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Abstract

In many clustering problems, we have access to multiple viefathe data each
of which could be individually used for clustering. Explaf information from
multiple views, one can hope to find a clustering that is m@®igte than the
ones obtained using the individual views. Often these diffeviews admit same
underlying clustering of the data, so we can approach tloklpm by looking for
clusterings that are consistent across the views, i.eregponding data points in
each view should have same cluster membership. We propgsectaa cluster-
ing framework that achieves this goal by co-regularizing t¢tustering hypothe-
ses, and propose two co-regularization schemes to acaintpls. Experimental
comparisons with a number of baselines on two synthetic hrektreal-world
datasets establish the efficacy of our proposed approaches.

1 Introduction

Many real-world datasets have representations in the férmultiple views [1, 2]. For example,
webpages usually consist of both the page-text and hygeriformation; images on the web have
captions associated with them; in multi-lingual infornoatiretrieval, the same document has mul-
tiple representations in different languages, and so omhofigh these individualiewsmight be
sufficient on their own for a given learning task, they camofprovide complementary information
to each other which can lead to improved performance on trailey task at hand.

In the context of data clustering, we seek a partition of thendbased on some similarity measure
between the examples. Our of the numerous clustering #igasi Spectral Clustering has gained
considerable attention in the recent past due to its streni@nance on arbitrary shaped clusters,
and due to its well-defined mathematical framework [3]. $@éclustering is accomplished by
constructing a graph from the data points with edges betwlsem representing the similarities,
and solving a relaxation of the normalized min-cut problemthis graph [4]. For the multi-view
clustering problem, we work with the assumption that the wnderlying clustering would assign
corresponding points in each view to the same cluster. Gisrassumption, we can approach the
multi-view clustering problem by limiting our search to starings that are compatible across the
graphs defined over each of the views: corresponding nodeadh graph should have the same
cluster membership.

In this paper, we propose two spectral clustering algorittimt achieve this goal lmo-regularizing
the clustering hypotheses across views. Co-regularizatica well-known technique in semi-
supervised literature; however, not much is known on udifigriunsupervised learning problems.
We propose novel spectral clustering objective functitiasimplicitly combine graphs from multi-
ple views of the data to achieve a better clustering. Ourgsegd methods give us a way to combine
multiple kernels (or similarity matrices) for the clustagiproblem. Moreover, we would like to
note here that although multiple kernel learning has met wiinsiderable success on supervised
learning problems, similar investigations for unsupesdigearning have been found lacking so far,
which is one of the motivations behind this work.

*Authors contributed equally



2 Co-regularized Spectral Clustering
We assume that we are given data having multiple represeamdafi.e., views). LetX =

{x(l"’),xg"), .., x1 denote the examples in view and K(*) denote the similarity or kernel
matrix of X in this view. We write the normalized graph Laplacian forstihiew as: £(*) =

DO ?K®D® ™ Thesingle viewspectral clustering algorithm of [5] solves the following
optimization problem for the normalized graph Laplaclaty :

max tr (U(”)TE(U)U(")) , S.t U u® =1 (1)
U('v)e]RnXk

wheretr denotes the matrix trace. The rows of malii%’) are the embeddings of the data points that
can be given to thé-means algorithm to obtain cluster memberships. For alddtaitroduction

to both theoretical and practical aspects of spectral etirgg, the reader is referred to [3]. Our
multi-view spectral clustering framework builds on therstard spectral clustering with a single
view, by appealing to the co-regularization framework tghly used in the semi-supervised learning
literature [1].

Co-regularization in semi-supervised learning essdntiabrks by making the hypotheses learned
from different views of the data agree with each other onhgilled data [6]. The framework employs
two main assumptions for its success: (a) the true targetifums in each view should agree on the
labels for the unlabeled daeompatibility) and (b) the views are independent given the class label
(conditional independenceThe compatibilityassumption allows us to shrink the space of possible
target hypotheses by searching only over the compatibigtifums. Standard PAC-style analysis [1]
shows that this also leads to reductions in the number of pkemeeded to learn the target function,
since this number depends on the size of the hypothesis dlaesndependencassumption makes

it unlikely for compatible classifiers to agree on wrong labén the case of clustering, this would
mean that a data point in both views would be assigned to tireataluster with high probability.

