
Confidence-Weighted Linear Classification

Mark Dredze mdredze@cis.upenn.edu
Koby Crammer crammer@cis.upenn.edu

Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104 USA

Fernando Pereira1 pereira@google.com

Google, Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043 USA

Abstract

We introduce confidence-weighted linear clas-
sifiers, which add parameter confidence infor-
mation to linear classifiers. Online learners
in this setting update both classifier param-
eters and the estimate of their confidence.
The particular online algorithms we study
here maintain a Gaussian distribution over
parameter vectors and update the mean and
covariance of the distribution with each in-
stance. Empirical evaluation on a range of
NLP tasks show that our algorithm improves
over other state of the art online and batch
methods, learns faster in the online setting,
and lends itself to better classifier combina-
tion after parallel training.

1. Introduction

Online learning algorithms operate on a single instance
at a time, allowing for updates that are fast, simple,
make few assumptions about the data, and perform
well in wide range of practical settings. Online learn-
ing algorithms have become especially popular in nat-
ural language processing for tasks including classifica-
tion, tagging, and parsing. In this paper, we revisit
the design of linear classifier learning informed by the
particularities of natural language tasks. Specifically,
feature representations for natural language processing
have very high dimension (millions of features derived
from words and word combinations are common), and
most features are observed on only a small fraction of
instances. Nevertheless, those many rare features are
important in classifying the instances in which they

1Work done at the University of Pennsylvania.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

occur. Therefore, it is worth investigating whether
online learning algorithms for linear classifiers could
be improved to take advantage of these particularities
of natural language data.

We introduce confidence-weighted (CW) learning, a
new class of online learning methods that maintain a
probabilistic measure of confidence in each parameter.
Less confident parameters are updated more aggres-
sively than more confident ones. Parameter confidence
is formalized with a Gaussian distribution over param-
eter vectors, which is updated for each new training in-
stance so that the probability of correct classification
for that instance under the updated distribution meets
a specified confidence. We show superior classification
accuracy over state-of-the-art online and batch base-
lines, faster learning, and new classifier combination
methods after parallel training.

We begin with a discussion of the motivating particu-
larities of natural language data. We then derive our
algorithm and discuss variants. A series of experiments
shows CW learning’s empirical benefits. We conclude
with a discussion of related work.

2. Online Algorithms and NLP

In natural language classification tasks, many differ-
ent features, most of which are binary and are infre-
quently on, can be weakly indicative of a particular
class. Therefore, we have both data sparseness, which
demands large training sets, and very high dimen-
sional parameter vectors. For certain types of prob-
lems, such as structured prediction in tagging or pars-
ing, the size and processing complexity of individual
instances make it difficult to keep more than a small
number of instances in main memory. These particu-
larities make online algorithms, which process a single
instance at a time, a good match for natural-language
tasks. Processing large amounts of data is simple for
online methods, which require observing each instance
once — though in practice several iterations may be

Confidence-Weighted Linear Classification

necessary — and update parameter vectors using a sin-
gle instance at a time. In addition, the simple nature
of most online updates make them very fast.

However, while online algorithms do well with large
numbers of features and instances, they are not de-
signed for the heavy tailed feature distributions char-
acteristic of natural language tasks. This type of
feature distribution can have a detrimental effect on
learning. With typical linear classifier training algo-
rithms, such as the perceptron or passive-aggressive
(PA) algorithms (Rosenblatt, 1958; Crammer et al.,
2006), the parameters of binary features are only up-
dated when the features occur. Therefore, frequent
features typically receive more updates. Similarly, fea-
tures that occur early in the data stream take more re-
sponsibility for correct prediction than those observed
later. The result is a model that could have good pa-
rameter estimates for common features and inaccurate
values for rare features. However, no distinction is
made between these feature types in most online algo-
rithms.

