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Abstract

Recently, training support vector machines with indef-
inite kernels has attracted great attention in the ma-
chine learning community. In this paper, we tackle
this problem by formulating a joint optimization model
over SVM classifications and kernel principal compo-
nent analysis. We first reformulate the kernel principal
component analysis as a general kernel transformation
framework, and then incorporate it into the SVM clas-
sification to formulate a joint optimization model. The
proposed model has the advantage of making consistent
kernel transformations over training and test samples.
It can be used for both binary classification and multi-
class classification problems. Our experimental results
on both synthetic data sets and real world data sets show
the proposed model can significantly outperform related
approaches.

Introduction
Support vector machines (SVMs) with kernels have attracted
a lot attention due to their good generalization performance.
The kernel function in a standard SVM produces a simi-
larity kernel matrix over samples, which is required to be
positive semi-definite. This positive semi-definite property
of the kernel matrix ensures the SVMs can be efficiently
solved using convex quadratic programming. However, in
many applications the underlying similarity functions do not
produce positive semi-definite kernels (Chen et al. 2009).
For example, the sigmoid kernels with various values of the
hyper-parameters (Lin and Lin 2003), the hyperbolic tan-
gent kernels (Smola, Ovari, and Williamson 2000), and the
kernels produced by protein sequence similarity measures
derived from Smith- Waterman and BLAST scores (Saigo
et al. 2004) are all indefinite kernels. Training SVMs with
indefinite kernels poses a challenging optimization problem
since convex solutions for standard SVMs are not valid in
this learning scenario.

Learning with indefinite kernels has been addressed by
many researchers in various ways in the literature. One
most simple and popular way to address the problem is
to identify a corresponding positive semi-definite kernel
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matrix by modifying the spectrum of the indefinite ker-
nel matrix (Wu, Chang, and Zhang 2005). Several sim-
ple representative spectrum modification methods have been
proposed in the literature, including “clip” (or “ denoise”)
which neglects the negative eigenvalues (Graepel et al. 1999;
Pekalska, Paclik, and Duin 2001), “flip” which flips the
sign of the negative eigenvalues (Graepel et al. 1999), and
“shift” which shifts all the eigenvalues by a positive constant
(Roth et al. 2003). More sophisticated approaches simulta-
neously derive a positive semi-definite kernel matrix from
the given indefinite kernel matrix and train a SVM classifier
within unified optimization frameworks (Chen and Ye 2008;
Chen, Gupta, and Recht 2009; Luss and d’Aspremont 2007).
A few other works use indefinite similarity matrices as ker-
nels directly by formulating variant optimization problems
from standard SVMs. In (Lin and Lin 2003), a SMO-type
method is proposed to find stationary points for the non-
convex dual formulation of SVMs with nonpositive semi-
definite sigmoid kernels. This method, however, is based
on the assumption that there is a corresponding reproduc-
ing kernel Hilbert space to ensure valid SVM formulations.
The work in (Ong et al. 2004) interprets learning with an
indefinite kernel as minimizing the distance between two
convex hulls in a pseudo-Euclidean space. In (Pekalska and
Haasdonk 2008), the authors extended the kernel linear and
quadratic discriminants to indefinite kernels. The approach
in (Guo and Schuurmans 2009) minimizes the sensitivity of
the classifier to perturbations of the training labels, which
yields an upper bound of classical SVMs.

In this paper, we propose a novel joint optimization model
over SVM classifications and kernel principal component
analysis to address the problem of learning with indefi-
nite kernels. We first reformulate the kernel principal com-
ponent analysis (KPCA) into a general kernel transforma-
tion framework which can incorporate the spectrum modi-
fication methods. Next we incorporate this framework into
the SVM classification to formulate a joint max-min opti-
mization model. Training SVMs with indefinite kernels can
then be conducted by solving the joint optimization prob-
lem using an efficient iterative algorithm. Different from
many related approaches, our proposed model has the ad-
vantage of making consistent transformations over training
and test samples. The experimental results on both synthetic
data sets and real world data sets demonstrated the proposed



model can significantly outperform the spectrum modifica-
tion methods, the robust SVMs and the kernel Fisher’s dis-
criminant on indefinite kernels (IKFD).