Here, we propose two co-regularization based approachesake the clustering hypotheses on
different graphs (i.e., views) agree with each other. Tlecéfeness of spectral clustering hinges
crucially on the construction of the graph Laplacian andrdwlting eigenvectors that reflect the
cluster structure in the data. Therefore, we construct ggctbe function that consists of the graph
Laplacians from all the views of the data and regularize eneiigenvectors of the Laplacians such
that the cluster structures resulting from each Lapla@ak tonsistent across all the views.

Our first co-regularization scheme (Section 2.1) enforbes the eigenvectort/(*) and U(®)of

a view pair(v,w) should have high pairwise similarity (using a pair-wiseregularization crite-
ria we will define in Section 2.1). Our second co-regulai@mascheme (Section 2.3) enforces the
view-specific eigenvectors to look similar by regularizthgm towards a commaronsensugcen-
troid based co-regularization). The idea is different froraviously proposed consensus clustering
approaches [7] that commit to individual clusterings in finst step and then combine them to a
consensus in the second step. We optimize for individuatefings as well as the consensus using
a joint cost function.

2.1 Pairwise Co-regularization

In standard spectral clustering, the eigenvector mafiiX is the data representation for subsequent
k-means clustering step (wittth row mapping to the original'th sample). In our proposed objec-
tive function, we encourage the pairwise similarities odmples under the new representation (in
terms of rows ofU(")’s) to be similar across all the views. This amounts to erifigr¢he spectral
clustering hypotheses (which are based onlftié’s) to be the same across all the views.

We will work with two-view case for the ease of exposition. i§kwill later be extended to more
than two views. We propose the following cost function as asnee of disagreement between
clusterings of two views:

K K
D(U™ UMW)y = H AL S
( )= Ko lE ~ Ry B

Ky is the similarity matrix forU®), and|| - || denotes the Frobenius norm of the matrix.
The similarity matrices are normalized by their Frobeniaswms to make them comparable across
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views. We choose linear kernel, i.é(x;,x;) = x/ x; as our similarity measure in Equation 2.
This implies that we havi& ., = U®U®" . The reason for choosing linear kernel to measure
similarity of U®) is twofold. First, the similarity measure (or kernel) usedttie Laplacian for
spectral clustering has already taken care of the nonrliresapresent in the data (if any), and the
embeddingU(") being real-valued cluster indicators, can be consideraibéy linear similarities.
Secondly, we get a nice optimization problem by using lineanel forU(). We also note that
||Kym || = k, wherek is the number of clusters. Substituting this in Equation @ igmoring the
constant additive and scaling terms that depend on the nuohbgusters, we get

DU®, U®) = ¢ (Uw)U(v)TU(w)U(w

We want to minimize the above disagreement between theecings of viewsv andw. Com-
bining this with the spectral clustering objectives of wdual views, we get the following joint
maximizatiorproblem for two graphs:

max tr (U(U)TL(U)U(v)) +tr (U(w)TE(w)U(w)) + M\ tr (U(U)U(U)TU(w)U(w)T)

(v) cpn Xk
S )

st UW'U® =1 y@ 'y =

)T

The hyperparametek trades-off the spectral clustering objectives and the tspleembedding
(dis)agreement term. The joint optimization problem gisnEquation 3 can be solved using al-
ternating maximization w.r.tU(") andU ). For a givenU(*), we get the following optimization
problem inU®):
max tr {UO" (£0 4 U ) UL st uTUO =1 (g

