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shirazluv Lilian 11
Going out at 12.30 to meet my couzin in Mongkok. Kind of lazy
1

men.
28 minutes ago

@ Mongkok
@ Hong Kong

@ Object: Locating a Twitter user based on the content

of tweets.
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Motivation

Motivation

@ Location sparsity problem of Twitter

@ 26% users have listed a user location as granular as a
city name.

@ Twitter begin to support per-tweet geo-tagging since
August 2009. However, fewer than 0.42% tweets are
tagged.
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Motivation

Motivation

@ Personalized information services

@ Local news providing
@ Regional advertisements
@ Location-based application (earthquake detection)

@ Avoid the need for sensitive data (private user
information, IP address)
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Problem

Challenges

@ Tweets status updates are noisy. Mixing a variety of
daily interests.

@ Twitter users often rely on shorthand and
non-standard vocabulary for informal
communication.

@ A user may span multiple locations beyond their
immediate home location.

@ A user may have more than one associated
locations.
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Problem

Problem Defined

@ Given tweets of Twitter users, our goal is to estimate
the city-level location of a user based purely on the
content of their tweets.
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Problem Defined

@ Formally, the location estimation problem is defined
as follows:

@ Given a set of tweets Syeers(U) posted by user u;

@ Estimate a user’s probability of being located in city i:
P(i| Stweets(U)), such that the city with maximum
probability /es¢(u) is the user’s actual location I¢¢(u).
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Dataset

Data Crawling

@ API: twitter4j (open-source library for java).

@ Two crawling strategies:

@ Crawling through Twitter’s public timeline API. (Active
Twitter Users)

@ Crawling by breadth-first search through social edges to
crawl each user’s friends. (Sub Social Graph of Twitter)
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Dataset

Dataset Description

@ From Sep 2009 to Jan 2010
@ Users: 1,074,375

@ Tweets: 29,479,600
o)

75.05% users list location, but overly general
(California) or nonsensical (Wonderland).

@ 21% users list a location as granular as a city name.

@ 5% users list latitude/longitude coordinate.
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Dataset

Dataset Filter

@ Filter all listed locations that have a valid city-level
label.

@ Users: 130,689
@ Tweets: 4,124,960

@ Test Set:

@ Extract users with 1000+ tweets and latitude/longitude
coordinates. (Generated by smartphone)

@ Users: 5,190

@ Tweets: more than 5 million
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Evaluation Metrics

Evaluation Metrics

@ Error Distance for user u
@ ErDist(u) = d(lact(U), lest (1))

@ Average Error Distance for all users U:
@ AvgErDist(U) = Lucy FrDRIY) IEL;rIDiSt(U)

@ Accuracy:

) Accuracy(U) _ [{ulueU A ElrLrﬁist(u)<1OO}|
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Baseline

Baseline Location Estimation
@ p(i|Sworas(U)) = > plijw) x p(w).
WeSyorgs(U)

@ S,os(U) is the set of words extracted from user u.

@ p(w) is the probability of the word w in the whole

dataset, p(w) = 21"

@ p(i|w) the likelihood that each word w is issued by a
user located in city /.
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Baseline Location Estimation Result

@ Accuracy: 10.12%

@ AvgErrDist: 1773 miles
@ Problem:

@ Local Words: isolate the words which can distinguish
location of the user.
@ Tweet Sparsity: location sparsity of words in tweets.
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Identifying Local Words

Spatial variation model

@ Given a word, decide if it is local or non-local.

@ Spatial variation model (Backstrom et al., WWW’08)

@ Analysis of geographic distribution of terms in search
engine query logs.

@ (Cd“ is the approximately probability of the query
issued from a place with a distance d from the center.

@ (s a constant to specify the frequency of the center.

@ « control the speed of the frequency falls.

Yi Zhu (CUHK) Content-Based Approach to Geo-locating Twitter Users 15/32



Method
0e0000

Identifying Local Words

Identifying Local Words in Tweets

@ C and a can be used to determine if the word is
local.

