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;
Introduction: Observation and Question

Observation: Many rating data sets exhibit
marginal rating distributions that are skewed

toward high rating values.
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Introduction: Observation and Question
Question: What causes these skewed
distributions?
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Collaborative Predict
Introduction: Observation Processes

Answer 1: Most people really do like most
items In these data sets, and we observe a
random sample of entries.
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Introduction: Observation Processes

Answer 1: Most people really do like most
items In these data sets, and we observe a
random sample of entries.
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Collaborative Predi
Introduction: Observation Processes

Answer 2. Most people don’t really like most
items, but we observe a non-random sample
where people tend to rate items they like.
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Introduction: Observation Processes

Answer 2. Most people don’t really like most
items, but we observe a non-random sample
where people tend to rate items they like.
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Introduction: Observation Processes
My Goals for this Talk:

1. Convince you that answer #2 Is the more
likely answer in recommender systems.

2. Explore the implications of a non-random
observation process.

3. Provide methods that can learn under a non-
random observation process.

4. Suggest future research directions.
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Talk Outline:

. Introduction

e Missing Data Theory and Implications

 Yahoo! LaunchCast Study
 Models and Algorithms

 Experiments and Results
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Missing Data Theory: Notation
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Missing Data Theory: Notation
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Missing Data Theory: Notation
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Missing Data Theory: Processes

Data Model and Observation Model:
P(X,R[0,n) = P(R|X, n)P(X, |6)

Missing at Random Condition:
P(R|X, ) = P(R|X p)

* Violated if probability that user u will rate item
| depends on user u’s rating for item 1.

R. J. A. Little and D. B. Rubin. Statistical Analysis with Missing Data. 1987.
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Missing Data Theory: | earning

« The MAR assumption Is the justification for

ignoring missing data during learning:

Linar(0]x°%° 1) = / P(R|X, 1) P(X|0)dX™

P(R XObS,u)/P(X

P(R Xobs’ ,LL)P(XObS
x P(X°%)0)
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Missing Data Theory: | earning

* When MAR does not hold, the likelihood
does not simplify:

Linar (0], 1) = / P(R|X, 1) P(X|0)dX™

 Ignoring missing data Is equivalent to using
the wrong likelihood function. Parameter
estimates will be “biased”.

 One Solution: Explicitly model P(R|X,u)
and P(X|0). Estimate u and 0.
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Missing Data Theory: Testing

* Training and testing on ratings of user-
selected items will not reveal any difficulties.

 Complimentary “biases” in training and
testing cancel out.

 One Solution: Collect a test set of ratings
for randomly selected items and use it to
test methods.
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Talk Ouftline:

. Introduction

 Missing Data Theory and Implications

e Yahoo! LaunchCast Study
 Models and Algorithms

 Experiments and Results
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Yahoo! Study: Data Collection

Data was collected through an online survey
of Yahoo! Music LaunchCast radio users.

* 1000 songs selected
at random.

e Users rate 10 songs
selected at random
from 1000 songs.
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Yahoo! Study: Survey Questions
Do preferences impact choice to rate?
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Yahoo! Study: Rating Distributions

User Selected Randomly Selected
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Models: Finite Mixture/CPT-v
Probability Model:
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Models: Finite Mixture/CPT-v
Observation Model:

P(Ran|Xan = v, 1) = pu = H (1 = pry) "=

« Simple non-random observation process

where the probability of observing a rating
with value v Iis Bernoulli distributed with

parameter L.
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 Missing Data Theory and Implications

e Yahoo! LaunchCast Study
 Models and Algorithms

 EXxperiments and Results
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Experiments: Protocol

1.

Train models on ratings for user selected
items collected during normal interaction.

Test models on ratings for randomly
selected items collected during survey.

Evaluate prediction and ranking using MAE
and NDCG.

We consider IKNN, SVD, MM/MAR,
MM/CPT-v, MM/Logit-vd.
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Results: Prediction - NMAE
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Results: Ranking - NDCG
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Conclusions:

* We believe non-random observation processes
are a reality for recommender systems.

e Treating missing data as if it were MAR results
In poor performance on the rating prediction and
ranking tasks we really care about.

e Simple NMAR models can be combined with
standard complete data models to yield improved
performance on both tasks.
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Future Directions:

 Much room for testing existing prediction and
ranking methods on the Yahoo! data set.

« Combining CPT-v and Logit-vd with other data
models (LDA/Aspect models).

 Deriving more flexible observation models for
the discrete as well as continuous cases.

» Generalizing observation models to include
rating-scale usage models.
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Future Directions:

e Re-visiting the debate about side information In
the non-random observation process setting.

» Developing and testing models for the
alternative factorization P(X|R)P(R).

e Developing methods that can side-step these
Issues Instead of meeting them head on.

* Instrumenting software and devices to collect
rich, implicit feedback and forget about ratings
completely.
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