U @) gRnxk
This is a standard spectral clustering objective on wiawith graph LaplaciarC(?) + XU U®)"
This can be seen as a way of combining kernels or Laplacidms difference from standard kernel
combination (kernel addition, for example) is that the combion is adaptive sinc®(*) keeps
getting updated at each step, as guided by the clusteringithig. The solutiodU(") is given by
the top#4 eigenvectors of this modified Laplacian. Since the altémgahaximization can make the
algorithm stuck in a local maximum [8], it is important to lea& sensible initialization. If there is
no prior information on which view is mori@formativeabout the clustering, we can start with any
of the views. However, if we have some a priori knowledge as, tive can start with the graph
Laplacian£(®) of the more informative view and initializ&(*), The alternating maximization
is carried out after this until convergence. Note that ongsjlility could be to regularize directly
on the eigenvectortl (*)’s and make them close to each other (e.g., in the sense of therfious
norm of the difference betwedd (") andU(*)). However, this type of regularization could be too
restrictive and could end up shrinking the hypothesis spédeasible clusterings too much, thus
ruling out many valid clusterings.

For fixed\ andn, the joint objective of Eqg. 3 can be shown to be bounded froovalby a constant.
Since the objective is non-decreasing with the iteratidims,algorithm is guaranteed to converge.
In practice, we monitor the convergence by the differencethévalue of the objective between
consecutive iterations, and stop when the difference flsw a minimum threshold af = 10—*.

In all our experiments, we converge within less than 10 fiens. Note that we can use eitHgt®)

or U™) in the finalk-means step of the spectral clustering algorithm. In ouegRrpents, we note a
marginal difference in the clustering performance depemdin whichU() is used in the final step
of k-means clustering.

2.2 Extension to Multiple Views

We can extend the co-regularized spectral clustering megbo the previous section for more than
two views. This can be done by employing pair-wise co-reggaas in the objective function of
Eg. 3. Form number of views, we have

max Ztr (U(’I;)Tﬁ(U)U(tz)) 4\ Z tr (U(U)U(’U)TU(w)U(w)T)
UMW, U@, U ernxk £ = ’ )

vEw

st. UW'U® =] vi<ou<V



We use a common for all pair-wise co-regularizers for simplicity of exptien, however different
A’s can be used for different pairs of views. Similar to the tview case, we can optimize it by
alternating maximization cycling over the views. With alittoneU(*) fixed, we have the following
optimization problem:

max tr U7 (£0) 40 Y 00T U0} st u0Tu = g

(6)

1<w<m,
wv

We initialize allU®), 2 < v < m by solving the spectral clustering problem for single vieWe
solve the objective of Eq. 6 fdg(!) given all otherU("), 2 < v < m. The optimization is then
cycled over all views while keeping the previously obtaiféd’s fixed.

2.3 Centroid-Based Co-regularization

In this section, we present an alternative regularizateirese that regularizes each view-specific
set of eigenvectort/ (") towards a common centrold* (akin to aconsensuset of eigenvectors) .
In contrast with the pairwise regularization approach \hhias(”;) pairwise regularization terms,
wherem is the number of views, the centroid based regularizatibese hasn pairwise regular-
ization terms. The objective function can be written as:

S )7 p() <v>> ( 7T 17 *T)
U<1>7U<2),...I,Itlja<zi>,U*eR"X’vU;tr (U LU +;>\Utr LUASEA SASCAN WA §) ,

st UW'UMW =7 vi<o<V, U U =1

()

This objective tries to balance a trade-off between theviddal spectral clustering objectives and
the agreement of each of the view-specific eigenveditfd with the consensus eigenvectdss.
Each regularization term is weighted by a paramatespecific to that view, wherg, can be set to
reflect the importance of view.

Just like for Equation 6, the objective in Equation 7 can beexbin an alternating fashion optimizing
each of theU(")’s one at a time, keeping all other variables fixed, followgddptimizing the
consensu¥J*, keeping all thaU(¥)’s fixed.