Consider an illustrative example from the problem of
sentiment classification. In this task, a product review
is represented as n-grams and the goal is to label the
review as being positive or negative about the prod-
uct. Consider a positive review that simply read “I
liked this author.” An online update would increase
the weight of both “liked” and “author.” Since both
are common words, over several examples the algo-
rithm would converge to the correct values, a positive
weight for “liked” and zero weight for “author.” Now
consider a slightly modified negative example: “I liked
this author, but found the book dull.” Since “dull”
is a rare feature, the algorithm has a poor estimate
of its weight. An update would decrease the weight of
both “liked” and “dull.” The algorithm does not know
that “dull” is rare and the changed behavior is likely
caused by the poorly estimated feature (“dull”) in-
stead of the common well estimated feature (“liked.”)
This update incorrectly modified “liked” and does not
attribute enough negative weight to “dull,” thereby
decreasing the rate of convergence.

This example demonstrates how a lack of memory for
previous instances — a property that allows online
learning — can hurt learning. A simple solution is
to augment an online algorithm with additional in-
formation, a memory of past examples. Specifically,
the algorithm can maintain a confidence parameter
for each feature weight. For example, assuming bi-
nary features, the algorithm could keep a count of the
number of times each feature has been observed, or,
for general real-valued features, it could keep the cu-

mulative second moment per feature. The larger the
count or second moement, the more confidence in a
feature’s weight. These estimates are then used to
influence parameter updates. Instead of equally up-
dating every feature weight for the features present
in an instance, the update favors changing more low-
confidence weights than high-confidence ones. At each
update, the confidence in all observed features is in-
creased by focusing the update on low confidence fea-
tures. In the example above, the update would de-
crease the weight of “dull” but make only a small
change to “liked” since the algorithm already has a
good estimate of this parameter.

3. Online Learning of Linear Classifiers

Online algorithms operate in rounds. On round i the
algorithm receives an instance xi ∈ Rd to which it
applies its current prediction rule to produce a pre-
diction ŷi ∈ {−1,+1} (for binary classification.) It
then receives the true label yi ∈ {−1,+1} and suffers
a loss `(yi, ŷi), which in this work will be the zero-one
loss `(yi, ŷi) = 1 if yi 6= ŷi and `(yi, ŷi) = 0 other-
wise. The algorithm then updates its prediction rule
and proceeds to the next round.

Just as in many well known algorithms, such as the
perceptron and support vector machines, in this work
our prediction rules are linear classifiers

fw(x) : fw(x) = sign(x ·w) . (1)

If we fix the norm of w, we can identify fw with w,
and we will use w in the rest of this work.

The margin of an example (x, y) with respect to a
specific classifier w is given by y(w · x). The sign
of the margin is positive iff the classifier w predicts
correctly the true label y. The absolute value of the
margin |y(w · x)| = |w · x| is often thought of as the
confidence in the prediction, with larger positive values
corresponding to more confident correct predictions.
We denote the margin at round i by mi = yi(wi · xi).

A variety of linear classifier training algorithms, in-
cluding the perceptron and linear support vector ma-
chines, restrict w to be a linear combination of the
input examples. Online algorithms of that kind typi-
cally have updates of the form

wi+1 = wi + αiyixi , (2)

for some non-negative coefficients αi.

In this paper we focus on PA updates (Crammer et al.,
2006) for linear classifiers. After predicting with wi

on the ith round and receiving the true label yi, the

Confidence-Weighted Linear Classification

algorithm updates the prediction function such that
the example (xi, yi) will be classified correctly with a
fixed margin (which can always be scaled to 1):

wi+1 = min
w

1
2
‖wi −w‖2 (3)

s.t. yi(w · xi) ≥ 1 .

The dual of (3) gives us the round coefficients for (2):

αi = max

{
1− yi (wi · xi)

‖xi‖2 , 0

}
Crammer et al. (2006) provide a theoretical analysis
of algorithms of this form, and they have been shown
to work well in a variety of applications.

4. Distributions over Classifiers

We model parameter confidence for a linear classi-
fier with a diagonal Gaussian distribution with mean
µ ∈ Rd and standard deviation σ ∈ Rd. The values
µj and σj represent our knowledge of and confidence
in the parameter for feature j. The smaller σj , the
more confidence we have in the mean parameter value
µj . For simplicity of presentation, we use a covariance
matrix Σ ∈ Rd×d for the distribution, with diagonal
σ and zero for off-diagonal elements. Note that while
our motivation assumed sparse binary features, the al-
gorithm does not depend on that assumption.

