑥

𝑖  )=HITS-Inference(M);  

8.                          𝒂 = 𝒂 ∪  𝑎𝑥
𝑖  ; 

9.                          𝒉 = 𝒉 ∪  𝑕𝑖𝑗
𝑘  ; 

10. Return (𝒉, 𝒂);                

Figure 10. The algorithm for inferring the authority and hub scores 

Figure 10 depicts an off-line algorithm for inferring each user’s 

hub scores and the authority scores of each location conditioned 

by the different regions. Here 𝐶𝑥  is the collection of clusters on 

xth level. 𝐶𝑥 ′ ⊂ 𝐶𝑥  denotes the collection of 𝑐𝑖𝑗 ′ s descendant 

clusters on the xth level. For instance, the 𝐶2′ of  𝑐11  is {𝑐21, 𝑐22}, 

and 𝐶3′ of  𝑐11  is {𝑐31, 𝑐32 , … , 𝑐35}.  𝑎𝑥
𝑖   represents the collection 

of authority scores of the locations contained in 𝐶𝑥  conditioned by 

their ascendant node on the ith level. 

4.3 Mining Classical Travel Sequences 
With users’ travel experiences and the interests of locations, we 

calculate a classical score for each location sequence within the 

given geospatial region. The classical score of a sequence is the 

integration of the following three aspects. 1) The sum of hub 

scores of the users who have taken this sequence. 2) The 

authority scores of the locations contained in this sequence. 3) 

These authority scores are weighted based on the probability that 

people would take a specific sequence. 

Using a graph of TBHG, Figure 11 demonstrates the calculation 

of the classical score for a 2-length sequence, AC. In this 

figure, the graph nodes (A, B, C, D and E) stand for locations, 

and the graph edges denote people’s transition sequences among 

them. The number shown on each edge represents the times users 
have taken the sequence.  

 

Figure 11. Demonstrating classical sequence mining with a graph  

Equation (10) presents the classical score of sequence AC, 

which includes the following three parts. 1) The authority score of 

location A (𝑎𝐴) weighted by the probability of people’s moving 

out by this sequence (𝑂𝑢𝑡𝐴𝐶 ). Clearly, there are seven (5+2) links 

point out to other nodes from node A, and five out of seven of 

these links direct to node C. So, 𝑂𝑢𝑡𝐴𝐶 =
5

7
 , i.e., only five 

sevenths of location A’s authority ( 𝑎𝐴)  should be offered to 

sequence AC, and the rest of 𝑎𝐴  should be provided to AB. 2) 

The authority score of location C (𝑎𝐶) weighted by the probability 

of people’s moving in by this sequence (𝐼𝑛𝐴𝐶 ). 3) The hub scores 

of the users (𝑈𝐴𝐶 ) who have taken this sequence.  

 𝑆𝐴𝐶 =  (𝑎𝐴 ∙ 𝑂𝑢𝑡𝐴𝐶 + 𝑎𝐶 ∙ 𝐼𝑛𝐴𝐶 + 𝑕𝑘
𝑢𝑘∈𝑈𝐴𝐶

) 

              =  𝑈𝐴𝐶  ∙  𝑎𝐴 ∙ 𝑂𝑢𝑡𝐴𝐶 + 𝑎𝐶 ∙ 𝐼𝑛𝐴𝐶 +  𝑕𝑘
𝑢𝑘∈𝑈𝐴𝐶

   

              = 5 ×  
5

7
× 𝑎𝐴 +

5

8
𝑎𝐶 +  𝑕𝑘

𝑢𝑘∈𝑈𝐴𝐶
.            (10) 

Following this method, we are able to calculate the classical score 

of sequence CD, 𝑆𝐶𝐷 = 1 ×  
1

7
× 𝑎𝐶 +

1

7
𝑎𝐷 +  𝑕𝑘

𝑢𝑘∈𝑈𝐶𝐷
. 

