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ABSTRACT
Given huge collections of time-evolving events such as web-click
logs, which consist of multiple attributes (e.g., URL, userID, times-
tamp), how do we find patterns and trends? How do we go about
capturing daily patterns and forecasting future events? We need
two properties: (a) effectiveness, that is, the patterns should help us
understand the data, discover groups, and enable forecasting, and
(b) scalability, that is, the method should be linear with the data
size.
We introduce TriMine, which performs three-way mining for all

three attributes, namely, URLs, users, and time. Specifically TriM-
ine discovers hidden topics, groups of URLs, and groups of users,
simultaneously. Thanks to its concise but effective summarization,
it makes it possible to accomplish the most challenging and im-
portant task, namely, to forecast future events. Extensive exper-
iments on real datasets demonstrate that TriMine discovers mean-
ingful topics and makes long-range forecasts, which are notoriously
difficult to achieve. In fact, TriMine consistently outperforms the
best state-of-the-art existing methods in terms of accuracy and ex-
ecution speed (up to 74x faster).
Categories and Subject Descriptors: H.2.8 [Database manage-
ment]: Database applications–Data mining
General Terms: Algorithms, Experimentation, Performance
Keywords: Time-stamped events, Tensor analysis, Topic model,
Forecasting

1. INTRODUCTION
Our motivating application is to find patterns and trends in a

large set of clicks, consisting of multiple attributes (URL, user ID,
timestamp, access devices, http/document referrer, etc). Are there
emerging topics? Can we group URLs (and users), accordingly?
How many clicks should we expect from user ‘Smith’, tomorrow?
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We shall refer to such settings as a sequence of complex events.
Each event has a timestamp, and has multiple categorical attributes
associated with it - in our example, a URL, which we shall refer to
as an ‘object’, and a userID as an ‘actor’. Such settings naturally
appear in countless domains including click logs on web sites [1],
social network services, location-based services [15], social tag-
ging, and many more. Informally, if each event has a time stamp
and two attributes, the problem we want to solve is that described
below.

INFORMAL PROBLEM 1 (COMPLEX EVENT MINING). Given
a sequence of millions of triplets (object, actor, time stamp),

• find the major topics and their trends
• make traffic forecasts

We can generalize for an arbitrary number of attributes (i.e.,
more than three attributes) and we describe this later. The ideal
method should be (a) effective in finding patterns, (b) accurate in
forecasting, and (c) scalable; it should help us understand what are
the major trends, it should provide an easy-to-understand summary,
it should help spot anomalies (with respect to all three aspects -
URLs, users, time); and to visualize the results; and of course, the
processing should be fast, and ideally, linear with the input size.
We present a novel method, TriMine, which automatically finds

patterns in huge collections of complex events. Specifically, it finds
three-way patterns (hence the prefix): It finds hidden topics (such
as, ‘sports’, ‘news’), and correlates each topic with all three as-
pects.
Preview of our results. Figure 1 shows the results we obtained

with TriMine on real web-click logs, where each click is of the form
(URL, userID, timestamp). We will see this collection of plots
so often that we have given it a name, “TriMine-plot”. This plot
consists of two ternary plots, and a time plot, as described later.
In general, each web site may cover one or more topic(s), and

each user would be associated with a few topics. Thus, we could
expect both finance news and stock market sites to attract roughly
the same users, with similar temporal patterns, and so those sites
should be grouped under the same topic, say, ‘business’.
Figure 1 shows a TriMine-plot with some of our findings, namely

it detects/reveals the hidden topics of web click events. More specif-
ically, the figure shows the three major topics, and how they related
to each of the three aspects, namely (a) to each web site (URL), ex-
pressed in theO matrix, (b) to each user (in theA matrix), and (c)
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(a) URLs in topic space (b) Users in topic space (c) Time evolution in topic space (d) Original sequence
(object matrixO) (actor matrixA) (time matrixC) of 100 random users

Figure 1: TriMine is effective in spotting three-way patterns. Results for web-click data (URL, userID, timestamp), with three hidden
topics, manually labeled as shown. (a) Ternary plot for URLs - notice the three groups along the center-vertex spokes, (b) ditto for
users - showing very clear groups along the spokes, (c) temporal evolution of the three topics: ‘business’ traffic (in blue) drops during
weekends; ‘drive/travel’ traffic (in red) spikes during weekends; and ‘media/news’ traffic (in green) remains the same. All show daily
periodicity. (d) original counts of “money” site, 100 randomly selected users, appears bursty and noisy.

