Experimental Setting

Method Experimental Results

Conclusion

You Are Where You Tweet: A Content-Based Approach to Geo-locating Twitter Users

CIKM'10 Zhiyuan Cheng, James Caverlee and Kyumin Lee Texas A&M University

Presented by Yi Zhu

November 16, 2010

Yi Zhu (CUHK)

Content-Based Approach to Geo-locating Twitter Users

Experimental Setting

Method Experimental Results

Conclusion

Outline

- Introduction
 Motivation
 Problem
- Experimental Setting
 Dataset
 - Evaluation Metrics
 - Method
 - Baseline
 - Identifying Local Words
 - Tweet Sparsity
- Experimental Results
 Conclusion

Method Experimental Results

Examples

shirazluv Lilian $\ensuremath{\mathfrak{II}}$ Going out at 12.30 to meet my couzin in Mongkok. Kind of lazy men.

28 minutes ago

- Mongkok
- Hong Kong
- Object: Locating a Twitter user based on the content of tweets.

Introduction •••••	Experimental Setting	Method	Experimental Results	Conclusion
Motivation				

Motivation

Location sparsity problem of Twitter

- 26% users have listed a user location as granular as a city name.
- Twitter begin to support per-tweet geo-tagging since August 2009. However, fewer than 0.42% tweets are tagged.

Introduction o ● ○ ○ ○	Experimental Setting	Method Experim	ental Results Conclusion
Motivation			

Motivation

- Personalized information services
 - Local news providing
 - Regional advertisements
 - Location-based application (earthquake detection)
- Avoid the need for sensitive data (private user information, IP address)

Introduction	Experimental Setting	Method	Experimental Results	Conclusion
Problem				

Challenges

- Tweets status updates are noisy. Mixing a variety of daily interests.
- Twitter users often rely on shorthand and non-standard vocabulary for informal communication.
- A user may span multiple locations beyond their immediate home location.
- A user may have more than one associated locations.

Introduction	Experimental Setting	Method	Experimental Results	Conclusion
Problem				
Problem	Defined			

 Given tweets of Twitter users, our goal is to estimate the city-level location of a user based purely on the content of their tweets.

Introduction	
00000	

Method Experimental Results

Problem

Problem Defined

- Formally, the location estimation problem is defined as follows:
 - Given a set of tweets *S*_{tweets}(*u*) posted by user *u*;
 - Estimate a user's probability of being located in city *i*: p(*i*|S_{tweets}(*u*)), such that the city with maximum probability *l_{est}(u)* is the user's actual location *l_{act}(u)*.

Introduction	
00000	

Dataset

Data Crawling

- API: twitter4j (open-source library for java).
- Two crawling strategies:
 - Crawling through Twitter's public timeline API. (Active Twitter Users)
 - Crawling by breadth-first search through social edges to crawl each user's friends. (Sub Social Graph of Twitter)

Experimental Setting

Method Experimental Results

Conclusion

Dataset

Dataset Description

- From Sep 2009 to Jan 2010
- Users: 1,074,375
- Tweets: 29, 479, 600
- 75.05% users list location, but overly general (California) or nonsensical (Wonderland).
- 21% users list a location as granular as a city name.
- 5% users list latitude/longitude coordinate.

Introduction	Experimental Setting	Method	Experimental Results	Conclusion
Dataset				

Dataset Filter

- Filter all listed locations that have a valid city-level label.
- Users: 130, 689
- Tweets: 4, 124, 960
- Test Set:
 - Extract users with 1000+ tweets and latitude/longitude coordinates. (Generated by smartphone)
 - Users: 5, 190
 - Tweets: more than 5 million

Experimental Setting

Method Experimental Results

Conclusion

Evaluation Metrics

Evaluation Metrics

- Error Distance for user u
 - $ErrDist(u) = d(I_{act}(u), I_{est}(u))$
- Average Error Distance for all users *U*:

•
$$AvgErrDist(U) = \frac{\sum_{u \in U} ErrDist(u)}{|U|}$$

Accuracy:

• Accuracy(U) =
$$\frac{|\{u|u \in U \land ErrDist(u) \leq 100\}|}{|U|}$$

Introduction
00000

Method Experimental Results

Conclusion

Baseline

Baseline Location Estimation

•
$$p(i|S_{words}(u)) = \sum_{w \in S_{words}(u)} p(i|w) \times p(w).$$

- $S_{words}(u)$ is the set of words extracted from user u.
- p(w) is the probability of the word w in the whole dataset, $p(w) = \frac{count(w)}{t}$
- p(i|w) the likelihood that each word w is issued by a user located in city i.

Experimental Setting

Method Experimental Results

Conclusion

Baseline

Baseline Location Estimation Result

- Accuracy: 10.12%
- AvgErrDist: 1773 miles
- Problem:
 - Local Words: isolate the words which can distinguish location of the user.
 - Tweet Sparsity: location sparsity of words in tweets.

Experimental Setting

Method Experimental Results

Identifying Local Words

Spatial variation model

- Given a word, decide if it is local or non-local.
- Spatial variation model (Backstrom et al., WWW'08)
 - Analysis of geographic distribution of terms in search engine query logs.
 - Cd^{-α} is the approximately probability of the query issued from a place with a distance d from the center.
 - *C* is a constant to specify the frequency of the center.
 - α control the speed of the frequency falls.