Thus, the classical score of sequence ACD equals to: 

                               𝑆𝐴𝐶𝐷 = 𝑆𝐴𝐶 + 𝑆𝐶𝐷.                          (11) 

Using this paradigm we are able to calculate the classical score of 

any n-length sequences. Later, the top m n-length sequences with 

relatively high scores can be retrieved as n-length classical travel 

sequences. However, it is not necessary to find out the classical 

sequences with long length, as people would not visit many places 

in a trip. Moreover, the process of searching for n-length classical 

sequences is time consuming, although this operation can be 

performed offline. Thus, in this paper, we start with mining 2-

length classical sequences, and then try to find out some 3-lenth 

classical sequences by extending these 2-length sequences.  

5. EXPERIMENTS 
In this Section, we first present the experimental settings. Second, 

we introduce the evaluation approaches. Third, some major results 

are reported followed by some discussions. 
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5.1 Settings 

5.1.1 GPS Devices and Data Collectors 
Figure 12 shows the GPS devices we chose to collect data. They 

are comprised of stand-alone GPS receivers (Magellan Explorist 

210/300, G-Rays 2 and QSTARZ BTQ-1000P) and GPS phones. 

Except for the Magellan 210/300, these devices are set to receive 

GPS coordinates every two seconds. Carrying these GPS-enabled 

devices, 107 users (49 females and 58 males) recorded their 

outdoor movements with GPS logs from May 2007 to Oct. 2008. 

Figure 13 shows these users’ demographic statistics.  

   

Figure 12. GPS devices used in our experiment 

  

Figure 13. Demographic statistics of our experiment 

5.1.2 GPS Data 
Figure 14 depicts the distributions of the GPS data we used in the 

experiments. Most parts of this dataset were created in Beijing, 

China, and other parts covered 36 cities in China as well as a few 

cities in the USA, South Korea, and Japan. The volunteers were 

motivated to log their outdoor movements as much as possible by 

the payments based on the distance of GPS trajectories collected 

by them; the more data collected by them, the more money they 

obtained. As a result, the total distance of the GPS logs exceeded 

166,372 kilometers, and the total number of GPS points reached 

5,081,369. Considering the privacy issues, we use these datasets 

anonymously. 

 

A) Data distribution in China            B) Data distribution in Beijing 
Figure. 14 Distribution of the GPS dataset we used in this experiment 

5.1.3 Parameter Selection 
Stay point detection: In this experiment, we set Tthreh to 20 

minutes and Dthreh to 200 meters for stay point detection. In other 

words, if an individual stays over 20 minutes within a distance of 

200 meters, a stay point is detected. These two parameters enable 

us to find out some significant places, such as restaurants and 

shopping malls, etc., while ignoring the geo-regions without 

semantic meaning, like the places where people wait for traffic 

lights or meet congestion. As a result, we extracted 10,354 stay 

points from the dataset. 

Clustering: We use a density-based clustering algorithm, OPTICS 

(Ordering Points To Identify the Clustering Structure), to 

hierarchically cluster stay-points into geospatial regions in a 

divisive manner. As compared to an agglomerative method like 

K-Means, the density-based approach is capable of detecting 

clusters with irregular structures, which may stand for a set of 

nearby restaurants or shopping streets. In addition, this approach 

would filter out a few sparsely distributed stay points, and ensure 

each cluster has been accessed by some users. As a result, a four-

level TBHG is built based on our dataset (see Table I for details). 

Table I. Information of the TBHG used in the experiment 

 Num. of 

Clusters 

 

Ave. size of 

clusters KM 

Ave. num of 

user/cluster 

Ave. num stay 

points/cluster 

Level 1 1 11,450.7 107 10,354 

Level 2 32 14.5 6.7 267.5 

Level 3 70 2.1 8 112.7 

Level 4 159 0.26 6.5 46.2 

5.2 Evaluation Approaches 

5.2.1 Framework of the Evaluation 
Figure 15 illustrates the framework of the evaluation, in which we 

respectively explore the effectiveness of location & travel 

sequence recommendation by performing a user study. In this 

study, 29 subjects (14 females and 15 males), who have been in 

Beijing for more than 6 years, were invited to answer the 

evaluation questions. Using the region specified by the fourth ring 

road of Beijing, we retrieved the top 10 interesting locations and 

the top 5 classical travel sequences based on a variety of 

approaches, including our methods and some baselines. As the 

subjects are familiar with this region, we are more likely to find 

out common ground truths shared by them. 