to each time-tick (Cmatrix). The first two are represented as trian-
gular plots (also known as ‘ternary plots’), where each 3-d point is
represented as a point in a triangle (since the sum of the 3 coordi-
nates is less than 1).
TriMine successfully detects some of the hidden topics in the

web click logs, and we have manually named them ‘business’, ‘me-
dia’ and ‘drive’. The first ternary plot shows the URLs; notice that
several of them focus almost exclusively on the topic ‘drive’, sev-
eral others on ‘media/news’, a few focus exclusively on ‘business’.
The ternary plot of the users shows an even clearer separation: most
dots (= users) are on the spokes from the center to the vertices, indi-
cating a very clear clustering of users, along the three hidden topics.
Neither of the two ternary plots exhibits any striking outliers.
The third plot (Figure 1 (c)), shows the evolution of each topic

over time (red, green, blue, for ‘drive’, ‘media’, ‘business’ respec-
tively). Notice a clear daily periodicity for all the topics (unsurpris-
ing), but also notice (1) the decline in ‘blue’ (=‘business’) during
weekends, and (2) the spiking of ‘red’ (=‘drive/traveling’) during
weekends. In retrospect, both make sense. Also notice that ‘green’
(= ‘media/news’) does not have a weekly periodicity, apparently
because our users are constantly interested in news.
In contrast, Figure 1 (d) shows the original raw sequences of 100

randomly selected users (at a “money” site). Notice that the raw
data exhibits no obvious patterns, neither periodicities nor clusters
of users.
Our main point is that the two ‘ternary plots’ and a simple time-

plot can give a clear, concise summary of both ‘actors’ (users) and
‘objects’ (URLs), as well as of the major temporal patterns. Thanks
to these three building blocks, we can extend this approach to com-
plex event forecasting, which is notoriously difficult to achieve.
Contrast with competitors. Table 1 compares TriMine and its

forecasting method, TriMine-F, with existing methods. We illus-
trate their strengths and shortcomings: a check mark (

√
) indicates

that the corresponding method (column) fulfills the corresponding
requirement (row). Only our approach has checks against all en-
tries, while,

• Wavelet transforms can identify multi-scale trends in a “sin-
gle” sequence as regards objects or actors, but find it hard to
determine the “relationship” between all these objects/actors.

• Complex events can be turned into a tensor. Higher-order
SVD (HOSVD) [12] and alternating least squares (ALS) [23]
capture the hidden components from tensors, but they can-

Table 1: Capabilities of approaches. Only our approach meets
all specifications.

DWT HOSVD LDA AR TriMine
/ALS /PLiF /TriMine-F

Multi-scale
√ √

Tensor
√ √

Categorical
√ √

Short-term
√ √

forecasting
Long-term

√

forecasting

not handle categorical/non-Gaussian data or perform fore-
casting.

• Topic models (e.g., latent Dirichlet allocation (LDA) [4]) are
probabilistic models for sparse vectors of count data, and
they can find hidden topics and perform clustering. How-
ever, they are not intended to capture cyclic time-evolving
patterns, or undertake forecasting.

• Auto regression (AR) and PLiF [13] have the ability to fore-
cast sequences, however, they cannot handle multi-scale se-
quences, and so cannot perform long-term forecasting, be-
cause they converge quickly to the mean (see Figures 7 and
8).

Contributions. The proposed method has the following advan-
tages:

1. Effectiveness: TriMine operates on large collections of com-
plex events, summarizes them succinctly, gives three-way
patterns (i.e., with respect to objects, actors, and time stamps),
and enables forecasting, clustering and anomaly detection.

2. Accuracy: as we will show, our approach is accurate in fore-
casting complex time-stamped events.

3. Scalability: TriMine is linear with the input size, and thus
scales up very well.

The rest of the paper is organized in a typical way: Next we de-
scribe related work, followed by definitions, the proposed method,
experiments and conclusions.