Itis easy to see that with all other view-specific eigenvecémd the consensti* fixed, optimizing
U®) for view v amounts to solving the following:

)" )"

max tr (U(” u® =7 (8)

max C(”)U(”>) At <U<”)U(”)TU*U*T)7 st Uw
U®) cRnxk

which is nothing but equivalent to solving the standard spéclustering objective fobJ(*) with a

modified LaplaciarC(") + A UU . Solving for the consensds$* requires solving the following
objective:

max 3" At (UOUOUUT), st vUt =1 9
U*eRnxk 9)

Using the circular property of matrix traces, Equation 9 bamewritten as:

«T ONIGH * LUt =
U%%E&ktr{U (Z)\(U U ))U} st. UM U =1 (10)

which is equivalent to solving the standard spectral clisgeobjective forU* with a modified
Laplaciany_, \, (U(”>U(”>T>. In contrast with the pairwise co-regularization approatisec-

tion 2.1 which computes optimal view specific eigenvectof$)’s, which finally need to be com-
bined (e.g., via column-wise concatenation) before rugnire k-means step, the centroid-based
co-regularization approach directly finds an optirbil to be used in thé&-means step. One possi-
ble downside of the centroid-based co-regularization @ggi is that noisy views could potentially
affect the optimalU* as it depends on all the views. To deal with this, carefultia of the weigh-
ing parameten, is required. If it isa priori known that some views are noisy, then it is advisable
to use a small value of, for such views, so as to prevent them from adversely affgdtin.
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3 Experiments

We compare both of our co-regularization based multi-vipectral clustering approaches with a
number of baselines. In particular, we compare with:

e Single View: Using the most informative view, i.e., one that achievesiist spectral cluster-
ing performance using a single view of the data.

e Feature Concatenation: Concatenating the features of each view, and then runnémglatd
spectral clustering using the graph Laplacian derived ftbenjoint view representation of the
data.

e Kernel Addition: Combining different kernels by adding them, and then rugrétandard
spectral clustering on the corresponding Laplacian. Agesigd in earlier findings [9], even this
seemingly simple approach often leads to near optimaltseaslcompared to more sophisticated
approaches for classification. It can be noted that kerrditiad reduces to feature concatenation
for the special case of linear kernel. In general, kerneltadis same as concatenation of
features in the Reproducing Kernel Hilbert Space.

e Kernel Product (element-wise):Multiplying the corresponding entries of kernels and apply
ing standard spectral clustering on the resultant Laptaétar the special case of Gaussian kernel,
element-wise kernel product would be same as simple featureatenation if both kernels use
same width parameter. However, in our experiments, we use different width paransefor
different views so the performances of kernel product maybeadirectly comparable to feature
concatenation.

e CCA based Feature Extraction: Applying CCA for feature fusion from multiple views of the
data [10], and then running spectral clustering using tegacted features. We apply both stan-
dard CCA and kernel CCA for feature extraction and reportcistering results for whichever
gives the best performance.

e Minimizing-Disagreement Spectral Clustering: Our last baseline is theminimizing-
disagreemenapproach to spectral clustering [11], and is perhaps moseb} related to our co-
regularization based approach to spectral clusterings dligiorithm is discussed more in Sec. 4.

To distinguish between the results of our two co-reguldéionabased approaches, in the tables con-
taining the results, we use symbol “P” to denote plagrwiseco-regularization method and symbol
“C” to denote thecentroidbased co-regularization method. For datasets with moreZzhvéews, we
have also explicitly mentioned the number of views in pdresgs.

We report experimental results on two synthetic and threéwerld datasets. We give a brief
description of each dataset here.

e Synthetic data 1: Our first synthetic dataset consists of two views and is ggadiin a manner
akin to [12] which first chooses the clustgreach sample belongs to, and then generates each
of the views;vf) and xEQ) from a two-component Gaussian mixture model. These views ar
combined to form the samp[e;gl), x,EQ), ¢i). We sample 000 points from each view. The cluster
means inview 1 arp!" = (1 1), u{" = (2 2), and in view 2 arg\”) = (2 2), xS = (1 1).

The covariances for the two views are given below.

1) _ 1 0.5 2 (03 0 a (03 0 2) _ 1 05
1= ( 05 15 )% = 0 06 )% = 0 06 ) o5 15
e Synthetic data 2: Our second synthetic dataset consists of three views. Mergihe features
are correlated. Each view still has two clusters. Each vegenerated by a two component

Gaussian mixture model. The cluster means in view Judre= (1 1), u{" = (3 4); in view 2
arep'? = (1 2), 1 = (2 2);and inview 3 arg\¥) = (1 1), u{¥ = (3 3). The covariances
for the three views are given below. The notatf’ denotes the parameter fdth cluster in
v'th view.

