
A Stochastic Memoizer for Sequence Data

ICML 2009

Frank Wood

Cedric Archambeau

Jan Gasthaus

Lancelot James

Yee Whye Teh

Gatsby

UCL

Gatsby

HKUST

Gatsby

Presented by Shouyuan Chen

Slides modified from www.stat.columbia.edu/~fwood/Talks/sequence_memoizer.ppt

Executive Summary

• Uses

– Any situation in which a low-order Markov model of discrete

sequences is insufficient

– Drop in replacement for smoothing Markov model

Executive Summary

• Model

– Smoothing Markov model of discrete sequences

– Extension of hierarchical Pitman Yor process [Teh 2006]

• Unbounded depth (context length)

• Algorithms and estimation

– Linear time suffix-tree graphical model identification and construction

– Standard Chinese restaurant franchise sampler

• Results

– Maximum contextual information used during inference

– Competitive language modelling results
• Limit of n-gram language model as n!1

– Same computational cost as a Bayesian interpolating 5-gram language

model

Statistically Characterizing a Sequence

• Sequence Markov models are usually constructed by treating a

sequence as a set of (exchangeable) observations in fixed-length

contexts

oacac !

8
><
>:

cjao

ajca
cjac

trigram

oacac !

8
>>><
>>>:

ajo
cja
ajc
cja

oacac !

8
>>>>>><
>>>>>>:

oj[]
aj[]
cj[]
aj[]
cj[]

oacac !
(

ajcao

cjaca

bigram unigram 4-gram

Increasing context length / order of Markov model

Decreasing number of observations

Increasing number of conditional distributions to estimate (indexed by context)

Increasing power of model

Finite Order Markov Model

• Example

P (x1:N) =

NY

i=1

P (xijx1; : : : xi¡1)

¼
NY

i=1

P (xijxi¡n+1; : : : xi¡1); n = 2

= P (x1)P (x2jx1)P (x3jx2)P (x4jx3) : : :

P (oacac) = P (o)P (ajo)P (cja)P (ajc)P (cja)
= G[](o)G[o](a)G[c](a)G[a](c)G[c](a)

Learning Discrete Conditional Distributions

• Discrete distribution $ vector of parameters

• Counting / Maximum likelihood estimation

– Training sequence x1:N

– Predictive inference

• Example

– Non-smoothed unigram model (u = ²)

G[u]

xi
i = 1 : N

Ĝ[u](X = k) = ¼̂k =
#fukg
#fug

P(Xn+1jx1 : : : xN) = Ĝ[u](Xn+1)

G[u] = [¼1; : : : ;¼K];K 2 j§j

Bayesian Smoothing
• Estimation

• Predictive inference

• Priors over distributions

• Net effect

– Inference is “smoothed” w.r.t. uncertainty about

unknown distribution

• Example

– Smoothed unigram (u = ²)

xi
i = 1 : N

P(G[u]jx1:n) / P(x1:njG[u])P(G[u])

P(Xn+1jx1:n) =
R

P(Xn+1jG[u])P(G[u]jx1:n)dG[u] U

G[u] » Dirichlet(U); G[u] » PY(d; c;U) G[u]

A Way To Tie Together Distributions

• Tool for tying together related distributions in hierarchical models

• Measure over measures

• Base measure is the “mean” measure

• A distribution drawn from a Pitman Yor process is related to its base
distribution
– (equal when c = 1 or d = 1)

G[u] » PY(d; c;G[¾(u)])

xi » G[u]

concentration discount

base distribution

E[G[u](dx)] = G[¾(u)](dx)

[Pitman and Yor ‟97]

Pitman-Yor Process Continued
• Generalization of the Dirichlet process (d = 0)

– Different (power-law) properties

– Better for text [Teh, 2006] and images [Sudderth and Jordan, 2009]

• Posterior predictive distribution

• Forms the basis for straightforward, simple samplers

• Rule for stochastic memoization

P (XN+1jx1:N ; c; d) ¼
Z

P (xN+1jG[u])P (G[u]jx1:N ; c; d)dG[u]

= E

"PK

k=1(mk ¡ d)I(Ák = XN+1)

c + N
+

c + dK

c + N
G[¾(u)](XN+1)

#

Hierarchical Bayesian Smoothing
• Estimation

• Predictive inference

• Naturally related distributions tied
together

• Net effect
– Observations in one context affect

inference in other context.