@ For a word w, given a center and the central
frequency is C, compute the maximum-likelihood
value.

@ For each city /, users from i tweet word w n times:

@ n> 0, then multiply the overall probability by (Cad;”*)".

@ n =0, then multiply the overall probability by 1 — Cd .

@ (; is the distance between city i and the center of word
w.
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Identifying Local Words

Identifying Local Words in Tweets

@ To avoid underflow, logarithms are added.

@ Suppose S is the set of occurrences for word w,
then:

@ f(C,a)=> logCd“+ > log(1—Cd™")
icS i¢S
@ It has exactly one local maximum (unimodal)

@ Lattices
@ Golden section search
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Identifying Local Words

Identifying Local Words in Tweets
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Identifying Local Words

Identifying Local Words in Tweets

Experimental Setting
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Method

Experimental Results

0O00000@0000000

Word Latitude | Longitude Co oY
automobile 40.2 -85.4 0.5018 | 1.8874
casino 36.2 -115.24 0.9999 | 1.5603
tortilla 27.9 -102.2 0.0115 | 1.0350
canyon 36.52 -111.32 0.2053 | 1.3696
redsox 42,28 -69.72 0.1387 | 1.4516
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Identifying Local Words

Identifying Local Words in Tweets
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Tweet Sparsity

Laplace Smoothing (Add-One Smoothing)

® plilw) = SR

@ count(w,i): term count of word w in city /;
@ V: the size of vocabulary;

@ N(w): total count of w in all cities.
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Tweet Sparsity

State-Level Smoothing

@ State probability:

Yies, PUIW)
pe(slw) = Ziese2),

@ S.: set of cities in the state s.
@ State-level smoothing:

P(ilw) = A x p(ilw) + (1 — A) x ps(s|w),

@ /: acity in the state s;
@ 1 — A\: amount of smoothing.

Yi Zhu (CUHK) Content-Based Approach to Geo-locating Twitter Users 22/32



Method
00e000

Tweet Sparsity

Lattice-Based Neighborhood Smoothing

@ Per-lattice probability:

p(latjw) = >, plilw),
@ /at: a lattice.
@ S.: set of cities in /at.

@ Lattice probability:

pllatlw) = pxp(latiw)+(1 =)+ >2  p(latiw),

lat; € Speighbors

@ . parameter.
@ neighbors: 8 lattice around /at.
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Tweet Sparsity

Lattice-Based Neighborhood Smoothing

@ Lattice-based neighborhood smoothing:

p(ilw) = A= plilw) + (1 — X) = pllat|w),

@ /: acity in the lattice /at;
@ )\: smoothing parameter.
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Tweet Sparsity

Model-Based Smoothing

@ p'(ijw) = C(w)d ™,

]

@ C(w),a(w): optimized parameters for word w.
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Method

Smoothing Comparison

| Geographic Range | Parameters | Complexity |

Laplace None None Low
State-Level State A High
Neighborhood Neighbor Lattices Ly A Highest
Model-Based Global None Lowest
Yi Zhu (CUHK) Content-Based Approach to Geo-locating Twitter Users
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Model and Smoothing Comparison
Method ACC | AvgErrDist (Miles) | ACCQ2 | ACC@3 | ACCQ5
Baseline 0.101 1773.146 0.375 0.425 0.476
+ Local Filtering (LF) | 0.498 539.191 0.619 0.682 0.781
+ LF + Laplace 0.480 587.551 0.593 0.647 0.745
+ LF + State-Level 0.502 551.436 0.617 0.687 0.783
+ LF + Neighborhood | 0.510 535.564 0.624 0.694 0.788
+ LF + Model-based | 0.250 719.238 0.352 0.415 0.486
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Model and Smoothing Comparison
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Capacity of Estimator
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Number of Tweets
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Conclusion

Conclusion

@ A probabilistic framework for estimating city-level
location of Twitter users based on the content of
tweets.

@ Local words identifying and some smoothing can
improve the estimation

@ 100 tweets are enough for locating.
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Thanks!

Q&A
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