W (1 05 @ [ 1 -02 @ (12 02
2y —(0.5 1.5)7 2y —<—0.2 1) 2 =02 1

a (03 0.2 2 _( 06 0.1 3) _ 1 04
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e Reuters Multilingual data: The test collection contains feature characteristics atidwents
originally written in five different languages (Englishgfch, German, Spanish and lItalian), and
their translations, over a common set of 6 categories [1Bis Torpus is built by sampling parts
of the Reuters RCV1 and RCV2 collections [14, 15]. We use dwus originally in English
as the first view and their French translations as the secimvd WVe randomly sampl&200
documents from this collection in a balanced manner, wittheaf the6 clusters having200
documents. The documents are in bag-of-words represemtakiich implies that the features are
extremely sparse and high-dimensional. The standardasityimeasures (like Gaussian kernel)
in very high dimensions are often unreliable. Since spkcttestering essentially works with
similarities of the data, we first project the data using batemantic Analysis (LSA) [16] to a
100-dimensional space and compute similarities in this lowerethsional space. This is akin to
a computing topic based similarity of documents [17].

e UCI Handwritten digits data: Our second real-world dataset is taken from the handwritten
digits (0-9) data from the UCI repository. The dataset cstssof 2000 examples, with view-1
being the 76 Fourier coefficients, and view-2 being the 2D8ilprcorrelations of each example
image.

e Caltech-101 data: Our third real-world dataset is a subset of the Caltech-Id4 &om the
Multiple Kernel Learning repository from which we chose 4&Gmples having 30 underlying
clusters. We experiment with 4 kernels from this datasetpdrticular, we chose the “pixel
features”, the “Pyramid Histogram Of Gradients”, bio-iimef “Sparse Localized Features”, and
SIFT descriptors as our four views. We report results on otregularized spectral clustering for
two, three and four views cases.

We use normalized mutual information (NMI) as the clustgmuality evaluation measure, which
gives the mutual information between obtained clusterimgyjtae true clustering normalized by the
cluster entropies. NMI ranges betwee@rand 1 with higher value indicating closer match to the
true clustering. We use Gaussian kernel for computing teplgsimilarities in all the experiments,
unless mentioned otherwise. The standard deviation of ¢heek is taken equal to the median of
the pair-wise Euclidean distances between the data pdimésir experiments, the co-regularization
parameten\ is varied from0.01 to 0.05 and the best result is reported (we keethe same for all
views; one can however also choose differgstbased on the importance of individual views). We
experiment with\ values more exhaustively later in this Section where we sthaitvour approach
outperforms other baselines for a wide range.ofh the results table, the numbers in the parentheses
are the standard deviations of the performance measurasettwith20 different runs ofk-means
with random initializations.

3.1 Results

The results for all datasets are shown in Table 1. For twar@gnthetic data (Synthetic Data 1),
both the co-regularized spectral clustering approachgzedorm all the baselines by a significant
margin, with the pairwise approach doing marginally betita@n the centroid-based approach. The
closest performing approaches are kernel addition and EGAsynthetic data, order-2 polynomial
kernel based kernel-CCA gives best performance among all Giants, while Gaussian kernel
based kernel-CCA performs poorly. We do not report resolt$Saussian kernel CCA here. All the
multi-view baselines outperform the single view case ferdfinthetic data.

For three-view synthetic data (Synthetic Data 2), we cartlsgtesimple feature concatenation does
not help much. In fact, it reduces the performance when ting thew is added, so we report the
performance with only two views for feature concatenatidernel addition with three views gives a
good improvement over single view case. As compared to tidmzlines (with two views), both our
co-regularized spectral clustering approaches with twavsiperform better. For both approaches,
addition of third view also results in improving the perfante beyond the two view case.

For the document clustering results on Reuters multilihdata, English and French languages are
used as the two views. On this dataset too, both our appreamitperform all the baselines by a
significant margin. The next best performance is attainethigmum-disagreement spectral clus-
tering [11] approach. It should be noted that CCA and elemése kernel product performances
are worse than that of single view.

