MM Algorithms

Haiqin Yang

Department of Computer Science & Engineering The Chinese University of Hong Kong

Contents are from

- Hunter, D. R., and Lange, K. (2004), "A Tutorial on MM Algorithms," The American Statistician, 58, 30-37.
- Zhou, H. and Lange, K. (2010), "MM algorithms for some discrete multivariate distributions," Journal of Computational and Graphical Statistics, 19(3):645-665.

Outline

Definition of Majorization and Property

• A function $g(\theta|\theta^n)$ is said to majorize the function $f(\theta)$ at θ^n provided

$$\begin{array}{lll} f(\theta^n) &=& g(\theta^n | \theta^n) \\ f(\theta) &\leq& g(\theta | \theta^n) & \mbox{ for all } \theta. \end{array}$$

 A descent property: f(θⁿ⁺¹) ≤ f(θⁿ)
 Minimizing g(θ) given θⁿ yields g(θⁿ⁺¹|θⁿ) ≤ g(θⁿ|θⁿ)

Definition of Majorization and Property

• A function $g(\theta|\theta^n)$ is said to majorize the function $f(\theta)$ at θ^n provided

$$\begin{array}{lll} f(\theta^n) &=& g(\theta^n | \theta^n) \\ f(\theta) &\leq& g(\theta | \theta^n) & \mbox{ for all } \theta. \end{array}$$

• A descent property: $f(\theta^{n+1}) \leq f(\theta^n)$

1 Minimizing $g(\theta)$ given θ^n yields

 $g(heta^{n+1}| heta^n) \leq g(heta^n| heta^n)$

2 $f(\theta) \leq g(\theta|\theta^n)$ derives

 $f(heta^{n+1}) - g(heta^{n+1}| heta^n) \leq 0 = f(heta^n) - g(heta^n| heta^n)$

Definition of Majorization and Property

• A function $g(\theta|\theta^n)$ is said to majorize the function $f(\theta)$ at θ^n provided

$$\begin{array}{lll} f(\theta^n) &=& g(\theta^n | \theta^n) \\ f(\theta) &\leq& g(\theta | \theta^n) & \mbox{ for all } \theta. \end{array}$$

• A descent property: $f(\theta^{n+1}) \leq f(\theta^n)$

1 Minimizing $g(\theta)$ given θ^n yields

$$g(heta^{n+1}| heta^n) \leq g(heta^n| heta^n)$$

2 $f(\theta) \leq g(\theta|\theta^n)$ derives

$$f(heta^{n+1}) - g(heta^{n+1}| heta^n) \leq 0 = f(heta^n) - g(heta^n| heta^n)$$

Summing up together, one has

$$\begin{array}{ll} f(\theta^{n+1}) &=& g(\theta^{n+1}|\theta^n) + f(\theta^{n+1}) - g(\theta^{n+1}|\theta^n) \\ &\leq& g(\theta^n|\theta^n) + f(\theta^n) - g(\theta^n|\theta^n) \\ &=& f(\theta^n) \end{array}$$

Outline

•
$$-\ln(x)$$
 is convex

- $-\ln(x)$ is convex
- For probability densities *a*(*x*) and *b*(*x*), we have

$$-\ln\left\{E_b\left[rac{a(x)}{b(x)}
ight]
ight\}\leq -E_b\left[\lnrac{a(x)}{b(x)}
ight]$$

- $-\ln(x)$ is convex
- For probability densities *a*(*x*) and *b*(*x*), we have

$$-\ln\left\{E_b\left[rac{a(x)}{b(x)}
ight\}
ight\}\leq -E_b\left[\lnrac{a(x)}{b(x)}
ight]$$

• If x has the density b(x), then

 $E_b[a(x)/b(x)] = 1.$

- $-\ln(x)$ is convex
- For probability densities *a*(*x*) and *b*(*x*), we have

$$-\ln\left\{E_b\left[rac{a(x)}{b(x)}
ight\}
ight\}\leq -E_b\left[\lnrac{a(x)}{b(x)}
ight]$$

• If x has the density b(x), then

 $E_b[a(x)/b(x)] = 1.$

• Hence, the left hand side above vanishes and we obtain

 $E_b[\ln a(x)] \leq E_b[\ln b(x)]$

Outline

Procedure

- An EM algorithm operates by identifying a theoretical complete data space.
- It consists of the *expectation* step and the *maximization* step.
- In the E step, the conditional expectation of the complete data log-likelihood is calculated wrt. the observed data. The *surrogate* function created by the E step is a minorizing function.
- In the M step, this minorizing function is maximized wrt. the parameters of the underlying model.
- Every EM algorithm is an example of an MM algorithm.

EM Algorithms

Thanks for your attention!