 

Figure 15. Framework of the evaluations 

Regarding the interesting locations, we conduct the following two 

aspects of evaluations. One is the Presentation, which stands for 

the ability of the retrieved interesting locations in presenting a 

given region. The other is the Rank, which represents the ranking 

performance of the retrieved locations based on relative interests. 

1) Presentation. In this aspect, each subject had to answer the 

following evaluation questions:  

 Representative: How many locations in this retrieved set are 
representative of the given region (0-10)?  

 Comprehensive: Do these locations offer a comprehensive 
view of the given region (1-5)? 

 Novelty: How many locations in this retrieved set have 

interested you even though they only appeared recently (0-

10)? In the study, the subjects were able to view the points 

of interests (POIs) falling in each location as well as the 
photos taken there.  

2) Rank. Each subject had to individually rate the interest of each 

retrieved location with a value (-1~2) shown in table II. Then, we 
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aggregated these subjects’ ratings for each location, and select the 

mode of the ratings for the location. If the mode of two rating 

levels is identical, we prefer the lower ratings. For example, if 

fifteen subjects rated a location with 2 and ten rated it with 1, we 

regard the subjects’ rating on this location as 2 (since 2 is the most 

frequently occurring rating in the dataset). However, if the 

number of subjects rating a location with 2 is the same with those 

rating it with 1, the final aggregated rating should be 1. 

Table II. Users’ interests in a location 

Ratings Explanations 

2 I’d like to plan a trip to that location. 

1 I’d like to visit that location if passing by. 

0 
I have no feeling about this location, but don’t oppose 
others to visit it. 

-1 This location does not deserve to visit. 

With regard to evaluating the retrieved classical travel sequences, 

we required the subjects to rate each sequence in the set with the 

scores shown in table III. Also, we aggregated these subjects’ 

rating for each sequence like the method mentioned above.  

Table III. Users’ interests in a travel sequence 

Ratings Explanations 

2 I’d like to plan a trip with this travel sequence. 

1 I’d like to take that sequence if visiting the region. 

0 I have no feeling about this sequence, but don’t oppose 

others to choose it. 

-1 It is not a good choice to select this sequence. 

5.2.2 Measurements 
Measurements for presentation: We compare our method with 

the baselines using the mean score of the ratings offered by the 

subjects. In addition, we perform a T-test for each comparison to 

justify the significant advantages of our method. 

Measurements for ranking: We employ two criteria, nDCG 

(normalized discounted cumulative gain) and MAP (Mean 

Average Precision), to measure the ranking performance of the 

retrieved interesting locations. MAP is the most frequently used 

summary measure of a ranked retrieval run. In our experiment, it 

stands for the mean of the precision score after each interesting 

location is retrieved. Here, a location is deemed as an interesting 

location if its interest level equals to 2. For instance, the MAP of 

an interest rating vector, 𝐺 =< 2, 0, 2,0,1, 0, 0, 2, 0, −1 >, for the 

top 10 location, is computed as follows. 

𝑀𝐴𝑃 =
1 + 2 3 + 3 8 

3
= 0.681 

nDCG  is used to compute the relative-to-the-ideal performance of 

information retrieval techniques. The discounted cumulative gain 

of G is computed as follows: (In our experiments, b = 3.) 

𝐶𝐺 𝑖 =  

 
 

 
𝐺 1 ,                              𝑖𝑓 𝑖 = 1

𝐷𝐶𝐺 𝑖 − 1 + 𝐺 𝑖 ,     𝑖𝑓 𝑖 < 𝑏

𝐷𝐶𝐺 𝑖 − 1 +
𝐺 𝑖 

𝑙𝑜𝑔𝑏𝑖
,    𝑖𝑓 𝑖 ≥ 𝑏

  

Given the ideal discounted cumulative gain DCG’, then nDCG at 

i-th position can be computed as 𝑁𝐷𝐶𝐺 𝑖 = 𝐷𝐶𝐺 𝑖 /𝐷𝐶𝐺 ′ [𝑖]. 