Conceptually, to classify an input instance x, we draw
a parameter vector w ∼ N (µ,Σ) and predict the label
according to the sign of w ·x. This multivariate Gaus-
sian distribution over parameter vectors induces a uni-
variate Gaussian distribution over the margin viewed
as a random variable:

M ∼ N
(
yi(µ · xi) , x>i Σxi

)
.

The mean of the margin is the margin of the averaged
parameter vector and its variance is proportional to
the length of the projection of xi on Σi. Since a pre-
diction is correct iff the margin is non-negative, the
probability of a correct prediction is

Prw∼N (µ,Σ) [M ≥ 0] = Prw∼N (µ,Σ) [yi (w · xi) ≥ 0] .

When possible, we omit the explicit dependency on the
distribution parameters and write Pr [yi (w · xi) ≥ 0].

4.1. Update

On round i, the algorithm adjusts the distribution to
ensure that the probability of a correct prediction for
training instance i is no smaller than the confidence
hyperparameter η ∈ [0, 1]:

Pr [yi (w · xi) ≥ 0] ≥ η . (4)

Following the intuition underlying the PA algo-
rithms (Crammer et al., 2006), our algorithm chooses
the distribution closest in the KL divergence sense to
the current distribution N (µi,Σi). Thus, on round i,
the algorithm sets the parameters of the distribution
by solving the following optimization problem:

(µi+1,Σi+1) = min DKL (N (µ,Σ) ‖N (µi,Σi)) (5)
s.t. Pr [yi (w · xi) ≥ 0] ≥ η . (6)

We now develop both the objective and the constraint
of this optimization problem following Boyd and Van-
denberghe, (2004, page 158). We start with the con-
straint (6). As noted above, under the distribution
N (µ,Σ), the margin for (xi, yi) has a Gaussian dis-
tribution with mean µM = yi (µ · xi) and variance
σ2

M = x>i Σxi. Thus the probability of a wrong classi-
fication is

Pr [M ≤ 0] = Pr
[
M − µM

σM
≤ −µM

σM

]
.

Since (M − µM) /σM is a normally distributed random
variable, the above probability equals Φ (−µM/σM),
where Φ is the cumulative function of the normal dis-
tribution. Thus we can rewrite (6) as

−µM

σM
≤ Φ−1 (1− η) = −Φ−1 (η) .

Substituting µM and σM by their definitions and re-
arranging terms we obtain:

yi(µ · xi) ≥ φ
√

x>i Σxi ,

where φ = Φ−1 (η).

Unfortunately, this constraint is not convex in Σ, so
we linearize it by omitting the square root:

yi(µ · xi) ≥ φ
(
x>i Σxi

)
. (7)

Conceptually, this is a large-margin constraint, where
the value of the margin requirement depends on the
example xi via a quadratic form.

We now study the objective (5). The KL divergence
between two Gaussians is given by

DKL (N (µ0,Σ0) ‖N (µ1,Σ1)) =

1
2

(
log

(
det Σ1

det Σ0

)
+ Tr

(
Σ−1

1 Σ0

)
+(µ1 − µ0)

>Σ−1
1 (µ1 − µ0)− d

)
. (8)

Confidence-Weighted Linear Classification

Using the foregoing equations and omitting irrelevant
constants, we obtain the following revised optimization
problem:

(µi+1,Σi+1) = min
1
2

log
(

det Σi

det Σ

)
+

1
2
Tr

(
Σ−1

i Σ
)

+
1
2

(µi − µ)>Σ−1
i (µi − µ)

s.t. yi(µ · xi) ≥ φ
(
x>i Σxi

)
. (9)

The optimization objective is convex in µ and Σ si-
multaneously and the constraint is linear, so any con-
vex optimization solver could be used to solve this
problem. We call the corresponding update Variance-
Exact. However, for efficiency we prefer a closed-form
approximate update that we call Variance. In this ap-
proximation, we allow the solution for Σi+1 in (9) to
produce (implicitly) a full matrix, and then project it
to a diagonal matrix, where the non-zero off-diagonal
entries are dropped. The Lagrangian for this optimiza-
tion is