For UCI Handwritten digits dataset, quite a few approachekiding kernel addition, element-wise
kernel multiplication, and minimum-disagreement are elasboth of our co-regularized spectral



[ Method

| Synth data 1] Synth data 2]

Reuters |

Handwritten |

Caltech ]

Best Single View 0.267(0.0) 0.898(0.0) 0.287(0.019) | 0.641(0.008) | 0.510(0.008)
Feature Concat 0.294(0.0) 0.923(0.0) 0.298(0.020) | 0.619(0.015) -
Kernel Addition 0.339(0.0) 0.973(0.0) | 0.323(0.021) | 0.744(0.030) | 0.383(0.008)
Kernel Product 0.277(0.0) 0.959(0.0) 0.123(0.010) | 0.754(0.026) | 0.429(0.007)

CCA 0.330(0.0) 0.932(0.0) | 0.147(0.003) | 0.682(0.019) | 0.466(0.007)
Min-Disagreement 0.313(0.0) 0.936(0.0) 0.342(0.024) | 0.745(0.024) | 0.389(0.008)
Co-regularized (P) (2)) 0.378(0.0) 0.981(0.0) 0.375(0.002) | 0.759(0.031) | 0.527(0.007)
Co-regularized (P) (3) - 0.989(0.0) - - 0.533(0.008)
Co-regularized (P) (4) - - - - 0.564(0.007)
Co-regularized (C) (2)) 0.367(0.0) 0.955(0.0) 0.360(0.025) | 0.768(0.025) | 0.522(0.004)
Co-regularized (C) (3) - 0.989(0.0) - - 0.512(0.007)
Co-regularized (C) (4) - - - - 0.561(0.005)

Table 1: NMI results on various datasets for different baselines and the pedpasproaches. Numbers in
parentheses are the std. deviations. The numbers (2), (3) and i@gtexthe number of views used in our
co-regularized spectral clustering approach. Other multi-view baseleee run with maximum number of
views available (or maximum number of views they can handle). Lettgrar(® (C) indicate pairwise and
centroid based regularizations respectively.

clustering approaches. It can be also be noted that featun@atenation actually performs worse
than single view on this dataset.

For Caltech-101 data, we cannot do feature concatenatioe sinly kernels are available. Surpris-
ingly, on this dataset, all the baselines perform worse tharsingle view case. On the other hand,
both of our co-regularized spectral clustering approaetitstwo views outperform the single view
case. As we added more views that were available for the @alt81 datasets, we found that the
performance of the pairwise approach consistently wentsupvea added the third and the fourth
view. On the other hand, the performance of the centroi@dapproach slightly got worse upon
adding the third view (possibly due to the view being noisychtaffected the learned*); however
addition of the fourth view brought the performance almdase to that of the pairwise case.

Co-regularization approach
Closest performing baseline|
a8 Y A\\

0.38

Co-regularization approach|
Closed performing baseline| |

0.32

NMI Score
NMI Score

o
w

0.28

0.24 : : : :
[ 0.02 0.04 0.06 0.08

Co-regularization parameter A Co-regularization Parameter A
() (b)

Figure 1:NMl scores of Co-regularized Spectral Clustering as a functiok ffr (a) Reuters multilingual
data and (b)Caltech-101 data

0.02 0.04 0.06 0.08 0.1

We also experiment with various values of co-regularizaparametei and observe its effect on
the clustering performance. Our reported results are fmp#irwise co-regularization approach.
Similar trends were observed for the centroid-based colaegation approach and therefore we do
not report them here. Fig. 1(a) shows the plot for Reuterdilingiual data. The NMI score shoots
up right after\ starts increasing frori and reaches a peak at= 0.01. After reaching a second
peak at abou®.025, it starts decreasing and hovers around the second bedinba®éinimizing-
disagreement in this case) for a while. The NMI becomes wityae the second best baseline after
A = 0.075. The plot for Caltech-101 data is shown in Fig. 1(b). The raliped mutual information
(NMI) starts increasing as the value of lambda is increasealygrom 0, and reaches a peak at
A = 0.01. It starts to decrease after that with local ups and downsthHeorange ofA shown in the
plot, the NMI for co-regularized spectral clustering isae¥ than the closest baseline for most of



the X values. These results indicate that although the perforenahour algorithms depends on the
weighing paramete, it is reasonably stable across a wide rang#.of