Measurement for classical sequence: We used the mean score of 

these subjects’ ratings, along with a T-test for each comparison, to 

distinguish our method from baselines. At the same time, we 

investigated the classical rate, which represents the ratio of 

sequences with a score of 2 in the set, of different methods.  

5.2.3 Baselines  
Baselines for mining interesting locations: Here, we explore the 

effectiveness of two baseline methods, rank-by-count and rank-

by-frequency. Regarding the former one, the more users visiting a 

location the more interesting this location might be. In the latter, 

the more frequent people accessed a location the more interesting 

this location might be. The visited frequency of a location is the 

ratio between the number of the users visiting this location and the 

time span, from the first day one user accessed this location to the 

last day at least one individual visited it. 

Baselines for mining classical travel sequences: We compare our 

method with three baselines; rank-by-count, rank-by-interests and 

rank-by-experience. With regard to the first baseline, we rank a 

sequence based on the number of the users who have taken this 

sequence. Regarding the second one, we only take into account 

the interests of the locations contained in a sequence to rank the 

travel sequences. In the third baseline method, we only consider 

the experiences of the users who have taken this sequence. 

5.3 Results 

5.3.1 Results Related to Interesting Locations 
Presentation ability: Figure 16 illustrates the top 10 interesting 

locations, which were respectively inferred out by our method and 

two baselines using the region within the fourth ring road of 

Beijing (the zoom level corresponds to the 3rd level of the TBHG).  

 

A) Our method              B) Rank-by-count        C) Rank-by-frequency 

Figure 16. Top 10 interesting locations of different approaches 

Based on these results, 29 subjects individually answered the 

evaluation questions with the ratings mentioned in Table II. As 

shown in Table IV, our method is more capable than the baselines 

of finding out representative locations in the give region (T-test 

result: p1<0.01, p2<0.01). Meanwhile, the top 10 locations 

retrieved by our method presented a more comprehensive view of 

this region over the baselines (p1<<0.01, p2<<0.01). In addition, 

using our method, more novel locations that interest the subjects 

have been retrieved (p1<0.01, p2<0.01). These regions represent 

the development of new Beijing, while having not been noticed by 

many people. Regarding the baselines, Rank-by-count 

outperformed rank-by-frequency in finding out the representative 

locations (p<0.01) and presenting a comprehensive view of the 

region (p<0.01). However, the former method does not show a 

clear advantage beyond the latter in detecting the novel interesting 

locations (p>0.2). 

Table IV. Comparison on the presentation ability of different methods 

 Ours Rank-by-count Rank-by-frequency 

Representative 5.4 4.5 3.1 

Comprehensive 4 3.4 2.3 

Novelty 3.4 2.4 2.2 

Ranking ability: Table V depicts the ranking ability of different 

methods using nDCG@5, nDCG@10 and MAP as measurements. 

Although the set of interesting locations retrieved by our method 

and rank-by-count had a 60 percents overlap, our method showed 

clear advantages beyond baseline methods in effectively ranking 

this location set.  
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Table V. Ranking ability of different methods 

 Ours Rank-by-count Rank-by-frequency 

nDCG@5 0.823       0.714      0.598 

nDCG@10 0.943      0.848      0.859 

MAP 0.759 0.532 0.365 

5.3.2 Results Related to Classical Sequences 
Using two measurements (mean score and classical rate), Table 

VI differentiates the performance of our method from the 

baselines in finding out the classical sequences in the given region. 

Clearly, our method considering both users’ travel experiences 

and location interests outperformed rank-by-count (p<<0.01), 

rank-by-interest (p<0.01) and rank-by-experience (p<0.01). 

Meanwhile, when respectively taking into account users’ travel 

experiences (p<0.01) or location interests (p<0.01), the 

performance of rank-by-counts had been significantly improved. 