L =
1
2

log
(

det Σi

det Σ

)
+

1
2
Tr

(
Σ−1

i Σ
)

+
1
2

(µi − µ)>Σ−1
i (µi − µ)

+α
(
−yi (µ · xi) + φ

(
x>i Σxi

))
. (10)

At the optimum, we must have

∂

∂µ
L = Σ−1

i (µ− µi)− αyixi = 0 .

Assuming Σi is non-singular we get,

µi+1 = µi + αyiΣixi . (11)

At the optimum, we must also have

∂

∂Σ
L = −1

2
Σ−1 +

1
2
Σ−1

i + φαxix
>
i = 0 .

Solving for Σ−1 we obtain

Σ−1
i+1 = Σ−1

i + 2αφxix
>
i . (12)

Finally, we compute the inverse of (12) using the
Woodbury identity (Petersen & Pedersen, 2007, Eq.
135) and get,

Σi+1 =
(
Σ−1

i + 2αφxix
>
i

)−1

= Σi − Σixi

(
1

2αφ
+ x>i Σixi

)−1

x>i Σi

= Σi − Σixi
2αφ

1 + 2αφx>i Σixi
x>i Σi . (13)

The KKT conditions for the optimization imply that
the either α = 0, and no update is needed, or the
constraint (7) is an equality after the udpate. Substi-
tuting (11) and (13) into the equality version of (7),
we obtain:

yi (xi · (µi + αyiΣixi)) =

φ

(
x>i

(
Σi − Σixi

2αφ

1 + 2αφx>i Σixi
x>i Σi

)
xi

)
. (14)

Rearranging terms we get,

yi (xi · µi) + αx>i Σixi =

φx>i Σixi − φ
(
x>i Σixi

)2 2αφ

1 + 2αφx>i Σixi
. (15)

For simplicity, let Mi = yi (xi · µi) be the mean mar-
gin and Vi = x>i Σixi be the margin variance before
the update. Substituting these into (15) we get,

Mi + αVi = φVi − φV 2
i

2αφ

1 + 2αφVi
.

It is straightforward to see that this is a quadratic
equation in α. Its smaller root is always negative and
thus is not a valid Lagrange multiplier. Let γi be its
larger root:

γi =
−(1+2φMi)+

√
(1+2φMi)

2−8φ (Mi−φVi)

4φVi
. (16)

The constraint (7) is satisfied before the update if Mi−
φVi ≥ 0. If 1 + 2φMi ≤ 0, then Mi ≤ φVi and from
(16) we have that γi > 0. If, instead, 1 + 2φMi ≥ 0,
then, again by (16), we have

γi > 0

⇔
√

(1 + 2φMi)
2 − 8φ (Mi − φVi) > (1 + 2φMi)

⇔ Mi < φVi .

From the KKT conditions, either αi = 0 or (9) is sat-
isfied as an equality. In the later case, (14) holds, and
thus αi = γi > 0. To summarize, we have proved the
following:

Lemma 1 The optimal value of the Lagrange multi-
plier is given by αi = max {γi, 0}.

The above derivation yields a full covariance matrix.
As noted above, we restrict ourself to diagonal matri-
ces and thus we project the solution into the set of
diagonal matrices to get our approximation. In prac-
tice, it is equivalent to compute αi as above but update
with the following rule instead of (12).

Σ−1
i+1 = Σ−1

i + 2αφdiag (xi) , (17)

Confidence-Weighted Linear Classification

Algorithm 1 Variance Algorithm (Approximate)
Input: confidence parameter φ = Φ−1(η)

initial variance parameter a > 0
Initialize: µ1 = 0 , Σ1 = aI
for i = 1, 2 . . . do

Receive xi ∈ Rd , yi ∈ {+1,−1}
Set the following variables:

αi as in Lemma 1
µi+1 = µi + αiyiΣixi (11)
Σ−1

i+1 = Σ−1
i + 2αiφ diag (xi) (17)

end for

comp comp.sys.ibm.pc.hardware
comp.sys.mac.hardware

sci sci.electronics
sci.med

talk talk.politics.guns
talk.politics.mideast

Table 1. 20 Newsgroups binary decision tasks.

where diag (xi) is a diagonal matrix with the square
of the elements of xi on the diagonal.