Related Work
The dual formulation of standard SVMs is a linear con-
strained quadratic programming, which provides a natural
form to address nonlinear classification using kernels

max
α

α⊤e− 1

2
α⊤Y K0Y α (1)

s.t. α⊤diag(Y ) = 0, 0 ≤ α ≤ C

whereY is a diagonal matrix of the labels, andK0 is a ker-
nel matrix. The positive semi-definite property ofK0 en-
sures the problem (1) to be a convex optimization problem
and thus a global optimal solution can be solved efficiently.
However, whenK0 is indefinite, one loses the underlying
theoretical support for the kernel methods and the optimiza-
tion problem (1) is no longer convex. For the nonconvex op-
timization problem (1) with indefinite kernels, with a simple
modification, a sequential minimal optimization (SMO) al-
gorithm can still converge to a stationary point, but not nec-
essarily a global maximum (Lin and Lin 2003).

Instead of solving the quadratic optimization problem (1)
with indefinite kernels directly, many approaches are fo-
cused on deriving a surrogate positive semi-definite kernel
matrixK from the indefinite kernelK0. A simple and popu-
lar way to obtain such a surrogate kernel matrix is to modify
the spectrum ofK0 using methods such asclip, flip, and
shift (Wu, Chang, and Zhang 2005). LetK0 = UΛU⊤,
whereΛ = diag(λ1, . . . , λN ) is the diagonal matrix of the
eigenvalues, andU is the orthogonal matrix of correspond-
ing eigenvectors. Theclip method produces an approximate
positive semi-definite kernelKclip by clipping all negative
eigenvalues to zero,

Kclip = Udiag(max(λ1, 0), · · · ,max(λN , 0))U⊤. (2)

Theflip method flips the sign of negative eigenvalues ofK0

to form a positive semi-definite kernel matrixKflip, such
that

Kflip = Udiag(|λ1|, · · · , |λN |)U⊤. (3)

The shift method obtains the positive semi-definite kernel
matrix Kshift by shifting the whole spectrum ofK0 with
the minimum required amountη, such that

Kshift = Udiag(λ1 + η, . . . , λN + η)U⊤. (4)

These spectrum modification methods are straightforward
and simple to use. However, some information valuable for
the classification model might be lost by simply modify-
ing the spectrum of input kernels. Therefore, approaches
that simultaneously train the classification model and learn
the approximated positive semi-definite kernel matrix have
been developed (Chen and Ye 2008; Chen, Gupta, and
Recht 2009; Luss and d’Aspremont 2007). In (Luss and
d’Aspremont 2007) a robust SVM with indefinite kernels
was proposed, which treats the indefinite kernel as a noisy

observation of the true positive semi-definite kernel and
solves the following convex optimization problem

max
α

min
K

α⊤e− 1

2
α⊤Y KY α+ ρ‖K −K0‖2F (5)

s.t. α⊤diag(Y ) = 0; 0 ≤ α ≤ C; K � 0

where a positive semi-definite kernelK is introduced to ap-
proximate the originalK0, andρ controls the magnitude of
the penalty on the distance betweenK andK0. An analy-
sis about the indefinite SVM of (5) was conducted in (Ying,
Campbelly, and Girolami 2009), which shows the objective
function is smoothed by the penalty term. In (Chen and Ye
2008), Chen and Ye reformulated (5) into a semi-infinite
quadratically constrained linear program formulation, which
can be solved iteratively to find a global optimal solution.
They further employed an additional pruning strategy to im-
prove the efficiency of the algorithm.