2. RELATEDWORK
Recently significant progress has been made on understanding

the theoretical issues surrounding learning mixture distributions



in theoretical computing and machine learning [9, 28, 22]. La-
tent Dirichlet allocation (LDA) [4] and probabilistic latent seman-
tic analysis (PLSA) [5] are well-known latent variable models for
analyzing large sets of categorical data, such as bags of words for
text, and bags of features for images. A number of methods have
been proposed for analyzing the time evolution of topics in doc-
ument collections, such as the dynamic topic model (DTM) [3],
topics over time (TOT) [24], and more [25, 2, 27, 7, 8, 6]. For
example, DTM employs a fixed length of window size, and takes
account of capturing only the current epoch distribution. Similarly,
TOT handles a single window size, and it uses Beta distributions to
capture time-evolving topics. Very recently, Hong et al. presented
a new topic model for predicting the volume of terms in documents
(i.e., aggregate count of each keyword). These models do not fo-
cus on finding multiscale and/or periodical trends, which means
that it is difficult to employ them for the long-term forecasting of
complex time-stamped events. On the other hand, as shown in the
introduction section (see Table 1), our method finds cyclic patterns
with different timescales, which allows it to predict future events
effectively and efficiently.
For web-click analysis, Agarwal et al. [1] exploit the Gamma-

Poisson model to estimate click-through rates (number of clicks per
display) in the context of content recommendation, which does not
focus on trend discovery of time-stamped events.
The work on tensors is also related. Kolda et al. [10] provide a

powerful tool for tensor analysis on a web link structure. Rendle et
al. [19] propose a method for tag recommendation based on tensor
factorization. Unlike our method, these methods are not intended
to predict future events.
Remotely related is the work on large-scale time-series mining.

Similarity search and pattern discovery in time sequences have also
attracted huge interest [20, 14]. Papadimitriou et al. [17] propose
an algorithm for discovering multi-scale local patterns, which con-
cisely describes the main trends in data streams. Skewed stream
problems have been studied in the context of summarization and
modeling [11]. Sakurai et al. [21] proposed BRAID, which effi-
ciently detects lag correlations between data streams. AWSOM [16]
is one of the first streaming methods for forecasting and is designed
to discover arbitrary periodicities in single time sequences.

3. PROBLEM FORMULATION
In this section, we formally define related concepts and the task

of event forecasting. Consider that we receive time-stamped event
entries of the form (object, actor, timestamp). We then have a col-
lection of entries with u unique objects and v unique actors. As-
sume that we are given time intervals t (= 1, 2, . . . , n) of length
l (e.g., one hour). It is convenient to treat our complex-event se-
quence as a 3rd-order tensor, i.e., X ∈ Nu×v×n, where n is the
duration of events.

DEFINITION 1 (COMPLEX EVENT TENSOR). LetX be a 3rd-
order tensor of complex time-stamped events. The element xi,j,t of
X shows the total number of event entries of the i-th object and the
j-th actor at time interval t.

After we decide on some time granularity (say, one hour) then
we have (actor, object, time-stamp; count), for example, (‘Smith’,
‘cnn.com’, ‘3am June 1, 2003’; 23). Unless otherwise specified,
our time granularity is one hour. Thus, the example tuple above
means that ‘smith’ visited ‘cnn.com’ 23 times, between 3am-4am
on June 1, 2003.
For a particular event collection, we assume that an event entry

has a certain “latent topic”. We model such hidden topics in terms

Table 2: Symbols and definitions.
Symbol Definition
u Number of unique objects
v Number of unique actors
n Duration: number of time-ticks
X 3rd-order tensor of complex time-stamped events

(X ∈ Nu×v×n)
k Number of hidden topics
O Object matrix, u× k
A Actor matrix, k × v
C Time matrix, k × n

of three aspects, namely, “object”, “actor”, and “time”. In that case,
the original tensor will be decomposed in three matrices O, A, C
with the following definitions and properties:

DEFINITION 2 (OBJECT MATRIX O (u× k)). Each entry oi,j
shows the participation strength of object i for topic j.

Our upcoming TriMine forces that the participation weights oi,j to
be non-negative, and they sum up to 1, for each object (

∑
j oi,j =

1). The definitions of A and C are analogous, and omitted for
brevity. We shall refer to O, A and C as participation matrices,
exactly because they show how strongly each actor, object, time
stamp participates in topics #1, #2, . . ., #k, respectively. Figure 1
plots the visualization of the three matrices for a real dataset (we
show three major topics).
We also consider a case where every event has more than three

attributes (i.e., M > 3). We provide an M th-order tensor, which
is decomposed inM matrices, O, A(1), . . ., A(M−2), and C. We
mainly focus on a 3rd-order tensor for simplicity throughout this
paper, our method however can be applied to higher order ten-
sors. Table 2 summarizes the notation correspondences for the
time-stamped events.

