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Abstract

Recently, training support vector machines with indef-
inite kernels has attracted great attention in the ma-
chine learning community. In this paper, we tackle
this problem by formulating a joint optimization model
over SVM classifications and kernel principal compo-
nent analysis. We first reformulate the kernel principal
component analysis as a general kernel transformation
framework, and then incorporate it into the SVM clas-
sification to formulate a joint optimization model. The
proposed model has the advantage of making consistent
kernel transformations over training and test samples.
It can be used for both binary classification and multi-
class classification problems. Our experimental results
on both synthetic data sets and real world data sets show
the proposed model can significantly outperform related
approaches.

Introduction

Support vector machines (SVMs) with kernels have attracted
a lot attention due to their good generalization perforneanc
The kernel function in a standard SVM produces a simi-
larity kernel matrix over samples, which is required to be
positive semi-definite. This positive semi-definite prdper
of the kernel matrix ensures the SVMs can be efficiently
solved using convex quadratic programming. However, in
many applications the underlying similarity functions di n
produce positive semi-definite kernels (Chen et al. 2009).
For example, the sigmoid kernels with various values of the
hyper-parameters (Lin and Lin 2003), the hyperbolic tan-
gent kernels (Smola, Ovari, and Williamson 2000), and the

matrix by modifying the spectrum of the indefinite ker-
nel matrix (Wu, Chang, and Zhang 2005). Several sim-
ple representative spectrum modification methods have been
proposed in the literature, includinglip” (or “denoisé)

which neglects the negative eigenvalues (Graepel et a®;199

Pekalska, Paclik, and Duin 20021)lif” which flips the
sign of the negative eigenvalues (Graepel et al. 1999), and
“shift’ which shifts all the eigenvalues by a positive constant
(Roth et al. 2003). More sophisticated approaches simulta-
neously derive a positive semi-definite kernel matrix from
the given indefinite kernel matrix and train a SVM classifier

within unified optimization frameworks (Chen and Ye 2008;

Chen, Gupta, and Recht 2009; Luss and d’Aspremont 2007).
A few other works use indefinite similarity matrices as ker-
nels directly by formulating variant optimization problsm
from standard SVMs. In (Lin and Lin 2003), a SMO-type
method is proposed to find stationary points for the non-
convex dual formulation of SVMs with nonpositive semi-
definite sigmoid kernels. This method, however, is based
on the assumption that there is a corresponding reproduc-
ing kernel Hilbert space to ensure valid SVM formulations.
The work in (Ong et al. 2004) interprets learning with an
indefinite kernel as minimizing the distance between two
convex hulls in a pseudo-Euclidean space. In (Pekalska and
Haasdonk 2008), the authors extended the kernel linear and
guadratic discriminants to indefinite kernels. The appnoac
in (Guo and Schuurmans 2009) minimizes the sensitivity of
the classifier to perturbations of the training labels, Whic
yields an upper bound of classical SVMs.

In this paper, we propose a novel joint optimization model
over SVM classifications and kernel principal component

kernels produced by protein sequence similarity measures analysis to address the problem of learning with indefi-

derived from Smith- Waterman and BLAST scores (Saigo
et al. 2004) are all indefinite kernels. Training SVMs with
indefinite kernels poses a challenging optimization pnoble
since convex solutions for standard SVMs are not valid in
this learning scenario.

Learning with indefinite kernels has been addressed by
many researchers in various ways in the literature. One
most simple and popular way to address the problem is
to identify a corresponding positive semi-definite kernel
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nite kernels. We first reformulate the kernel principal com-
ponent analysis (KPCA) into a general kernel transforma-
tion framework which can incorporate the spectrum modi-
fication methods. Next we incorporate this framework into
the SVM classification to formulate a joint max-min opti-
mization model. Training SVMs with indefinite kernels can
then be conducted by solving the joint optimization prob-
lem using an efficient iterative algorithm. Different from
many related approaches, our proposed model has the ad-
vantage of making consistent transformations over trginin
and test samples. The experimental results on both syntheti
data sets and real world data sets demonstrated the proposed



model can significantly outperform the spectrum modifica-
tion methods, the robust SVMs and the kernel Fisher’s dis-
criminant on indefinite kernels (IKFD).