Introduction
00000

Method Experimental Results

Conclusion

Identifying Local Words

- C and α can be used to determine if the word is local.
- For a word *w*, given a center and the central frequency is *C*, compute the maximum-likelihood value.
- For each city *i*, users from *i* tweet word *w n* times:
 - n > 0, then multiply the overall probability by $(Cd_i^{-\alpha})^n$.
 - n = 0, then multiply the overall probability by $1 Cd_i^{-\alpha}$.
 - *d_i* is the distance between city *i* and the center of word *w*.

Introduction
00000

Method Experimental Results

Conclusion

Identifying Local Words

- To avoid underflow, logarithms are added.
- Suppose *S* is the set of occurrences for word *w*, then:

•
$$f(C, \alpha) = \sum_{i \in S} \log C d_i^{-\alpha} + \sum_{i \notin S} \log(1 - C d_i^{-\alpha})$$

- It has exactly one local maximum (unimodal)
 - Lattices
 - Golden section search

Experimental Setting

Method Experimental Results

Conclusion

Identifying Local Words

Experimental Setting

Method Experimental Results

Conclusion

Identifying Local Words

Word	Latitude	Longitude	C_0	α
automobile	40.2	-85.4	0.5018	1.8874
casino	36.2	-115.24	0.9999	1.5603
tortilla	27.9	-102.2	0.0115	1.0350
canyon	36.52	-111.32	0.2053	1.3696
redsox	42.28	-69.72	0.1387	1.4516

Experimental Setting

Method Experimental Results

Conclusion

Identifying Local Words

Introduction
00000

Method Experimental Results

Tweet Sparsity

Laplace Smoothing (Add-One Smoothing)

•
$$p(i|w) = \frac{1+count(w,i)}{V+N(w)}$$
,

- *count*(*w*, *i*): term count of word *w* in city *i*;
- V: the size of vocabulary;
- N(w): total count of w in all cities.

Experimental Setting

Method Experimental Results

Conclusion

Tweet Sparsity

State-Level Smoothing

State probability:

$$oldsymbol{
ho}_{oldsymbol{s}}(oldsymbol{s}|oldsymbol{w}) = rac{\sum_{i\in \mathcal{S}_{\mathcal{C}}} oldsymbol{p}(i|oldsymbol{w})}{|\mathcal{S}_{c}|},$$

• S_c : set of cities in the state *s*.

State-level smoothing:

$$p'(i|w) = \lambda \times p(i|w) + (1 - \lambda) \times p_s(s|w),$$

- *i*: a city in the state *s*;
- 1λ : amount of smoothing.

Experimental Setting

Method Experimental Results

Conclusion

Tweet Sparsity

Lattice-Based Neighborhood Smoothing

Per-lattice probability:

$$p(|at|w) = \sum_{i \in S_c} p(i|w),$$

Iat: a lattice.

S_c: set of cities in *lat*.

• Lattice probability:

$$p'(lat|w) = \mu * p(lat|w) + (1 - \mu) * \sum_{lat_i \in S_{neighbors}} p(lat_i|w),$$

• μ : parameter.

• neighbors: 8 lattice around lat.

Experimental Setting

Method Experimental Results

Conclusion

Tweet Sparsity

Lattice-Based Neighborhood Smoothing

• Lattice-based neighborhood smoothing:

$$p'(i|w) = \lambda * p(i|w) + (1 - \lambda) * p'(lat|w),$$

- *i*: a city in the lattice *lat*;
- λ : smoothing parameter.

Introduction
00000

Method Experi

Experimental Results

Conclusion

Tweet Sparsity

Model-Based Smoothing

•
$$p'(i|w) = C(w)d_i^{-\alpha(w)}$$

• $C(w), \alpha(w)$: optimized parameters for word w.

Experimental Setting

Method Ex

Experimental Results

Conclusion

Tweet Sparsity

Smoothing Comparison

	Geographic Range	Parameters	Complexity	
Laplace	None	None	Low	
State-Level	State	λ	High	
Neighborhood	Neighbor Lattices	μ, λ	Highest	
Model-Based	Global	None	Lowest	

Method Experi

Experimental Results

Conclusion

Model and Smoothing Comparison

Method	ACC	AvgErrDist (Miles)	ACC@2	ACC@3	ACC@5
Baseline	0.101	1773.146	0.375	0.425	0.476
+ Local Filtering (LF)	0.498	539.191	0.619	0.682	0.781
+ LF $+$ Laplace	0.480	587.551	0.593	0.647	0.745
+ LF $+$ State-Level	0.502	551.436	0.617	0.687	0.783
+ LF $+$ Neighborhood	0.510	535.564	0.624	0.694	0.788
+ LF + Model-based	0.250	719.238	0.352	0.415	0.486

Method Experimental Results

Conclusion

Model and Smoothing Comparison

Experimental Setting

Method Experimental Results

Conclusion

Capacity of Estimator

Experimental Setting

Method Experimental Results

Conclusion

Number of Tweets

Method Experimental Results

Conclusion

- A probabilistic framework for estimating city-level location of Twitter users based on the content of tweets.
- Local words identifying and some smoothing can improve the estimation
- 100 tweets are enough for locating.

Experimental Setting

Method Experimental Results

Conclusion

Thanks!

Q & A

Yi Zhu (CUHK)

Content-Based Approach to Geo-locating Twitter Users