– Statistical strength is shared between
similar contexts

• Example
– Smoothing bi-gram (w = ², u,v 2 Σ)

xjxi

U£ = fG[u];G[v];G[w]g; w = ¾(u) = ¾(v)

P (£jx1:N) / P (x1:N j£)P (£)

P (XN+1jx1:N)

=

Z
P (XN+1j£)P (£jx1:N)d£

G[w]

j = 1 : N[v]i = 1 : N[u]

G[v]G[u]
G
[the United States] » PY(d; c;G

[United States])

SM/HPYP Sharing in Action

Conditional Distributions Posterior Predictive Probabilities Observations

U

G[CP] G[GP]

G[P]

G[]

 CRF Particle Filter Posterior Update

Conditional Distributions Posterior Predictive Probabilities Observations

CPU

U

G[CP] G[GP]

G[P]

G[]

 CRF Particle Filter Posterior Update

Conditional Distributions Posterior Predictive Probabilities Observations

CPU

CPU

U

G[CP] G[GP]

G[P]

G[]

HPYP LM Sharing Architecture
• Share statistical strength between

sequentially related predictive

conditional distributions

– Estimates of highly specific

conditional distributions

– Are coupled with others that are

related

– Through a single common, more-

general shared ancestor

• Corresponds intuitively to back-off

G[]

G[a] G[the]

G[was on the]

G[on the]

G[is on the]

Unigra

m

2-gram

3-gram

4-gram G[was on the]G[is on the]

G[on the]

G[was on the]G[is on the]

G[the]

G[on the]

G[was on the]G[is on the]

G[was on the]

G[is on the]

G[on the]

Hierarchical Pitman Yor Process

• Bayesian generalization of smoothing n-gram Markov model

• Language model : outperforms interpolated Kneser-Ney (KN) smoothing

• Efficient inference algorithms exist

– [Goldwater et al ‟05; Teh, ‟06; Teh, Kurihara, Welling, ‟08]

• Sharing between contexts that differ in most distant symbol only

• Finite depth

G[] j d0;U » PY(d0; 0;U)

G[u] j djuj; G[¾(u)] » PY(djuj; 0;G[¾(u)])
xi j x1:i¡1 = u » G[u]

i = 1; : : : ; T

8u 2 §n¡1

[Goldwater et al ‟05, Teh ‟06]

Alternative Sequence Characterization

• A sequence can be characterized by a set of single

observations in unique contexts of growing length

Increasing context length

Always a single observation

Foreshadowing: all suffixes of the string “cacao”

oacac !

8
>>>>>><
>>>>>>:

oj[]
ajo
cjao

ajcao

cjacao

``Non-Markov‟‟ Model

• Example

• Smoothing essential

– Only one observation in each context!

P (x1:N) =

NY

i=1

P (xijx1; : : : xi¡1)

= P (x1)P (x2jx1)P (x3jx2; x1)P (x4jx3; : : : x1) : : :

P(oacac) = P(o)P(ajo)P(cjoa)P(ajoac)P(cjoaca)

Sequence Memoizer

• Eliminates Markov order selection

• Always uses full context when making predictions

• Linear time, linear space (in length of observation sequence) graphical model

identification

• Performance is limit of n-gram as n!1
• Same or less overall cost as 5-gram interpolating Kneser Ney

G[] j d0;U » PY(d0; 0;U)

G[u] j djuj; G[¾(u)] » PY(djuj; 0;G[¾(u)])
xi j x1:i¡1 = u » G[u]

i = 1; : : : ; T

8u 2 §+

G
[Godsaveour]

Graphical Model Trie

Observations

oacac !