Related Work

The dual formulation of standard SVMs is a linear con-
strained quadratic programming, which provides a natural
form to address nonlinear classification using kernels

1)

1
max ale— EaTYKOYa
(e}

st.  a'diagY)=0, 0<a<C

whereY is a diagonal matrix of the labels, atq, is a ker-

nel matrix. The positive semi-definite property &f, en-
sures the problem (1) to be a convex optimization problem
and thus a global optimal solution can be solved efficiently.
However, whenKj is indefinite, one loses the underlying
theoretical support for the kernel methods and the optimiza
tion problem (1) is no longer convex. For the nonconvex op-
timization problem (1) with indefinite kernels, with a sirapl
modification, a sequential minimal optimization (SMO) al-
gorithm can still converge to a stationary point, but not-nec
essarily a global maximum (Lin and Lin 2003).

Instead of solving the quadratic optimization problem (1)
with indefinite kernels directly, many approaches are fo-
cused on deriving a surrogate positive semi-definite kernel
matrix K from the indefinite kernek(y. A simple and popu-
lar way to obtain such a surrogate kernel matrix is to modify
the spectrum of{y using methods such adip, flip, and
shift (Wu, Chang, and Zhang 2005). Lé&f, = UAUT,
whereA = diag(\1, ..., An) is the diagonal matrix of the
eigenvalues, and/ is the orthogonal matrix of correspond-
ing eigenvectors. Thelip method produces an approximate
positive semi-definite kernek.;;;, by clipping all negative
eigenvalues to zero,

K1ip = Udiagimax(Aq,0), - - - 7max(x\j\/,O))UT. (2)
Theflip method flips the sign of negative eigenvalue3@f
to form a positive semi-definite kernel matriX;;,,, such
that

Kpiip = Udiag([ M, -+, [ANUT. 3)

The shift method obtains the positive semi-definite kernel
matrix Ksp; ¢+ by shifting the whole spectrum ok, with
the minimum required amount such that
Kopige = Udiag M +1,... . Av +0)U . (4)

These spectrum modification methods are straightforward
and simple to use. However, some information valuable for
the classification model might be lost by simply modify-
ing the spectrum of input kernels. Therefore, approaches
that simultaneously train the classification model andrlear
the approximated positive semi-definite kernel matrix have

observation of the true positive semi-definite kernel and
solves the following convex optimization problem

1
maxm}én ale— §aTYKYa +p|K — Ko||%  (5)
st.  a'diagY)=0; 0<a<C; K>0

where a positive semi-definite kernilis introduced to ap-
proximate the originaK,, andp controls the magnitude of
the penalty on the distance betweknand K. An analy-
sis about the indefinite SVM of (5) was conducted in (Ying,
Campbelly, and Girolami 2009), which shows the objective
function is smoothed by the penalty term. In (Chen and Ye
2008), Chen and Ye reformulated (5) into a semi-infinite
guadratically constrained linear program formulationjckih
can be solved iteratively to find a global optimal solution.
They further employed an additional pruning strategy to im-
prove the efficiency of the algorithm.

Many approaches mentioned above treat training and test
samples in an inconsistent way. That is, the training is con-
ducted on the proxy positive semi-definite kernel maftix
but the predictions on test samples are still conducted us-
ing the original unmodified similarities. This is an obvi-
ous drawback that could degrade the performance of the
produced classification model. Wu et al. (Wu, Chang, and
Zhang 2005) addressed this problem for the case of spectrum
modifications by recomputing the spectrum modification on
the matrix that augment&, with similarities on test sam-
ples. Chen et al. (Chen, Gupta, and Recht 2009) addressed
the problem of learning SVMs with indefinite kernels us-
ing the primal form of Eq.(5) while further restricting to
be a spectrum modification df,. They then obtained the
consistent treatment of training and test samples by slvin
a positive semi-definite minimization problem over the dis-
tance between augmentéd, and K matrices. The model
we propose in this paper however can address this incon-
sistency problem in a more principled way without solving
additional optimization problems.

Kernel Principal Component Analysis

In this section, we present the kernel principal component
analysis (KPCA) as a kernel transformation method and then
demonstrate its connection to spectrum modification meth-
ods. LetX = {x;},; denote the training samples, where
x; € R™. To employ kernel techniques, a mapping function,
¢ : R* — R7, can be deployed to map the data to a typically
high dimensional space. The training samples in this mapped
space can be representeddas= [¢(z1),...,¢(zn)] and

the standard kernel matrix can be viewed as the inner prod-
uct of the sample matrix in the high dimensional space,
Ko=®T®.