Many approaches mentioned above treat training and test
samples in an inconsistent way. That is, the training is con-
ducted on the proxy positive semi-definite kernel matrixK,
but the predictions on test samples are still conducted us-
ing the original unmodified similarities. This is an obvi-
ous drawback that could degrade the performance of the
produced classification model. Wu et al. (Wu, Chang, and
Zhang 2005) addressed this problem for the case of spectrum
modifications by recomputing the spectrum modification on
the matrix that augmentsK0 with similarities on test sam-
ples. Chen et al. (Chen, Gupta, and Recht 2009) addressed
the problem of learning SVMs with indefinite kernels us-
ing the primal form of Eq.(5) while further restrictingK to
be a spectrum modification ofK0. They then obtained the
consistent treatment of training and test samples by solving
a positive semi-definite minimization problem over the dis-
tance between augmentedK0 andK matrices. The model
we propose in this paper however can address this incon-
sistency problem in a more principled way without solving
additional optimization problems.

Kernel Principal Component Analysis
In this section, we present the kernel principal component
analysis (KPCA) as a kernel transformation method and then
demonstrate its connection to spectrum modification meth-
ods. LetX = {xi}Ni=1 denote the training samples, where
xi ∈ R

n. To employ kernel techniques, a mapping function,
φ : Rn → R

f , can be deployed to map the data to a typically
high dimensional space. The training samples in this mapped
space can be represented asΦ = [φ(x1), . . . , φ(xN )] and
the standard kernel matrix can be viewed as the inner prod-
uct of the sample matrix in the high dimensional space,
K0 = Φ⊤Φ.

KPCA
The kernel principal component analysis (Schölkopf, Smola,
and Muller 1999) can be solved by minimizing the distance
between the high dimensional data matrix and the recon-
structed data matrix

min
W

∥

∥Φ−WW⊤Φ
∥

∥

2

F
, s.t. W⊤W = Id (6)



whereW , a f × d matrix, can be viewed as a transforma-
tion matrix that transforms the data samples to a lower d-
dimensional subspaceZ = W⊤Φ; ‖·‖F denotes the Frobe-
nius norm; andId denotes ad× d identity matrix. This min-
imization problem is equivalent to

max
W

tr(W⊤ΦΦ⊤W ), s.t. W⊤W = Id (7)

which has a closed form solutionW = Ud, whereUd

is the top d eigenvectors ofΦΦ⊤. Moreover we have
ΦΦ⊤WΛ−1

d = W , whereΛd is a d × d diagonal matrix
with its diagonal values as the topd eigenvalues ofΦΦ⊤.
Here we assumed the topd eigenvalues are not zeros. Let
V = Φ⊤WΛ−1

d , then we haveW = ΦV and (7) can be
reformulated into

max
V

tr(V ⊤K0K0V ), s.t. V ⊤K0V = Id. (8)

After solving the optimization problem above for theV ma-
trix, the transformation matrix,W , and the low dimensional
map of the training samples,Z, can be obtained conse-
quently. Then the transformed kernel matrix for the training
samples in the low dimensional space can be produced

Kv = Z⊤Z = Φ⊤WW⊤Φ = K0V V TK0. (9)

Although the standard kernel principal component analysis
assumes the kernel matrixK0 to be positive semi-definite,
the optimization problem (8) we derived above can be gen-
eralized to the case of indefinite kernels ifV is guaranteed to
be a real valued matrix by selecting a properd value. Even
whenK0 is an indefinite kernel matrix,Kv is still guaran-
teed to be positive semi-definite for real valuedV . Thus the
equation (9) provides a principle strategy to transform an in-
definite kernel matrixK0 to a positive semi-definite matrix
Kv with a proper selectedV . Moreover, given a new sam-
ple x, it can be transformed byW⊤φ(x) = V ⊤Φ⊤φ(x) =
V ⊤k0, wherek0 denotes the original similarity vector be-
tween the new sample x and training samples. The trans-
formed similarity vector between the new sample x and the
training samples iskv = K0V V T k0. By using this trans-
formation strategy, we can easily transform the test samples
and the training samples in aconsistentway.

Connections to Spectrum Modifications
The kernel transformation strategy we developed above is a
general framework. By selecting differentV matrix, various
kernel transformations can be produced. We now show that
the spectrum modification methods reviewed in the previous
section can be equivalently reexpressed as kernel transfor-
mations in the form of Eq.(9) with properV matrices.