3.1 Problem definition
Our goal is to extract the main trends and hidden patterns of an

event tensor X , and forecast future events. Specifically, the sub-
problem that we want to solve is as follows:

PROBLEM 1 (PATTERN DISCOVERY IN COMPLEX EVENTS).
Given a tensor X of complex events of (actor, object, time stamp)
triplets, Find the hidden topics that best summarize the events in
X , and the corresponding actor- and object- groupings.

Once we have the main trends from X , we can proceed to solve
the forecasting problem:

PROBLEM 2 (TRAFFIC FORECASTING). Given a tensorX of
complex events, Forecast future traffic.

More specifically, we want to forecast, e.g., how many clicks user
‘Smith’ will generate tomorrow; or howmany clicks ’www.cnn.com’
will attract over the next seven days; or we want to generate a
realistic-looking set of clicks, for, say, next Sunday.
As mentioned in the introduction, the ideal method should be ef-

fective (capturing trends that make sense), accurate in its forecasts,
and scalable, to handle millions or billions of events.

3.2 Running examples
There are many applications for time-stamped events. Here, we

briefly describe application domains and provide some illustrative,
intuitive examples of the usefulness of our approach.
Access analysis. Web content such as blogs, on-line news, web

mail and SNS has been attracting considerable interest for business



purposes as well as personal use. Consider a large number of clicks
on web sites, where each click has a list of attributes, e.g., access
(url_id, user_id, time). Suppose that we can record all these at-
tributes on an hourly basis for all users of the web sites. For this
huge collection of web-click logs, we would like to find patterns of
user behavior to allow us to perform a sociological and behavioral
analysis. For example, web masters and web-site owners could
find daily access patterns and forecast the subsequent week to aid
the design of advertisements.
E-commerce. Let us assume an online service such as onde-

mand TV, which records the TV programs viewed by every user;
each record is an online viewing event of form view (channel_id,
user_id, time). Discovering groups in such data and forecasting
future viewing events would assist with tasks such as content tar-
geting.

4. PROPOSED METHOD
In this section we describe our method, TriMine, for dealing with

the pattern discovery problem (Problem 1). In the next section we
show how to employ TriMine results for forecasting (Problem 2).

4.1 Intuition behind our method
There are two main ideas behind TriMine:

• M -way analysis: For a single time granularity (say, l0=1
hour), we perform anM -way topic analysis, which discovers
k topics and shows the relationship between these topics and
the M matrices. As an example of a 3-way case, we show
how the topics relate to the objects (object matrixO, u× k),
to the actors (actormatrixA, k× v), and to time-ticks (time
matrixC, k × n).

• Multi-scale analysis: To achieve better forecasting (see Fig-
ures 7 and 8), and to capture longer-period trends, we repeat
the analysis, for several time granularities {C(0),C(1), . . . }
(say, hours, days, etc), insisting on fixed object and actorma-
tricesO,A.

Figure 1(a)-(c) illustrates the O, A and C matrices, respectively,
for theWebClick dataset. objects and actors are categorical, and the
O andAmatrices are visualized as ternary plots, where each dot is
an object / actor. The three columns of the time matrix are plotted
in (c), illustrating the temporal evolution of the three discovered
topics.
Single-level analysis - TriMine-single. Figure 2 (dotted-line rect-

angle) gives a pictorial description of the 3-way analysis. The ob-
ject matrix O takes account of all the objects over the entire time
range, which produces an accurate summary of the object-topic re-
lationship. The actor matrixA shows the frequency of entries over
actors for the i-th topic (i = 1, . . . , k). The time matrix C de-
scribes the degree to which the time stamp is associated with the
i-th topic.
Multiple-level analysis - TriMine. Figure 2 (solid-boundary

rectangle) also shows an example to explain how to perform the
multi-level analysis. Instead of handling only a single window size,
we introduce a multiple time window approach to capture the main
trends of multiple scales. Starting with the window size l0 on the
first level h = 0, we compute the time matrix C(0), then increase
the window size lh, and repeatedly obtain C(h) for various sizes.
This enables the forecasting method (discussed later in Section 5)
to exploit the relationship betweenC(h) across different scales.

