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Introduction: Observation and Question
Observation: Many rating data sets exhibit 
marginal rating distributions that are skewed 
toward high rating values. 

MovieLens NetFlix YouTube
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Introduction: Observation and Question
Question: What causes these skewed 
distributions?

MovieLens NetFlix YouTube
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Introduction: Observation Processes
Answer 1: Most people really do like most 
items in these data sets, and we observe a 
random sample of entries.
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Introduction: Observation Processes
Answer 2: Most people don’t really like most 
items, but we observe a non-random sample 
where people tend to rate items they like. 
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Introduction: Observation Processes
My Goals for this Talk:

1. Convince you that answer #2 is the more 
likely answer in recommender systems.

2. Explore the implications of a non-random 
observation process.

3. Provide methods that can learn under a non-
random observation process. 

4. Suggest future research directions.
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• Introduction

• Missing Data Theory and Implications

• Yahoo! LaunchCast Study

• Models and Algorithms

• Experiments and Results

Talk Outline:
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Missing Data Theory: Notation
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Missing at Random Condition:

Data Model and Observation Model:

Missing Data Theory: Processes

R. J. A. Little and D. B. Rubin. Statistical Analysis with Missing Data. 1987.

• Violated if probability that user u will rate item 
i depends on user u’s rating for item i.
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Missing Data Theory: Learning

• The MAR assumption is the justification for 
ignoring missing data during learning:
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Missing Data Theory: Learning

• When MAR does not hold, the likelihood 
does not simplify:

• Ignoring missing data is equivalent to using 
the wrong likelihood function. Parameter 
estimates will be “biased”. 

• One Solution: Explicitly model P(R|X,µµµµ) 
and P(X|θθθθ). Estimate µµµµ and θθθθ.
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Missing Data Theory: Testing

• Training and testing on ratings of user-
selected items will not reveal any difficulties.

• Complimentary “biases” in training and 
testing cancel out.

• One Solution: Collect a test set of ratings 
for randomly selected items and use it to 
test methods.
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• Introduction

• Missing Data Theory and Implications

• Yahoo! LaunchCast Study

• Models and Algorithms

• Experiments and Results

Talk Outline:
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Yahoo! Study: Data Collection
Data was collected through an online survey 
of Yahoo! Music LaunchCast radio users.

• 1000 songs selected 
at random.

• Users rate 10 songs 
selected at random 
from 1000 songs.

• Data from 5000 users.
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Yahoo! Study: Survey Questions
Do preferences impact choice to rate?

64.85% of users 
reported that their 
preferences do
impact their choice 
to rate an item.
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Yahoo! Study: Rating Distributions

User Selected Randomly Selected
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• Introduction

• Missing Data Theory and Implications

• Yahoo! LaunchCast Study

• Models and Algorithms

• Experiments and Results

Talk Outline:
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Models: Finite Mixture/CPT-v
Probability Model:
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Models: Finite Mixture/CPT-v
Observation Model:

• Simple non-random observation process 
where the probability of observing a rating 
with value v is Bernoulli distributed with 
parameter µv.
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• Introduction

• Missing Data Theory and Implications

• Yahoo! LaunchCast Study

• Models and Algorithms

• Experiments and Results

Talk Outline:
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Experiments: Protocol

1. Train models on ratings for user selected 
items collected during normal interaction.

2. Test models on ratings for randomly 
selected items collected during survey.

3. Evaluate prediction and ranking using MAE 
and NDCG. 

4. We consider iKNN, SVD, MM/MAR, 
MM/CPT-v, MM/Logit-vd. 
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Results: Ranking - NDCG
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Conclusions:

• We believe non-random observation processes 
are a reality for recommender systems.   

• Treating missing data as if it were MAR results 
in poor performance on the rating prediction and 
ranking tasks we really care about.

• Simple NMAR models can be combined with 
standard complete data models to yield improved 
performance on both tasks.
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Future Directions:

• Much room for testing existing prediction and 
ranking methods on the Yahoo! data set.

• Combining CPT-v and Logit-vd with other data 
models (LDA/Aspect models).

• Deriving more flexible observation models for 
the discrete as well as continuous cases.  

• Generalizing observation models to include 
rating-scale usage models.
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Future Directions:

• Re-visiting the debate about side information in 
the non-random observation process setting. 

• Developing and testing models for the 
alternative factorization P(X|R)P(R).

• Developing methods that can side-step these 
issues instead of meeting them head on.

• Instrumenting software and devices to collect 
rich, implicit feedback and forget about ratings 
completely.
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