AssumeK0 = UΛU⊤, whereU is an orthogonal matrix
andΛ is a diagonal matrix of real eigenvalues, that is,Λ =
diag(λ1, . . . , λN ). Theclip spectrum modification method
can be reexpressed as

Kclip = K0VclipV
⊤
clipK0 (10)

for a constructedVclip matrix

Vclip = U |Λ|− 1
2 diag

(

I{λ1>0}, . . . , I{λN>0}

)

(11)

where|Λ| = diag(|λ1|, . . . , |λN |), andI{·} is an indicator
function. Theflip method can be reexpressed as

Kflip = K0VflipV
⊤
flipK0 (12)

for Vflip = U |Λ|− 1
2 . (13)

Similarly, theshiftmethod is reexpressed as

Kshift = K0VshiftV
⊤
shiftK0 (14)

for Vshift = U |Λ|−1(Λ + ηI)
1
2 . (15)

Training SVMs with Indefinite Kernels
In this section, we address the problem of training SVMs
with indefinite kernels by developing a joint optimization
model over SVM classifications and KPCA. Our model si-
multaneously trains a SVM classifier and identifies a proper
transformationV matrix. We present this model for binary
classifications first and then extend it to address multi-class
classification problems. An iterative optimization algorithm
is developed to solve the joint optimizations.

Binary classifications
We first extend the standard two-class SVMs to formulate a
joint optimization problem of SVMs and the kernel principal
component analysis

min
W,w,b,ξ

1

2
w⊤w + C

∑

i

ξi + ρ
∥

∥Φ−WW⊤Φ
∥

∥

2

F
(16)

s.t. yi(w
⊤W⊤Φ(:, i) + b) ≥ 1− ξi, ξi ≥ 0, ∀i;

W⊤W = Id;

whereyi ∈ {+1,−1} is the label of theith training sam-
ple, Φ(:, i) is the ith column of the general feature ma-
trix representationΦ, C is the standard tradeoff parame-
ter in SVMs, andρ is a parameter to control the trade-
off between the SVM objective and the reconstruction er-
ror of KPCA. Previous approaches in (Chen and Ye 2008;
Chen, Gupta, and Recht 2009; Luss and d’Aspremont 2007)
use the distance between the proxy kernelK and the original
K0 as a regularizer for SVMs. The joint optimization model
proposed here can be similarly interpreted as employing the
distance between the proxy and original feature vectors as a
regularizer. However, for the problem of learning with indef-
inite kernels, the feature vectors are not real valued vectors
and they are actually only available implicitly through kernel
matrices. Therefore, we need to reformulate the optimization
problem in terms of kernels.

By exploiting the derivation results in the previous sec-
tion, we propose to replace the distance regularizer in (16)
with a kernel transformation regularizer (8) to obtain an al-
ternative joint optimization in terms of the input kernel

min
w,b,ξ,V

1

2
w⊤w + C

∑

i

ξi − ρ tr(V ⊤K0K0V ) (17)

s.t. yi(w
⊤V ⊤K0(:, i) + b) ≥ 1− ξi, ξi ≥ 0, ∀i;

V ⊤K0V = Id; K0V V ⊤K0 � 0.



WhenV is constrained to be a real valued matrix, the con-
straintK0V V TK0 � 0 can be dropped. We will assumeV
has real values from now on. More conveniently, following
the dual formulation of standard SVMs, we consider the reg-
ularized dual SVM formulation and focus on the following
optimization problem

max
α

min
V

α⊤e− 1

2
α⊤Y K0V V TK0Y α (18)

−ρ tr(V ⊤K0K0V )

s.t. α⊤diag(Y ) = 0; 0 ≤ α ≤ C;

V ⊤K0V = Id;

whereY = diag(y1, . . . , yN ) is a diagonal matrix.