KPCA

The kernel principal component analysis (Bisfopf, Smola,
and Muller 1999) can be solved by minimizing the distance

been developed (Chen and Ye 2008; Chen, Gupta, and between the high dimensional data matrix and the recon-

Recht 2009; Luss and d’Aspremont 2007). In (Luss and
d’Aspremont 2007) a robust SVM with indefinite kernels

was proposed, which treats the indefinite kernel as a noisy

structed data matrix

. 2
min [|© — WWT@[,, st WW=1I (6)



whereW, a f x d matrix, can be viewed as a transforma-
tion matrix that transforms the data samples to a lower d-
dimensional subspacé = W' ®; ||-|| - denotes the Frobe-
nius norm; and,; denotes a x d identity matrix. This min-
imization problem is equivalent to

max tr(WTead™W), st WIWw =1,

()

which has a closed form solutioW = U,, whereUy

is the top d eigenvectors ofd®". Moreover we have
<I><I>TWA;1 = W, whereA, is ad x d diagonal matrix
with its diagonal values as the tapeigenvalues ofbd .
Here we assumed the tepeigenvalues are not zeros. Let
V = ®"WA]"', then we havdV = &V and (7) can be
reformulated into

max tr(VTKoKoV), st VIEK)W =1, (8)
After solving the optimization problem above for thema-
trix, the transformation matriX¥}/, and the low dimensional
map of the training samples/, can be obtained conse-
guently. Then the transformed kernel matrix for the tragnin
samples in the low dimensional space can be produced

Ke=2"Z=0"WW'Td =K VVTK,. (9)

Although the standard kernel principal component analysis
assumes the kernel matriX, to be positive semi-definite,
the optimization problem (8) we derived above can be gen-
eralized to the case of indefinite kernel¥iis guaranteed to

be a real valued matrix by selecting a progeralue. Even
when K is an indefinite kernel matrixis,, is still guaran-
teed to be positive semi-definite for real valuédThus the
equation (9) provides a principle strategy to transformman i
definite kernel matrix<, to a positive semi-definite matrix
K, with a proper selectetf. Moreover, given a new sam-
ple x, it can be transformed By "¢(z) = V& T ¢(x) =

V Tko, wherek, denotes the original similarity vector be-
tween the new sample x and training samples. The trans-
formed similarity vector between the new sample x and the
training samples i&, = KoV V7Tky. By using this trans-
formation strategy, we can easily transform the test sasnple
and the training samples incansistentvay.

Connections to Spectrum Maodifications

where|A| = diag|A[,...,|An|), andI;., is an indicator
function. Theflip method can be reexpressed as

Kiip KoViipVinip Ko (12)

for  Vyp = UJA|I7Z. (13)
Similarly, theshift method is reexpressed as

Konipr = KOVshifth—}:,qutKO (14)

for  Viwipr = UA"'(A+nl)2. (15)

Training SVMs with Indefinite Kernels

In this section, we address the problem of training SVMs
with indefinite kernels by developing a joint optimization
model over SVM classifications and KPCA. Our model si-
multaneously trains a SVM classifier and identifies a proper
transformation/ matrix. We present this model for binary
classifications first and then extend it to address mulsscla
classification problems. An iterative optimization alglon

is developed to solve the joint optimizations.

Binary classifications

We first extend the standard two-class SVMs to formulate a
joint optimization problem of SVMs and the kernel principal
component analysis

2

min P

W,w,b,& (16)

1
ZWIW CZ@- +plle-wwa|

(W WTB(,0) +b) >1—&, & >0, Vi
WIW =1y

S.t.

wherey; € {+1,—1} is the label of theth training sam-
ple, ®(:,i) is the ith column of the general feature ma-
trix representation®, C is the standard tradeoff parame-
ter in SVMs, andp is a parameter to control the trade-
off between the SVM objective and the reconstruction er-
ror of KPCA. Previous approaches in (Chen and Ye 2008;
Chen, Gupta, and Recht 2009; Luss and d’Aspremont 2007)
use the distance between the proxy ketdkielnd the original

Ky as aregularizer for SVMs. The joint optimization model
proposed here can be similarly interpreted as employing the
distance between the proxy and original feature vectors as a