These results proved that user travel experience and location 

interests respectively play an important role in retrieving the 

classical travel sequences and offered a greater contribution when 

being used together. (See 5.2.2 for the meaning of classical rate) 

Table VI. Performance of different methods in finding classical sequences  

 Ours (Interest 

+ Experience) 

Rank-by-

counts 

Rank-by-

interest 

Rank-by-

experience 

Mean score 1.6 1.2 1.4 1.5 

Classical Rate  0.6 0.3 0.4 0.4 

5.3.3 Investigations into Our Method 
The advantages of the hierarchy of the TBHG lie in two aspects. 1) 

It would offer a comprehensive view of a large region (a city) and 

help users understand the region step-by-step (level-by-level). 2) 

The hierarchy can be used to specify users’ travel experiences in 

different regions. Hence, we are more likely to effectively retrieve 

interesting locations in a region.  

First, as shown in Figure 17 A), 8 out of the top 10 interesting 

locations (within the fourth ring road of Beijing) have fallen into 

the town center if these locations are ranked according to their 

authority scores inferred out on the bottom level of the TBHG (i.e., 

no hierarchy). In contrast to Figure 16 A), Figure 17 rushes users 

into low level details of Beijing, while ignoring a more 

comprehensive view of this city. Failing in understanding the city 

step-by-step, people would not gain some high-level conceptual 

information related to Beijing at the very beginning.  

 

Figure 17. Investigations into our method 

Second, Figure 17 B) presents the top 10 interesting locations 

ranked by their authority scores conditioned by the region shown 

in this figure (these locations pertain to the same ascendant cluster 

on the 3rd level). As compared to Figure 17 C) where the locations 

are ranked in terms of the authority scores conditioned by the 

whole city (i.e., without hierarchy), Figure 17 B) provided a more 

comprehensive view of this region (4.1>3.1, p<0.01) and retrieved 

more representative locations (6.8>4.7, p<0.01) in the region. In 

addition, the results shown in Figure 17 B) outperformed that of 

Figure 17 C) in effectively ranking the retrieved locations 

(nDCG@5 0.86>0.67). Intrinsically, users’ travel knowledge is 

region-related, e.g., some individuals, who are familiar with most 

parts of Beijing, might know little about the region shown in 

Figure 17 B). Thus, we cannot directly use these individuals’ hub 

scores to infer the authority scores of the locations in this region. 

Figure 18 A) demonstrates the correlations between users in the 

GeoLife community. A link was generated to connect two users (a 

node) if they had visited 5+ of the same locations. The relatively 

big nodes denote the top ten experienced users in Beijing. Figure 

18 B) shows the correlation among locations using the sequences 

generated by multiple users in Beijing. Such information would 

further enable us to explore the social networking in geo-related 

community and understand locations based on users’ GPS logs. 

  

A) Relations between users          B) Correlations between locations  
Figure 18. Correlation between locations and users 

5.4 Discussions 

5.4.1 Discussion on Interesting Locations 
With data shown in Table IV, we observe that users’ travel 

experiences are useful in not only retrieving representative 

locations in a region but also finding out more novel and 

interesting locations beyond baseline methods. Intuitively, some 

interesting places, which contain high-quality restaurants or nice 

shopping malls developed recently, would not be visited by many 

people. However, a location covering some landmarks, which is 

not that interesting but with a relatively long history, might be 

accessed by more people. Hence, the rank-by-count cannot handle 

this kind of problem well. Meanwhile, a user would frequently 

access the restaurant nearby their working place for convenience 

rather than food quality or having fun. Therefore, a location 

frequently visited by people might not be interesting. 

5.4.2 Discussion on Classical Sequences 
The results shown in Table V justify the contributions of users’ 

travel experiences and location interests in mining classical travel 

sequences. First, intuitively, without considering such information, 

the sequence from a railway station to a nearby hotel might be 

detected as a classical travel sequence because some tourists 

would live nearby the station. Obviously, this is not a good 

recommendation for users. Second, if only using individuals’ 

travel experiences, we would mine out some life routine of an 

experienced user rather than classical sequences. For instance, 

sometimes, an experienced user would have dinner at a restaurant 

nearby their home and then go to a supermarket not far away from 

this restaurant. Since the user has a relatively high hub score, their 

life routine, like from the restaurant to the supermarket, might be 

detected as a classical travel sequence. Third, if only considering 

location interest, some ineffective sequences would be found out. 