Multi-class Classifications

Multi-class classification problems can be solved by train-
ing multiple binary SVMs (Hsu and Lin 2002). In this pa-
per, we deploy the1-vs-1 strategy for multi-class classifica-
tion. A simple deployment of this strategy requires training
k(k − 1)/2 binary classifiers, each for a pair of classes, for
ak-class problem. This means that an optimization problem
(18) has to be solved for each pair of classes and a different
proxy kernelsKab will be learned for each pair of classes
{a, b}, by learning a differentVab. However, with different
proxy kernelsKab for each pair of classes, the consistent
transformation of samples for the overall multi-class classi-
fication cannot be maintained. To ensure a data sample has
a consistent representation in all binary classification prob-
lems, we construct a framework to use a single target (proxy)
kernel matrixKv for all binary classifications by introduc-
ing a set of sub-kernel transformation matrix{Dab}1≤a<b≤k

and address all thek(k − 1)/2 binary classifications in one
joint optimization.

Assume the training set hasN samples and each classa
hasNa samples. We first consider a given pair of classesa
andb. LetNab = Na+Nb be the sample size of the class set
{a, b},Lab = [ℓab1 , . . . , ℓabNab

] denote a1×Nab vector whose
jth entry is the index value for thejth sample of the class set
{a, b} in the original training set, andKab denote the proxy
kernel matrix of the samples in these two classes. Thus the
proxy kernelKv of all training samples is aN ×N matrix,
and theKab, aNab ×Nab matrix, is its sub-matrix. We now
construct an indicator matrixDab ∈ {0, 1}N×Nab as below
to build a connection between these two kernel matrices

Dab(i, j) =

{

1, if ℓabj = i
0, otherwise.

.

GivenDab, the kernel matrixKab of classa andb can be
computed as

Kab = Kv(L
ab, Lab) = D⊤

abKvDab. (19)

ThusDab can be viewed as a sub-kernel transformation ma-
trix. Note thatKv = K0V V ⊤K0. Then we can combine the

k(k − 1)/2 classifications in a joint optimization problem

max
α

min
V

−ρ tr(V ⊤K0K0V ) +
∑

1≤a<b≤k

(

α⊤
abe−

1

2
α⊤
abYabD

T
abK0V V TK0DabYabαab

)

(20)

s.t. α⊤
abdiag(Yab) = 0, ∀1 ≤ a < b ≤ k;

0 ≤ αab ≤ C, ∀1 ≤ a < b ≤ k;

V ⊤K0V = Id

whereα denotes a collection of{αab}1≤a<b≤k, andYab is
a diagonal matrix whose diagonal entries are the binary la-
bels for the binary classification problem over classes{a, b}.
Whenk = 2, the binary classification problem in (18) can
be recovered from (20).

An Iterative Algorithm
The objective of the outer maximization problem in (20) is a
pointwise minimum of a family of concave quadratic func-
tions ofα, and hence is a concave function ofα. Thus (20)
is a concave maximization problem overα subject to linear
constraints (Boyd and Vandenberghe 2004). In this section,
we develop an iterative algorithm to solve the optimization
problem (20). In each iteration of the algorithm,V andα
are alternatively optimized. WhenV is fixed, we can di-
vide the maximization problem intok(k − 1)/2 standard
binary SVMs and optimize eachαab independently. When
{αab}1≤a<b≤k are fixed,V can be computed by solving the
following optimization problem

max
V

tr(V ⊤K0MK0V ) s.t.V ⊤K0V = Id (21)

where

M =
1

2

∑

1≤a<b≤k

(DabYabαabα
⊤
abYabD

⊤
ab) + ρIN . (22)

The above problem can be solved via the following gen-
eral eigenvalue problem,

K0MK0v = λK0v. (23)

Note that for positiveρ values,M is guaranteed to be pos-
itive definite. Thus we will solve the following eigenvalue
problem instead

MK0MK0v = λMK0v, (24)

MK0u = λu, (25)

for u = MK0v. Moreover, we assumeK0 is invertible 1.
Let U = [u1, . . . ,ud] be the topd largest eigenvectors of
MK0, thenV = K−1

0 M−1U . Finally the optimal solution
of (21) can be recovered by settingV ∗ = [v∗1, . . . , v

∗
d], where

v∗i = vi/
√

v⊤i K0vi. Here the renormalization is necessary
to ensure the orthogonal constraints in (21) for indefiniteK0.