8
>>>>>><
>>>>>>:

oj[]
ajo
cjao

ajcao

cjacao

Latent conditional distributions with Pitman Yor priors / stochastic memoizers

Suffix Trie Datastructure

oacac !

8
>>>>>><
>>>>>>:

oj[]
ajo
cjao

ajcao

cjacao

All suffixes of the string “cacao”

Suffix Trie Datastructure
• Deterministic finite automata that recognizes all

suffixes of an input string.

• Requires O(N2) time and space to build and store

[Ukkonen, 95]

• Too intensive for any practical sequence modelling

application.

Suffix Tree
• Deterministic finite automata that recognizes all

suffixes of an input string

• Uses path compression to reduce storage and

construction computational complexity.

• Requires only O(N) time and space to build and store

[Ukkonen, 95]

• Practical for large scale sequence modelling

applications

 Suffix Trie Datastructure

 Suffix Tree Datastructure

Graphical Model Identification
• This is a graphical model transformation under the

covers.

• These compressed paths require being able to

analytically marginalize out nodes from the graphical

model

• The result of this marginalization can be thought of as

providing a different set of caching rules to memoizers

on the path-compressed edges

Marginalization
• Theorem 1: Coagulation

If G2jG1 » PY(d1; 0;G1) and G3jG2 » PY(d2; 0;G2)

then G3jG1 » PY(d1d2; 0;G1) with G2 marginalized out.

[Pitman ‟99; Ho, James, Lau ‟06; W., Archambeau, Gasthaus, James, Teh „09]

G1

G2

G3

→

G1

G3

Graphical Model Trie

Graphical Model Tree

Graphical Model Initialization
• Given a single input sequence

– Ukkonen‟s linear time suffix tree construction algorithm is

run on its reverse to produce a prefix tree

– This identifies the nodes in the graphical model we need to

represent

– The tree is traversed and path compressed parameters for

the Pitman Yor processes are assigned to each remaining

Pitman Yor process

Never build more than a 5-gram

Sequence Memoizer Bounds N-Gram Performance

HPYP exceeds SM computational complexity

Language Modelling Results

[Mnih & Hinton, 2009] 112.1

[Bengio et al., 2003] 109.0

4-gram Modified Kneser-Ney [Teh, 2006] 102.4

4-gram HPYP [Teh, 2006] 101.9

Sequence Memoizer (SM) 96.9

AP News Test Perplexity

The Sequence Memoizer
• The Sequence Memoizer is a deep (unbounded) smoothing

Markov model

• It can be used to learn a joint distribution over discrete
sequences in time and space linear in the length of a single
observation sequence

• It is equivalent to a smoothing ∞-gram but costs no more to
compute than a 5-gram

Conclusion
• Solving an important problem

– The need of modeling discrete sequences is ubiquitous

– Beyond finite-order Markov model is difficult

• A smart construction of nonparametric model

– Using suffix tree to compress HPYP is innovative

• The model is extremely complicated (to learn)

– Search space is very large

– Is MCMC a good learning algorithm to this model?

• MCMC is simple, since the posterior distribution is simple

• Also works well in their experiments

• But it is not likely a good approximation algorithm

Future work
• Lossless compression based on the Sequence Memoizer

– DCC 2010

– An application

• Improvements to the Sequence Memoizer

– NIPS 2011

– Less memory usage

– Nonzero concentration parameters

• The Sequence Memoizer

– Communication of ACM, 2012

Software
• http://www.gatsby.ucl.ac.uk/~ucabjga/libplump.html

– C++ with python binding

• http://www.sequencememoizer.com/

– Java

http://www.gatsby.ucl.ac.uk/~ucabjga/libplump.html
http://www.sequencememoizer.com/

Thanks!