The pesudocode of the algorithm appears in Alg. 1.
From the initalization of Σ1 and the update rule
of (12), we conclude that the eigenvalues of Σi are
shirinking, but never set to zero explicltly, and thus
the covariance matrices Σi are not singular.

5. Evaluation

We evaluated our Variance and Variance-Exact algo-
rithms on three popular NLP datasets. Each dataset
contains several binary classification tasks from which
we selected a total of 12 problems, each contains a
balanced mixture of instance labels.

20 Newsgroups The 20 Newsgroups corpus con-
tains approximately 20,000 newsgroup messages, par-
titioned across 20 different newsgroups.2 The dataset
is a popular choice for binary and multi-class text clas-
sification as well as unsupervised clustering. Following
common practice, we created binary problems from
the dataset by creating binary decision problems of
choosing between two similar groups, as shown in Ta-
ble 1. Each message was represented as a binary bag-
of-words. For each problem we selected 1800 instances.

Reuters The Reuters Corpus Volume 1 (RCV1-
v2/LYRL2004) contains over 800,000 manually catego-
rized newswire stories (Lewis et al., 2004). Each article

2
http://people.csail.mit.edu/jrennie/20Newsgroups/

Figure 1. Accuracy on test data after each iteration on the
“talk” dataset.

contains one or more labels describing its general topic,
industry and region. We created the following binary
decision tasks from the labeled documents: Insurance:
Life (I82002) vs. Non-Life (I82003), Business Services:
Banking (I81000) vs. Financial (I83000), and Retail
Distribution: Specialist Stores (I65400) vs. Mixed Re-
tail (I65600). These distinctions involve neighboring
categories so they are fairly hard to make. Details
on document preparation and feature extraction are
given by Lewis et al. (2004). For each problem we
selected 2000 instances using a bag of words represen-
tation with binary features.

Sentiment We obtained a larger version of the sen-
timent multi-domain dataset of Blitzer et al. (2007)
containing product reviews from 6 Amazon domains
(book, dvd, electronics, kitchen, music, video). The
goal in each domain is to classify a product review as
either positive or negative. Feature extraction follows
Blitzer et al. (2007). For each problem we selected
2000 instances using uni/bi-grams with counts.

Each dataset was randomly divided for 10-fold cross
validation experiments. Classifier parameters (φ for
CW and C for PA) were tuned for each classification
task on a single randomized run over the data. Results
are reported for each problem as the average accuracy
over the 10 folds. Statistical significance is computed
using McNemar’s test.

5.1. Results

We start by examining the performance of the Vari-
ance and Variance-Exact versions of our method, dis-
cussed in the preceding section, against a PA algo-
rithm. All three algorithms were run on the datasets
described above and each training phase consisted of
five passes over the training data, which seemed to be

Confidence-Weighted Linear Classification

Task PA Variance Variance-Exact SVM Maxent SGD
20 Newsgroups comp 8.90 †6.33 9.63 ∗7.67 ∗7.62 7.36

sci 4.22 †1.78 3.3 †3.51 †3.55 †4.77
talk 1.57 1.09 2.21 0.91 0.91 1.36

Reuters Business 17.80 17.65 17.70 ?15.64 ?15.10 ?15.85
Insurance 9.76 ∗8.45 9.49 9.19 8.59 9.05
Retail 15.41 †11.05 14.14 ∗12.80 ∗12.30 †14.31

Sentiment books 19.55 ∗17.40 20.45 †20.45 †19.91 ∗19.41
dvds 19.71 19.11 19.91 20.09 19.26 20.20
electronics 17.40 †14.10 17.44 †16.80 †16.21 †16.81
kitchen 15.64 ∗14.24 16.35 15.20 14.94 ∗15.60
music 20.05 ∗18.10 19.66 19.35 19.45 18.81
videos 19.86 ?17.20 19.85 †20.70 †19.45 ?19.65

Table 2. Error on test data using batch training. Statistical significance (McNemar) is measured against PA or the batch
method against Variance. (∗ p=.05, ? p=.01, † p=.001)

enough to yield convergence. The average error on the
test set for the three algorithms on all twelve datasets
is shown in table 2.