Determining feasibled values. To ensure each vi be real
values, we should selectd to guarantee that each ui satisfies
u⊤i K0ui > 0. To determined, we have the following lemma

1It is easy to remove the zero eigenvalues ofK0 by simply
adding a tiny positive/negative diagonal matrixǫIN without chang-
ing the distribution ofK0’s eigenvalues.



Lemma 1 For each eigenpair, (λi,ui), of MK0, if λi > 0,
then we have u⊤i K0ui > 0.

Proof: SinceMK0ui = λiui, we have

u⊤i K0MK0ui = λiu
⊤
i K0ui.

Then u⊤i K0ui = (u⊤i K0MK0ui)/λi.

Since bothK0MK0 andK0 are symmetric matrices,ui has
real values. MoreoverK0MK0 is positive semi-definite ac-

cording to (22). Thereforeu
⊤

i K0MK0ui
λi

> 0 �.
According to Lemma 1, the topd eigenvectors{v∗i }1≤i≤d

have real values, ifd ≤ d0, whered0 is the number of pos-
itive eigenvalues ofMK0. As we discussed before,M is
guaranteed to be positive definite for positiveρ values, and
we assumeK0 is invertible. It is easy to showMK0 and
M

1
2K0M

1
2 have the same eigenvalues by using a similar

transformation from (23) to (24). According to the Sylvester
law of inertia (Golub and Loan 1996),M

1
2K0M

1
2 andK0

have the same inertia, and thus have the same number of pos-
itive eigenvalues. Therefore the valued0 can be determined
directly fromK0.

Experiments
We conducted experiments on both synthetic data sets and
real world data sets to compare the proposed method,
denoted as SVM-CA, with a few spectrum modification
methods (clip, flip, and shift), the robust SVM (Luss and
d’Aspremont 2007), and the kernel Fisher’s discriminant on
indefinite kernels (IKFD) (Pekalska and Haasdonk 2008).
We used the robust SVM code found on the authors’ web-
site2. In the experiments below, the regularization param-
eter ρ for SVM-CA, robust SVM and IFKD, the parame-
ter C in SVMs, the reduced dimensionalityd in SVM-CA
were all selected by 10-fold cross-validations from the fol-
lowing candidate sets,ρ,C ∈ {0.01, 0.1, 1, 10, 100}, and
d ∈ {2, 3, 5, 8, 13, 21, 34, 55}.

Experiments on Synthetic Data Sets
We constructed four 3-class 2-dimensional data sets, each
with 300 samples. For each data set, the three classes, each
with 100 samples, are generated using three Gaussian dis-
tributions with the covariance matrixΛ = diag(σ2, σ2) and
mean vectorsµ1 = (−3, 3), µ2 = (3,−3) and(3

√
3, 3

√
3),

respectively. We generate the similarity kernel matrix by
adding additive white Gaussian noise to the linear kernel ma-
trix, K0(i, j) = xTi xj + zij , wherezij ∼ N(0, η). With the
Gaussian noise, the kernelK0 is not positive semi-definite.

By considering differentσ2 andη values, synthetic data
sets with different properties can be generated. We consid-
ered two values forσ2, σ2 = 2 andσ2 = 4, and two differ-
entη values,η = 20 andη = 100. With largerσ2 value, the
generated data is harder to be separable. With largerη, the
kernel matrixK0 can be more indefinite. With different pairs
of (σ2, η), we obtained four synthetic data sets. The charac-
teristics of the data sets are given in Table 1, whereλmin and

2http://www.tau.ac.il/ ˜ rluss/

λmax are the smallest and largest eigenvalues of each syn-
thetic indefinite kernel matrixK0, respectively,