The kernel transformation strategy we developed above is a regularizer. However, for the problem of learning with ifide

general framework. By selecting differevitmatrix, various
kernel transformations can be produced. We now show that
the spectrum modification methods reviewed in the previous
section can be equivalently reexpressed as kernel transfor
mations in the form of Eq.(9) with propé&f matrices.
AssumeK, = UAU T, whereU is an orthogonal matrix
andA is a diagonal matrix of real eigenvalues, thats=

diag(\1, ..., An). Theclip spectrum modification method
can be reexpressed as
Ketip = KoVeripValip Ko (10)
for a constructed’.;;, matrix
Vclip:U|A\’%diag(l{,\1>0},...,I{,\N>0}) (11)

inite kernels, the feature vectors are not real valued vecto
and they are actually only available implicitly through ek
matrices. Therefore, we need to reformulate the optinonati
problem in terms of kernels.

By exploiting the derivation results in the previous sec-
tion, we propose to replace the distance regularizer in (16)
with a kernel transformation regularizer (8) to obtain an al
ternative joint optimization in terms of the input kernel

: LT T
Jnin W W—&—C’Z&—ptr(v KoKoV) (A7)
st yiW VIK(, i) +b) > 16, & >0, Vi

VIK)W =15 KWVTKy = 0.



WhenV is constrained to be a real valued matrix, the con- k(k — 1)/2 classifications in a joint optimization problem
straintKoVVT K, = 0 can be dropped. We will assune

has real values from now on. More conveniently, following max min  —p tr(V KoKoV) + Z (%Tbe -
the dual formulation of standard SVMs, we consider the reg- 1<a<b<k
ularized dual SVM formulation and focus on the following 1+ T T
optimization problem 5abYar Dap Ko V'V KoDabYab%b) (20)
. st aldiagYy,) =0, Vi<a<b<k;
max m‘}n a'e— iaTYKOVVTKOYa (18) 0<ap <C, V1<a<b<k;
T _
—ptr(VIKoKyV) V KoV =14
st aTdiagKy) —0 0<a<(C: Wherea denotes a collectic_m o{faab}lga_@gk, andYag, is
. oo T a diagonal matrix whose diagonal entries are the binary la-
VKoV = Iy; bels for the binary classification problem over classes}.

Whenk = 2, the binary classification problem in (18) can

whereY = diag(yi, . . - be recovered from (20).

,yn) is a diagonal matrix.

An Iterative Algorithm

The objective of the outer maximization problem in (20) is a
pointwise minimum of a family of concave quadratic func-
tions of o, and hence is a concave functionaafThus (20)

Multi-class Classifications

Multi-class classification problems can be solved by train-
ing multiple binary SVMs (Hsu and Lin 2002). In this pa- ! nceis { _
per, we deploy tha-vs-1 strategy for multi-class classifica- IS & concave maximization problem oveisubject to linear
tion. A simple deployment of this strategy requires tragnin ~ constraints (Boyd and Vandenberghe 2004). In this section,
k(k — 1)/2 binary classifiers, each for a pair of classes, for We develop an iterative algorithm to solve the optimization
ak-class problem. This means that an optimization problem Problem (20). In each iteration of the algorithii, and o

(18) has to be solved for each pair of classes and a different are alternatively optimized. WheWw is fixed, we can di-

proxy kernelskK,;, will be learned for each pair of classes
{a, b}, by learning a different/,;. However, with different
proxy kernelsK,; for each pair of classes, the consistent
transformation of samples for the overall multi-class silas

fication cannot be maintained. To ensure a data sample has

a consistent representation in all binary classificatiabpr

vide the maximization problem intb(k — 1)/2 standard
binary SVMs and optimize eadh,; independently. When
{aab F1<a<b<i are fixed,V can be computed by solving the
following optimization problem

max tr(VIKoMKoV) stVIK\W =1, (21)

lems, we construct a framework to use a single target (proxy) where

kernel matrix K, for all binary classifications by introduc-
ing a set of sub-kernel transformation matfi®, }1<q<b<k
and address all the(k — 1)/2 binary classifications in one
joint optimization.