4 Related Work

A number of clustering algorithms have been proposed in s  learn with multiple views
of the data. Some of them first extract a set of shared feaftoesthe multiple views and then
apply any off-the-shelf clustering algorithm such /asneans on these features. The Canonical
Correlation Analysis (CCA) [2, 10] based approach is an gdarof this. Alternatively, some other
approaches exploit the multiple views of the data as parhefdustering algorithm itself. For
example, [19] proposed an Co-EM based framework for mudtivclustering in mixture models.
Co-EM approach computes expected values of hidden vasiablene view and uses these in the
M-step for other view, and vice versa. This process is regaeantil a suitable stopping criteria is
met. The algorithm often does not converge.

Multi-view clustering algorithms have also been proposedhie framework of spectral cluster-
ing [11, 20, 21]. In [20], the authors obtain a graph cut whiggood on average over the multiple
graphs but may not be the best for a single graph. They givedmra walk based formulation for the
problem. [11] approaches the problem of two-view clustphig constructing a bipartite graph from
nodes of both views. Edges of the bipartite graph connea@sf&rdm one view to those in the other
view. Subsequently, they solve standard spectral clugtgnioblem on this bipartite graph. In [21],
a co-training based framework is proposed where the siityilaatrix of one view is constrained by
the eigenvectors of the Laplacian in the other view. In [22¢ information from multiple graphs
are fused using Linked Matrix Factorization. Consensustehing approaches can also be applied
to the problem of multi-view clustering [7]. These approagldo not generally work with original
features. Instead, they take different clusterings of asitcoming from different sources as input
and reconcile them to find a final clustering.

5 Discussion

We proposed a multi-view clustering approach in the fram&wbspectral clustering. The approach
uses the philosophy of co-regularization to make the cdlungje in different views agree with each

other. Co-regularization idea has been used in the pastifoirsupervised learning problems. To the
best of our knowledge, this is the first work to apply the idetine problem of unsupervised learning,
in particular to spectral clustering. The co-regularizpddiral clustering has a joint optimization

function for spectral embeddings of all the views. An al&giimg maximization framework reduces

the problem to the standard spectral clustering objecthvielis efficiently solvable using state-of-

the-art eigensolvers.

It is possible to extend the proposed framework to the casgevbome of the views have missing
data. For missing data points, the corresponding entriggeisimilarity matrices would be unavail-
able. We can estimate these missing similarities by theesponding similarities in other views.
One possible approach to estimate the missing entry could sénply average the similarities
from views in which the data point is available. Proper ndimagion of similarities (possibly by
Frobenius norm of the whole matrix) might be needed befoegaming to make them comparable.
Other methods for missing kernel entries estimation cam la¢sused. It is also possible to assign
weights to different views in the proposed objective fuoictas done in [20], if we have some a
priori knowledge about the informativeness of the views.

Our co-regularization based framework can also be apptiasttter unsupervised problems such
as spectral methods for dimensionality reduction. For etanthe Kernel PCA algorithm [23]
can be extended to work with multiple views by defining eadwas having its own Kernel PCA
objective function and having a regularizer which enfortesembeddings to loogimilar across
all views (e.g., by enforcing the similarity matrices defir@n embeddings of each view to be close
to each other). Theoretical analysis of the proposed apprcan also be pursued as a separate line
of work. There has been very little prior work analyzing gp&aclustering methods. For instance,
there has been some work on consistency analysis of singe spectral clustering [24], which
provides results about the rate of convergence as the samplécreases, using tools from theory
of linear operators and empirical processes. Similar agaree properties could be studied for
multi-view spectral clustering. We can expect the convecgedo be faster for multi-view case. Co-
regularization reduces the size of hypothesis space amtkHess number of examples should be
needed to converge to a solution.
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