Variance-Exact achieved about the same performance
as PA, with each method achieving a lower error on
half of the datasets. In contrast, Variance (approxi-
mate) significantly improves over PA, achieving lower
error on all twelve datasets, with statistically signifi-
cant results on nine of them.

As discussed above, online algorithms are attractive
even for batch learning because of their simplicity and
ability to operate on extremely large datasets. In
the batch setting, these algorithms are run several
times over the training data, which yields slower per-
formance than single pass learning (Carvalho & Co-
hen, 2006). Our algorithm improves on both accuracy
and learning speed by requiring fewer iterations over
the training data. Such behavior can be seen on the
“talk” dataset in Figure 1, which shows accuracy on
test data after each iteration of the PA baseline and
the two variance algorithms. While Variance clearly
improves over PA, it converges very quickly, reaching
near best performance on the first iteration. In con-
trast, PA benefits from multiple iterations over the
data; its performance changes significantly from the
first to fifth iteration. Across the twelve tasks, Vari-
ance yields a 3.7% error reduction while PA gives a
12.4% reduction between the first and fifth iteration,
indicating that multiple iterations help PA more. The
plot also illustrates Variance-Exact’s behavior, which
initially beats PA but does not improve. In fact, on
eleven of the twelve datasets, Variance-Exact beats PA
on the first iteration. The exact update results in ag-
gressive behavior causing the algorithm to converge
very quickly, even more so than Variance. It appears
that the approximate update in Variance reduces over-
training and yields the best accuracy.

10 50 100
Number of Parallel Classifiers

90

91

92

93

94

95

96

T
e
st

 A
cc

u
ra

cy

Reuters

10 50 100
Number of Parallel Classifiers

90

91

92

93

94

95

96

T
e
st

 A
cc

u
ra

cy

Sentiment

Average
Uniform
Weighted
PA
Variance

Figure 2. Results for Reuters (800k) and Sentiment
(1000k) averaged over 4 runs. Horizontal lines show the
test accuracy of a model trained on the entire training set.
Vertical bars show the performance of n (10, 50, 100) clas-
sifiers trained on disjoint sections of the data as the average
performance, uniform combination, or weighted combina-
tion. All improvements are statistically significant except
between uniform and weighted for Reuters.

5.2. Batch Learning

While online algorithms are widely used, batch algo-
rithms are still preferred for many tasks. Batch al-
gorithms can make global learning decisions by exam-
ining the entire dataset, an ability beyond online al-
gorithms. In general, when batch algorithms can be
applied they perform better. We compare our new on-
line algorithm (Variance) against two standard batch
algorithms: maxent classification (default configura-
tion of the maxent learner in McCallum (2002)) and
support vector machines (LibSVM (Chang & Lin,
2001)). We also include stochastic gradient descent
(SGD) (Blitzer et al., 2007), which performs well for
NLP tasks. Classifier parameters (Gaussian prior for
maxent, C for SVM and the learning rate for SGD)
were tuned as for the online methods.

Results for batch learning are shown in Table 2. As ex-
pected, the batch methods tend to do better than PA,

Confidence-Weighted Linear Classification

with SVM doing better 9 times and maxent 11 times.
However, in most cases Variance improves over the
batch method, doing better than SVM and maxent 10
out of 12 times (7 statistically significant.) These re-
sults show that in these tasks, the much faster and sim-
pler online algorithm performs better than the slower
more complex batch methods.

We also evaluated the effects of commonly used tech-
niques for online and batch learning, including aver-
aging and TFIDF features, none of which improved
accuracy. Although the above datasets are balanced
with respect to labels and predictive features, we also
evaluated the methods on variant datasets with un-
balanced label or feature distributions, and still saw
similar benefits from the Variance method.