For example, the Summer Palace and the Forbidden City are two 

very interesting locations in Beijing. An experienced user would 

not visit them in a sequence as they are far from each other and 

everyone deserves a one day tour. However, a few tourists without 

much travel knowledge about Beijing might carelessly visit these 

two places in a sequence, hence make this sequence classical. 
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6. RELATED WORK 

6.1 Mining Location History 
Mining individual location history: During the past years, a 

branch of research [5][9][11][13] has been performed based on 

individual location history represented by GPS trajectories. These 

works include detecting significant locations of a user [5][9], 

predicting the user’s movement among these locations [5][13], 

and recognizing user-specific activities at each location [15]. As 

opposed to these works, we aim to model multiple users’ location 

histories and learn patterns from numerous individuals’ behaviors. 

Mining multiple users’ location histories: Gonotti et al. [8] 

mined similar sequences from users’ moving trajectories, and 

Mamoulis et al. [16] proposed a framework for retrieving 

maximum periodic patterns in spatio-temporal data. MSMLS [11] 

used a history of a driver’s destinations, along with data about 

driving behavior extracted from multiple users’ GPS trajectories, 

to predict where a driver may be going as a trip progresses. Eagle 

et al [7] aimed to recognize the social pattern in daily user activity 

from the dataset collected by 100 users with a Bluetooth-enabled 

mobile phone. In contrast to these techniques, we extend the 

paradigm of mining multiple users’ location histories from 

exploring users’ behaviors to understanding locations as well as 

modeling the relationship between users and locations. 

6.2 Location Recommenders 
Recommenders based on real-time location: Mobile tourist guide 

systems [4][6][14][17] typically recommend locations and 

sometimes provide navigation information based on a user’s real-

time location. Previously, such kinds of systems were somehow 

naïve as they always returned the information close to an 

individual without understanding the individual and the nearby 

locations. Recently, some researchers aim to filter away from the 

returned results the invisible entities occluded by the nearby 

building [6][17]. Meanwhile, another branch of work [4][14] 

started involving a user’s location history in these systems to 

provide the user with a more personalized recommendation. In 

contrast to these techniques, we aim to integrate social networking 

into the mobile tourist guide systems, by helping each individual 

deeply understand the locations around them with the knowledge 

mined from multiple users’ location histories.  

Recommenders based on location history: Using multiple users’ 

real-world location histories, some recommender systems, such as 

Geowhiz [10] and CityVoyager [18], etc, have been designed to 

recommend geographic locations like shops or restaurants to users. 

Horozov et al. [10] proposed an enhanced collaborative filtering 

solution to generate the recommendation of a restaurant. Takeuchi 

et al. [18] attempted to recommend shops to users based on their 

individual preferences estimated by analyzing their past location 

histories. The major difference between these works and ours lies 

in two aspects. First, we differentiate the travel experiences of 

various users. Second, we consider the relationship between 

locations and users’ travel experiences, e.g., the mutual 

reinforcement relationship and the region-related constraints.  

7. CONCLUSION 
In this paper, using the GPS trajectories generated by multiple 

users, we mined interesting locations and classical travel 

sequences within a given geospatial region. Such information can 

help us understand the correlation between users and locations, 

and enable travel recommendation as well as mobile tourist 

guidance. In this work, we regard an individual’s visit to a 

location as a link from the individual to the location, and weight 

these links in terms of users’ travel experiences in various regions. 

A HITS-based model is proposed to infer a user’s travel 

experience and the interest of a location considering the following 

two aspects. One is the mutual reinforcement relationship between 

location interest and user travel experience. The other is that user 

travel experience as well as location interest are region-related. 

Later, we detected the classical travel sequences in a specified 

region using location interests and users’ travel experiences. We 

evaluated our method with a real-world GPS dataset created by 

107 users over a period of 1 year. As a result, our method showed 

clear advantages beyond rank-by-count and rank-by-frequency by 

providing a better presentation ability and ranking performance. 

Meanwhile, when employing both users’ travel experiences and 
location interests, we achieved the best performance. 

In the future, we would like to improve the efficiency of sequence 

mining. Also, grouping users based on their location histories or 
clustering locations in terms of people’s visits are potential works. 
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