Assume the training set haé samples and each class
hasN, samples. We first consider a given pair of classes
andb. Let N, = N, + N, be the sample size of the class set
{a,b}, L** = [£4b, ..., % ] denote a x N, vector whose
jth entry is the index value for thgh sample of the class set
{a, b} in the original training set, anfl’,;, denote the proxy

kernel matrix of the samples in these two classes. Thus the

proxy kernelk, of all training samples is & x N matrix,
and theK ., aNg, X Ny, matrix, is its sub-matrix. We now
construct an indicator matrik,;, € {0, 1}V >N« as below
to build a connection between these two kernel matrices

S
Da (i, 7) { 0, otherwise. °

Given D, the kernel matrixi,, of classa andb can be
computed as
Kap = K,(L®, L) = D], K,Dy,. (19)

ThusD,;, can be viewed as a sub-kernel transformation ma-
trix. Note thatk,, = K,VV ' K,. Then we can combine the

1

M= Z (DapYaptapagyYar Do) + pIn.  (22)

1<a<b<k

The above problem can be solved via the following gen-
eral eigenvalue problem,

KoM Kgv = AKyV. (23)

Note that for positivep values,M is guaranteed to be pos-
itive definite. Thus we will solve the following eigenvalue
problem instead

MKoyMKoyv = )\]\/[[(OV7 (24)

MKou = Au, (25)

for u = MK,v. Moreover, we assum& is invertible?.
Let U = [uy,...,uy] be the topd largest eigenvectors of

MKy, thenV = Ky 'M~'U. Finally the optimal solution
of (21) can be recovered by setting = [v], ..., V)], where

vi = v;/\/Vv] Kov;. Here the renormalization is necessary

K3

to ensure the orthogonal constraints in (21) for indefifite

Determining feasibled values. To ensure each;\be real
values, we should seledtto guarantee that each satisfies
uiTKoui > 0. To determinel, we have the following lemma

LIt is easy to remove the zero eigenvaluesiaf by simply
adding a tiny positive/negative diagonal mawris without chang-
ing the distribution of{y’s eigenvalues.



Lemma 1 For each eigenpair, X;,u;), of M Ky, if \; > 0,
then we have UKyu; > 0.

Proof: SinceM Kyu; = \;u;, we have

UZTK()MK()UZ‘ = )\iU;rKoui.

Then UTK()Ui = (U;rKoMK0U7)/)\7

Since bothKyM K, and K are symmetric matrices, has
real values. MoreoveKy M K is positive semi-definite ac-
cording to (22). Thereforé’rl{‘&w >00.

According to Lemma 1, the topeigenvectorgv; }1<;<q
have real values, d < d,, whered, is the number of pos-
itive eigenvalues of\/ K,. As we discussed beforé/ is
guaranteed to be positive definite for positivgalues, and
we assumek is invertible. It is easy to show/ K, and
Mz KoM? have the same eigenvalues by using a similar
transformation from (23) to (24). According to the Sylveste
law of inertia (Golub and Loan 1996)/z KMz and K

Amaz are the smallest and largest eigenvalues of each syn-

thetic indefinite kernel matrix<,, respectively>" A\ and

A are the sums of the positive and negative eigenvalues
K , respectively.

We run experiments on the four synthetic data sets com-
paring the SVM-CA to the other five approaches. Our ex-
perimental results in terms of classification error rates ar
reported in Table 1. These results are averaged over 50 runs
using 80% of the data as training set and the remainder as

>
of

test set. It is apparent that the valuesréfandn determine
the hardness of the classification problems, and thus affect
the performance of these approaches. When eithar 7

gets larger, the error rate for each approach increases. When
n is small, the spectrum modification methods, especially

the spectrum clip, yield good performance. Whgs large,
which means the kerné{, is far away from being positive

semi-definite, the spectrum modifications are inefficient to
capture the information provided by the indefinite kernels
and thus produce inferior results. Among the three spectrum

have the same inertia, and thus have the same number of posmodification approaches, the clip method obtains the lowest

itive eigenvalues. Therefore the valdg can be determined
directly from K.

Experiments

We conducted experiments on both synthetic data sets and
real world data sets to compare the proposed method
denoted as SVM-CA, with a few spectrum modification
methods ¢lip, flip, and shiff), the robust SVM (Luss and
d’Aspremont 2007), and the kernel Fisher’s discriminant on
indefinite kernels (IKFD) (Pekalska and Haasdonk 2008).
We used the robust SVM code found on the authors’ web-
site?. In the experiments below, the regularization param-
eter p for SVM-CA, robust SVM and IFKD, the parame-
ter C' in SVMs, the reduced dimensionalityin SVM-CA
were all selected by 10-fold cross-validations from the fol
lowing candidate setg,C € {0.01,0.1,1,10,100}, and
de{2,3,5,8,13,21,34,55}.