5.3. Large Datasets

Online algorithms are especially attractive in tasks
where training data exceeds available main memory.
However, even a single sequential pass over the data
can be impractical for extremely large training sets,
so we investigate training different models on differ-
ent portions of the data in parallel and combining the
learned classifiers into a single classifier. While this of-
ten does not perform as well as a single model trained
on all of the data, it is a cost effective way of learning
from very large training sets.

Averaging models trained in parallel assumes that each
model has an equally accurate estimate of the model
parameters. However, our model provides a confidence
value for each parameter, allowing for a more intelli-
gent combination of parameters from multiple models.
Specifically, we compute the combined model Gaus-
sian that minimizes the total divergence to the set C
of individually trained classifiers for some divergence
operator D:

min
µ,Σ

∑
c∈C

D((µ,Σ)||(µc,Σc)), (18)

If D is the Euclidean distance, this is just the average
of the individual models. If D is the KL divergence,
the minimization leads to the following weighted com-
bination of individual model means:
µ =

(∑
c∈C Σ−1

c

)−1 ∑
c∈C Σ−1

c µc, Σ−1 =
∑

c∈C Σ−1
c .

We evaluate the single model performance of the PA
baseline and our method. For our method, we evaluate
classifier combination by training n (10, 50, 100) mod-
els by dividing the instance stream into n disjoint parts
and report the average performance of each of the n
classifiers (average), the combined classifier from tak-
ing the average of the n sets of parameters (uniform)
and the combination using the KL distance (weighted)

on the test data across 4 randomized runs.

We evaluated classifier combination on two datasets.
The combined product reviews for all the domains
in Blitzer et al. (2007) yield one million sentiment
instances. While most reviews were from the book do-
main, the reviews are taken from a wide range of Ama-
zon product types and are mostly positive. From the
Reuters corpus, we created a one vs. all classification
task for the Corporate topic label, yielding 804,411 in-
stances of which 381,325 are labeled corporate. For
the two datasets, we created four random splits each
with one million training instances and 10,000 test in-
stances. Parameters were optimized by training on 5K
random instances and testing on 10K.

The two datasets use very different feature representa-
tions. The Reuters data contains 288,062 unique fea-
tures, for a feature to document ratio of 0.36. In con-
trast, the sentiment data contains 13,460,254 unique
features, a feature to document ratio of 13.33. This
means that Reuters features tend to occur several
times during training while many sentiment features
occur only once.

Average accuracy on the test sets are reported in Fig-
ure 2. For Reuters data, the PA single model achieves
higher accuracy than Variance, possibly because of the
low feature to document ratio. However, combining 10
Variance classifiers achieves the best performance. For
sentiment, combining 10 classifiers beats PA but is not
as good as a single Variance model. In every case, com-
bining the classifiers using either uniform or weighted
improves over each model individually. On sentiment
weighted combination improves over uniform combi-
nation and in Reuters the models are equivalent.

Finally, we computed the actual run time of both PA
and Variance on the large datasets to compare the
speed of each model. While Variance is more complex,
requiring more computation per instance, the actual
speed is comparable to PA; in all tests the run time of
the two algorithms was indistinguishable.

6. Related Work

The idea of using parameter-specific variable learn-
ing rates has a long history in neural-network learn-
ing (Sutton, 1992), although we do not know of a previ-
ous model that specifically models confidence in a way
that takes into account the frequency of features. The
second-order perceptron (SOP) (Cesa-Bianchi et al.,
2005) is perhaps the closest to our CW algorithm.
Both are online algorithms that maintain a weight
vector and some statistics about previous examples.
While the SOP models certainty with feature counts,

Confidence-Weighted Linear Classification

CW learning models uncertainty with a Gaussian dis-
tribution. CW algorithms have a probabilistic moti-
vation, while the SOP is based on the geometric idea
of replacing a ball around the input examples with a
refined ellipsoid. Shivaswamy and Jebara (2007) used
this intuition in the context of batch learning.