4.2 Proposed solution - TriMine
Given anM th-order complex event tensor X , our goal is to find

a meaningful summary with k hidden topics that best describes X .
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Figure 2: Illustration of TriMine. TriMine-single (dotted-line
rectangle): We extract k topics from an event tensor X with
respect to three aspects, i.e., objects O, actors A, and time C.
TriMine (full, solid-boundary rectangle): We perform a 3-way
analysis for multiple window sizes l0, l1, l2, . . . to capture the
multi-scale dynamics of X . Note that we reuse the O and A
matrices for all scale levels to provide an efficient solution.

More specifically, we want to compute the “interpretable features”
with respect to all M aspects. We propose using the concept of
topic modeling to extract the major factors automatically. TriMine
infers theM matrices, i.e., the object matrixO, the actor matrices
A(1), . . ., A(M−2), and the time matrix C, and then identifies the
relationship between the properties of these matrices. It can also
discard many redundancies (e.g., noise) from the events, and focus
on what really matters.

4.2.1 Single level inference
The task is to infer the M matrices over the hidden topics. We

assume that each event entry has its own “latent topic”, and thus
we propose using collapsed Gibbs sampling [18] to assign a latent
topic for each event entry. The generative process for a set of event
entries is as follows:

1. For each topic r = 1, . . . , k:
(a) For each tensor modem = 1, . . . ,M − 2:

i. DrawA(m)
r ∼ Dirichlet(β(m)).

(b) DrawCr ∼ Dirichlet(γ).
2. For each object i = 1, . . . , u:

(a) DrawOi ∼ Dirichlet(α).
(b) For each entry j = 1, . . . , Ni:

i. Draw a latent variable zi,j ∼Multinomial(Oi).
ii. For each tensor modem = 1, . . . ,M − 2:

A. Draw an actor e(m)
i,j ∼Multinomial(A(m)

zi,j ).
iii. Draw a timestamp ti,j ∼Multinomial(Czi,j ).

Here, α, β(m) and γ are the hyperparameters forO, A(m) and C,
respectively.
For simplicity, hereafter we focus on a 3rd-order tensor (i.e.,

M = 3). For each non-zero element xi,j,t in X , we draw xi,j,t la-
tent variables with probability p (Equation 1), and decide the latent



variable for every event entry. The latent variable zi,j,t is assigned
for element xi,j,t in the following manner:

p(zi,j,t = r|X ,O′,A′,C′,α,β, γ) (1)

∝
o′i,r + α∑
r o

′
i,r + αk

·
a′
r,j + β∑

j a
′
r,j + βv

·
c′r,t + γ∑
t c

′
r,t + γn

where o′i,r , a′
r,j , and c′r,t are the total counts that topic r is assigned

to the i-th object, j-th actor, and time-tick t, respectively. Note
that the prime (e.g., o′i,r) indicates that the current datum has been
excluded from the count summations, that is, it indicates the count
with the entry of the i-th object and the j-th entry at time t removed.
Here, α, β, and γ are the parameters of the Dirichlet priors for O,
A, and C, respectively. After the sampler has burned-in, we can
produce estimates of Õ, Ã, and C̃ as follows:

õi,r ∝ oi,r + α∑
r oi,r + αk

, ãr,j ∝ ar,j + β∑
j ar,j + βv

,

c̃r,t ∝ cr,t + γ∑
t cr,t + γn

. (2)

The time complexity of each sampling iteration isO(N), whereN
is the total number of event entries in X (i.e.,

∑
i,j,t xi,j,t).

4.2.2 Full TriMine: multiple levels
Until now, we have assumed that the window size (say, l) was

given. In reality, it is up to us to choose it. What is the right value
for it? minute? hour? day? This is a difficult choice - our approach
is to not make a choice, and use all of the above. More specifically,
we use several window sizes. Our approach makes the algorithm
slightly more complicated, but it pays off significantly in terms of
long-term forecasting accuracy, as our experiments show (see Fig-
ures 7 and 8).
In short, as a typical choice, we use a set of all such window

sizes, i.e., an hour, a day, a week, a month. Another reasonable
idea is that we use a geometric progression of window sizes, that is
lh := l0 · Lh for h = 0, 1, 2, ..., 'log n(, where l0 is the shortest
window, and L is the growth factor, typically L = 2. Thus, in
either case, the count of the window set L that we need to examine
is greatly reduced, as compared, say, to an arithmetic progression.
Here, we explain how to perform the necessary computations for

multi-scale trend discovery. The straightforward solution is that we
consider a set of tensors {X (0),X (1) . . . } for all window sizes, and
compute TriMine-single, for each level. We refer to this approach
as TriMine (naive). Still, this is computationally expensive because
we need an inference for each window.
Efficient solution. We propose reusing the inference results