∑

λ+

i and
∑

λ−
j are the sums of the positive and negative eigenvalues

of K0, respectively.
We run experiments on the four synthetic data sets com-

paring the SVM-CA to the other five approaches. Our ex-
perimental results in terms of classification error rates are
reported in Table 1. These results are averaged over 50 runs
using 80% of the data as training set and the remainder as
test set. It is apparent that the values ofσ2 andη determine
the hardness of the classification problems, and thus affect
the performance of these approaches. When eitherσ2 or η
gets larger, the error rate for each approach increases. When
η is small, the spectrum modification methods, especially
the spectrum clip, yield good performance. Whenη is large,
which means the kernelK0 is far away from being positive
semi-definite, the spectrum modifications are inefficient to
capture the information provided by the indefinite kernels
and thus produce inferior results. Among the three spectrum
modification approaches, the clip method obtains the lowest
error rates on all the four data sets. The robust SVM is highly
related to the spectrum clip, and it yields similar results as
the clip method. Both IKFD and SVM-CA approaches ob-
tain much better results than the other four approaches. They
produced good results even on the data sets with largeη and
largeσ2. Overall, the proposed SVM-CA produced the best
results comparing to all the other approaches.

Experiments on Real World Data Sets
We then conducted experiments on several real world data
sets used for learning with indefinite kernels, including a few
data sets used in (Chen et al. 2009), i.e.,yeast, amazon, au-
ral sonar, voting, patrolandprotein, and a data set collected
in (Pekalska and Haasdonk 2008), i.e.,catcortex. These data
sets are represented by similarity (or dissimilarity) matrices
produced using different similarity measures. For example,
a sequence-alignment similarity measure is used for thepro-
tein data set, the Smith-Waterman E-value is used to mea-
sure the similarity between two protein sequences for the
yeastdata set, etc. We also used theglassdata set obtained
from the UCI machine learning repository (Newman et al.
1998), for which we used a sigmoid kernel to compute an
indefinite kernel matrixK0. These data sets together repre-
sent a diverse set of indefinite similarities. We assumed sym-
metric similarity kernel matrixK0 in our proposed model.
When the original matrixK0 given in the data is not sym-
metric, we reset it asK0 = (K⊤

0 +K0). When the original
matrix K0 in the data represents dissimilarity, we just re-
set it asK0 = m −K0, wherem is the largest entry of the
original matrixK0. There are six binary (two-class) and four
multi-class data sets in total. We computed the eigenvalue in-
formation of the kernel matrixK0 for each data set as well.

The indefiniteness measure|
∑

λ
−

i∑
λ
+

j

| obtained for each data

set is given as follows: (Yeast5v7: 0.56), (Yeast5v12: 0.56),
(Yeast7v12: 0.57), (Amazon: 0.01), (Aural Sonar: 0.26),
(Voting: 0.00), (Protein: 0.25), (Glass: 0.00), (Patrol: 0.36)
and (Catcortex: 0.10). Here the value 0.00 denotes a positive
value smaller than 0.005.



Table 1: Characteristics of the four synthetic data sets andthe average classification errors (%) of the six comparison methods.

Data σ2 η λmin

∣

∣

λmin

λmax

∣

∣

∣

∣

∑
λ
−

i∑
λ
+

j

∣

∣ Clip Flip Shift Robust SVM IKFD SVM-CA

Synth 1 2 20 -143 .02 .47 1.50 2.00 15.83 1.53 1.20 0.72
Synth 2 2 100 -693 .11 .82 9.67 11.00 22.33 9.05 2.43 1.83
Synth 3 4 20 -140 .02 .44 4.00 4.83 21.50 4.11 1.69 1.17
Synth 4 4 100 -702 .11 .80 16.17 16.67 38.17 15.24 4.70 3.50

Table 2: Comparison results in terms of classification errorrates (%) on binary classification data sets. The means and standard
deviations of the error rates over 50 random repeats are reported.