Experiments on Synthetic Data Sets

error rates on all the four data sets. The robust SVM is highly
related to the spectrum clip, and it yields similar resufts a
the clip method. Both IKFD and SVM-CA approaches ob-
tain much better results than the other four approachey. The
produced good results even on the data sets with laeged
largec?. Overall, the proposed SVM-CA produced the best
results comparing to all the other approaches.

Experiments on Real World Data Sets

We then conducted experiments on several real world data
sets used for learning with indefinite kernels, includingw f
data sets used in (Chen et al. 2009), yeast, amazon, au-
ral sonar, voting, patroandprotein and a data set collected

in (Pekalska and Haasdonk 2008), iaatcortex These data
sets are represented by similarity (or dissimilarity) rcats
produced using different similarity measures. For example
a sequence-alignment similarity measure is used fopithe

tein data set, the Smith-Waterman E-value is used to mea-
sure the similarity between two protein sequences for the
yeastdata set, etc. We also used tjlassdata set obtained

We constructed four 3-class 2-dimensional data sets, eachfom the UCI machine learning repository (Newman et al.
with 300 samples. For each data set, the three classes, each ggg) for which we used a sigmoid kernel to compute an

with 100 samples, are generated using three Gaussian dis-
tributions with the covariance matrix = diag(c?, o%) and
mean vectorg, = (—3,3), 2 = (3, —3) and(3v/3, 3v/3),
respectively. We generate the similarity kernel matrix by
adding additive white Gaussian noise to the linear kernel ma
trix, Ko (i, j) = X X; + z;;, wherez;; ~ N(0,7). With the
Gaussian noise, the kernkl, is not positive semi-definite.

By considering different-? andn values, synthetic data
sets with different properties can be generated. We consid-
ered two values for?, 02 = 2 ando? = 4, and two differ-
entn values,; = 20 andn = 100. With largero? value, the
generated data is harder to be separable. With layggre
kernel matrixi(y can be more indefinite. With different pairs
of (62, 7), we obtained four synthetic data sets. The charac-
teristics of the data sets are given in Table 1, wherg, and

2http://www.tau.ac.il/ ~rluss/

indefinite kernel matrix<,. These data sets together repre-
sent a diverse set of indefinite similarities. We assumed sym
metric similarity kernel matrixi, in our proposed model.
When the original matrix<, given in the data is not sym-
metric, we reset it a&y = (KOT + Ky). When the original
matrix K, in the data represents dissimilarity, we just re-
set it asKy = m — Ky, wherem is the largest entry of the
original matrixKy. There are six binary (two-class) and four
multi-class data sets in total. We computed the eigenvalue i
formation of the kernel matri¥(, for each data set as well.

The indefiniteness measur% obtained for each data

set is given as follows: (Yeast5jv7: 0.56), (Yeast5v12: .56
(Yeast7v12: 0.57), (Amazon: 0.01), (Aural Sonar: 0.26),
(Voting: 0.00), (Protein: 0.25), (Glass: 0.00), (PatraB&)
and (Catcortex: 0.10). Here the value 0.00 denotes a pesitiv
value smaller than 0.005.




Table 1: Characteristics of the four synthetic data setdlamdverage classification errors (%) of the six comparisethods.

%ii Clip Flip Shift RobustSVM IKFD SVM-CA
J

Synth1 2 20 -143 .02 .47 | 150 200 1583  1.53 120 0.72
Synth2 2 100 -693 .11  .82|9.67 11.00 22.33  9.05 243  1.83
Synth3 4 20 -140 .02 .44 | 400 4.83 2150  4.11 169  1.17
Synth4| 4 100 -702 .11 .80 |16.17 16.67 38.17 1524 470  3.50

)\m,in

Data |02 1 Amin

Table 2: Comparison results in terms of classification ewates (%) on binary classification data sets. The means andat
deviations of the error rates over 50 random repeats aretegho