Gaussian process classification (GPC) maintains a
Gaussian distribution over weight vectors (primal) or
over regressor values (dual). Our algorithm uses a dif-
ferent update criterion than the the standard Bayesian
updates used in GPC (Rasmussen & Williams, 2006,
Ch. 3), avoiding the challenging issues in approximat-
ing posteriors in GPC. Bayes point machines (Herbrich
et al., 2001) maintain a collection of weight vectors
consistent with the training data, and use the sin-
gle linear classifier which best represents the collec-
tion. Conceptually, the collection is a non-parametric
distribution over the weight vectors. Its online ver-
sion (Harrington et al., 2003) maintains a finite num-
ber of weight-vectors updated simultaneously.

Finally, with the growth of available data there is an
increasing need for algorithms that process training
data very efficiently. A similar approach to ours is
to train classifiers incrementally (Bordes & Bottou,
2005). The extreme case is to use each example once,
without repetitions, as in the multiplicative update
method of Carvalho and Cohen (2006).

Conclusion: We have presented confidence-
weighted linear classifiers, a new learning method
designed for NLP problems based on the notion of
parameter confidence. The algorithm maintains a
distribution over parameter vectors; online updates
both improve the parameter estimates and reduce
the distribution’s variance. Our method improves
over both online and batch methods and learns faster
on a dozen NLP datasets. Additionally, our new
algorithms allow more intelligent classifier combi-
nation techniques, yielding improved performance
after parallel learning. We plan to explore theoretical
properties and other aspects of CW classifiers, such
as multi-class and structured prediction tasks, and
other data types.

Acknowledgements: This material is based upon
work supported by the Defense Advanced Research
Projects Agency (DARPA) under Contract No.
FA8750-07-D-0185.

References

Blitzer, J., Dredze, M., & Pereira, F. (2007). Biogra-
phies, bollywood, boom-boxes and blenders: Do-

main adaptation for sentiment classification. As-
sociation of Computational Linguistics (ACL).

Bordes, A., & Bottou, L. (2005). The huller: a simple
and efficient online svm. European Conference on
Machine Learning(ECML), LNAI 3720.

Boyd, S., & Vandenberghe, L. (2004). Convex opti-
mization. Cambridge University Press.

Carvalho, V. R., & Cohen, W. W. (2006). Single-pass
online learning: Performance, voting schemes and
online feature selection. KDD-2006.

Cesa-Bianchi, N., Conconi, A., & Gentile, C. (2005). A
second-order perceptron algorithm. SIAM Journal
on Computing, 34, 640 – 668.

Chang, C.-C., & Lin, C.-J. (2001). LIBSVM: a library
for support vector machines. Software available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz,
S., & Singer, Y. (2006). Online passive-aggressive
algorithms. JMLR, 7, 551–585.

Harrington, E., Herbrich, R., Kivinen, J., Platt, J.,
& Williamson, R. (2003). Online bayes point ma-
chines. 7th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD).

Herbrich, R., Graepel, T., & C.Campbell (2001).
Bayes point machinesonline passive-aggressive algo-
rithms. JMLR, 1, 245–279.

Lewis, D. D., Yand, Y., Rose, T., & Li., F. (2004).
Rcv1: A new benchmark collection for text catego-
rization research. JMLR, 5, 361–397.

McCallum, A. K. (2002). Mallet: A machine learning
for language toolkit. http://mallet.cs.umass.edu.

Petersen, K. B., & Pedersen, M. S. (2007). The matrix
cookbook.

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaus-
sian processes for machine learning. The MIT Press.

Rosenblatt, F. (1958). The perceptron: A probabilistic
model for information storage and organization in
the brain. Psych. Rev., 68, 386–407.

Shivaswamy, P., & Jebara, T. (2007). Ellipsoidal ker-
nel machines. Artificial Intelligence and Statistics.

Sutton, R. S. (1992). Adapting bias by gradient de-
scent: an incremental version of delta-bar-delta.
Proceedings of the Tenth National Conference on
Artificial Intelligence (pp. 171–176). MIT Press.