Dataset Yeast5v7 Yeast5v12 Yeast7v12 Amazon Aural Sonar Voting

Clip+SVM 40.0±1.1 20.0±1.3 25.5±1.2 10.3±0.9 11.2±0.8 3.0±0.3
Flip+SVM 46.0±0.6 17.8±1.2 22.0±1.0 11.0±0.9 16.8±0.9 3.2±0.3
Shift+SVM 35.0±0.5 42.8±1.5 46.7±1.9 16.0±0.8 17.3±0.9 5.8±0.5

IKFD 34.2±1.0 17.5±1.0 14.0±1.0 15.6±0.9 8.4±0.6 5.7±0.3
Robust SVM 29.0±1.0 18.0±1.0 15.0±0.9 8.8±0.8 11.0±0.9 3.3±0.3

SVM-CA 25.0±0.9 10.7±0.8 10.5±0.8 9.5±0.9 8.6±0.6 2.7±0.3

We compared our proposed SVM-CA to the other five
approaches on both the six binary data sets and the four
multi-class data sets. The experimental results are reported
in Table 2 and Table 3 respectively. These results are pro-
duced over 50 runs using randomly selected 90% of the data
samples as training set and the remainder as test set. Both
the average classification error rates and their standard de-
viations are reported. Among the three spectrum modifica-
tion algorithms, the spectrumclip obtained the lowest error
rates on five of the ten data sets, while spectrumflip and
shift obtained the lowest error rates on four and one data
sets, respectively. The robust SVM slightly outperformed the
spectrum modifications on eight data sets. The IKFD out-
performed the spectrum modifications on five data sets. Our
proposed SVM-CA clearly outperformed all the other ap-
proaches and achieved the lowest classification error rates
on four of the total six binary data sets and all the four
multi-class data sets. On data sets such as Protein, Patrol and

Catcortex, where the|
∑

λ
−

i∑
λ
+

j

| values are large, the improve-

ments achieved by the proposed approach over the other
SVM training methods are largely significant. These results
on both synthetic and real world data sets demonstrated the
effectiveness of the proposed joint optimization model.

Convergence Experiments. We also conducted exper-
iments to study the convergence property of the proposed
iterative algorithm in Section 4.3. The experiments are con-
ducted on two data setsprotein andcatcortex. In each ex-
periment, we plot the objective values of the SVM-CA for-
mulation in (20) after each update ofV andα. The plots
are shown in Figure 1. We can see that the objective values
of the maximization and minimization sub-problems gradu-
ally converges within 10 iterations on the two data sets. This
suggests the iterative algorithm we proposed can effectively
solve the target convex optimization.

Table 3: Comparison results in terms of classification error
rates (%) on multi-class classification data sets. The means
and standard deviations of the error rates over 50 random
repeats are reported.

Dataset Protein Glass Patrol Catcortex

Clip+SVM 6.3±0.7 41.1±1.2 48.6±1.5 10.5±2.0
Flip+SVM 4.0±0.7 39.4±1.1 44.8±1.4 13.5±2.3
Shift+SVM 5.5±0.7 38.3±0.9 51.4±1.5 49.0±4.0

IKFD 8.2±0.9 43.3±1.1 25.7±1.8 12.5±1.9
Robust SVM 16.4±1.1 39.1±1.0 31.3±1.4 9.4±1.7

SVM-CA 2.5±0.5 37.3±0.8 12.4±0.8 4.5±1.4

Conclusion
In this paper, we investigated the problem of training SVMs
with indefinite kernels. We first reformulated the kernel prin-
cipal component analysis (KPCA) to a kernel transforma-
tion model and demonstrated its connections to spectrum
modification methods with indefinite kernels. We then pre-
sented a novel joint optimization model over SVM classifi-
cations and principal component analysis to conduct SVM
training with indefinite kernels assisted by kernel compo-
nent analysis. The proposed model can be used for both bi-
nary classifications and multi-class classifications. An ef-
ficient iterative algorithm was proposed to solve the pro-
posed joint optimization problem. Moreover, the proposed
approach can make consistent transformations over training
and test samples. Our experimental results on both synthetic
data sets and real world data sets demonstrated the proposed
approach can significantly outperform the spectrum modi-
fication methods, the robust SVMs and the kernel Fisher’s
discriminant on indefinite kernels (IKFD).



(a) Protein

(b) Catcortex

Figure 1: Convergence of SVM-CA on the Protein and Cat-
cortex data sets. TheObj(α) andObj(V ) denote the objec-
tive values after updatingV andα, respectively, at each iter-
ation.
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