Dataset Yeast5v7 Yeastbv12 Yeast7v12 Amazon Aural Sonar \oting

Clip+SVM 40.0+£1.1 20.6t1.3 25.5£1.2 10.3t0.9 11.2:0.8 3.6£0.3
Flip+SVM 46.0+0.6 17.8£1.2 22.6£1.0 11.6£0.9 16.8£0.9 3.2£0.3
Shift+SVM 35.+0.5 42.8:1.5 46.#1.9 16.6:0.8 17.3:0.9 5.80.5

IKFD 34.2£1.0 17.5£1.0 14.6£1.0 15.6£0.9 8.4+0.6 5.7+0.3
Robust SVM | 29.0£1.0 18.Gt1.0 15.6:0.9 8.8+0.8 11.0+£0.9 3.3t0.3
SVM-CA 25.0+:0.9 10.#0.8 10.5:0.8 9.5+0.9 8.6t0.6 2.7£0.3

We compared our proposed SVM-CA to the other five ] . . N
approaches on both the six binary data sets and the four Table Cj Comparison results in terms of classification error
multi-class data sets. The experimental results are regort rates (%) on multll-cl_ass classification data sets. The means
in Table 2 and Table 3 respectively. These results are pro- and standard deviations of the error rates over 50 random
duced over 50 runs using randomly selected 90% of the data "€P€2ts are reported.
samples as training set and the remainder as test set. Both -
the average classification error rates and their standard de Dataset | Protein Glass Patrol _ Catcortex
viations are reported. Among the three spectrum modifica- Clip+SVM | 6.3+0.7 41.11.2 48.6:1.5 10.5:2.0
tion algorithms, the spectruelip obtained the lowest error Flip+SVM | 4.0+0.7 39.4:1.1 44.81.4 13.5:2.3
rates on five of the ten data sets, while spectfiimand Shift+SVM | 5.5+0.7 38.3:0.9 51.4:1.5 49.6t4.0
shift obtained the lowest error rates on four and one data IKFD 8.2+0.9 43.3t1.1 25.A41.8 12.51.9
sets, respectively. The robust SVM slightly outperformnies t Robust SVM 16.4+1.1 39.1+1.0 31.3t1.4 9.4t1.7
spectrum modifications on eight data sets. The IKFD out- SVM-CA | 2.5+0.5 37.3t0.8 12.4t0.8 4.5t1.4
performed the spectrum modifications on five data sets. Our
proposed SVM-CA clearly outperformed all the other ap-
proaches and achieved the lowest classification error rates .
on four of the total six binary data sets and all the four Conclusion

multi-class data sets. On data sets such as Protein, Patrol a | this paper, we investigated the problem of training SVMs
Catcortex, where th% values are large, the improve-  with indefinite kernels. We first reformulated the kernehpri

ments achieved by thejproposed approach over the OtherC|pal component analysis (KPCA) to a kernel transforma-

SVM training methods are largely significant. These results tion model and demonsirated its connections 1o specirum

on both synthetic and real world data sets demonstrated the ?e%?ggztlggvgﬁg?gfjpv;mzlgfiggnrlr:g dkeelrg\%sr' %/Y/el\/ltr::?:sgirf?-_
effectiveness of the proposed joint optimization model. cations and principal component analysis to conduct SVM

Convergence Experiments. We also conducted exper-  training with indefinite kernels assisted by kernel compo-
iments to study the convergence property of the proposed nent analysis. The proposed model can be used for both bi-
iterative algorithm in Section 4.3. The experiments are con nary classifications and multi-class classifications. An ef

ducted on two data setwotein and catcortex In each ex- ficient iterative algorithm was proposed to solve the pro-
periment, we plot the objective values of the SVM-CA for- posed joint optimization problem. Moreover, the proposed
mulation in (20) after each update f and a. The plots approach can make consistent transformations over tgainin

are shown in Figure 1. We can see that the objective values and test samples. Our experimental results on both syatheti
of the maximization and minimization sub-problems gradu- data sets and real world data sets demonstrated the proposed
ally converges within 10 iterations on the two data setssThi approach can significantly outperform the spectrum modi-
suggests the iterative algorithm we proposed can effdgtive  fication methods, the robust SVMs and the kernel Fisher's
solve the target convex optimization. discriminant on indefinite kernels (IKFD).
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Figure 1: Convergence of SVM-CA on the Protein and Cat-
cortex data sets. Th@bj(a) andObj(V') denote the objec-
tive values after updatiny andq, respectively, at each iter-
ation.
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