of the first level to approximate the inference for the other levels.
We show how our method performs the computations in Figure 2.
For level h = 0, we compute the matrices, O, A, and C(0) with
the tensor X (0) (= X ). For the other levels (h ≥ 1), we reuse the
results of the sampling in the first level, and compute the current
matrices, i.e., (a) we shareO andA for all levels, and (b) compute
the time matrix C(h) by using the set of sampling results for the
first level, as follows:

c(h)r,t ∝
lh∑

i=1

c(0)r,t−lh+i (3)

where lh denotes the window size at level h. The justification is that
the assignment for each event entry is probabilistically equivalent
for all levels, which means that the latent topics of every level are
computed by the same procedure. Compared with TriMine (naive),

which needs O(N log n) time to update the parameters for all lev-
els of the structure, the efficient version of TriMine is linear with
the input size, i.e, O(N).
The overall procedure of TriMine is given by Algorithm 1. For

each entry in X (0) at the first level, we assign a hidden variable
z according to Equation (1). After the sampling, we compute the
triplet matricesO,A, andC(0) given a set of hidden variables. For
each window size level, we approximate the matrices from their
first level. Our method maintains the multi-scale window structure,
which allows us to provide the output of an arbitrary window scale.

Algorithm 1 TriMine(X (0))
/* compute the triplet matrices at level h = 0 */
for each iteration do
for each non-zero element x in X (0) do
for each entry for x do
Draw hidden variable z by Equation (1)

end for
end for

end for
ComputeO,A,C(0) by Equation (2)
/* compute the multi-scale matrices */
for h = 1 to $logn% do
ComputeC(h) by Equation (3)

end for
returnO,A, {C(0), . . . ,C(h)}

5. TRIMINE-F: FORECASTING
We have already presented some of our meaningful features (see

Figure 1, ternary plots of O,A, time-topic sequences C), both
visually and numerically, extracted from complex time-stamped
events. While clustering, visualization and anomaly detection are
provided straightforwardly by our output, we focus on the most
challenging problem of TriMine, namely, complex event forecast-
ing (Problem 2). We refer to this extension of TriMine for forecast-
ing as TriMine-F.
Individual-sequence forecasting. Once we decide a time-

window length l, we can turn the problem into u × v forecasting
problems, one for each (actor, object) time sequence. Then we can
use any forecasting method. This approach requires at leastO(u v)
space and O(u v n) time, to predict the future event counts of all
sequences. Here, one subtle, but important issue is that most of
the (object, actor) pairs have very sparse sequences, which derails
all typical forecasting methods because they look like noise (e.g.,
{0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, . . . }), and thus are hard to predict. So
how can we avoid this issue? We propose using the “hidden top-
ics” to achieve much better forecasting. Our proposed TriMine-F
method can avoid the sparsity problem, because “topics” have non-
trivial activities, even if some of the actors (or objects) of these
topics have sparse activity.

5.1 Forecasting topic activity
Given the results of TriMine, we can forecast the dynamics of

activities C for each topic r (r = 1, . . . k), and then translate it
to URL (object), or user (actor) activity, using the participation
matricesO andA, respectively.
Preliminary: single-level equation. If we had a single time

granularity (say, window width l0), then we would do auto regres-
sion (AR), and we could forecast the activity cr,t for topic r at time
t as a function of the w previous activity levels cr,t−1, . . . cr,t−w,
plus, (filtered) noise εt:

cr,t = λ1cr,t−1 + · · ·+ λwcr,t−w + εt, (4)
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Figure 3: Illustration of multi-scale forecasting (here, l0 =
1, l = 2). The gray cells indicate the variables we use to fore-
cast cr,t. Note that we use w variables (w = 2 in this example)
from each level.

where λ is a regression coefficient.
Multi-scale dynamics. How should we operate multi-scale pro-

portions for event forecasting? Real time-stamped events typically
include bursty patterns, noise, spikes, and dips, as well as the event
trends of multi-scale periods, all of which are unknown in advance.
Long-term patterns are included in the time matrix at the top level
while short and sharp fluctuations appear at the first level. Thus,
instead of using a single level of window size, we fit a model to the
time matrices of multiple levels, (i.e., C(0),C(1), . . . ). In a multi-
level case, our forecasting method uses 'log n( additional levels
(see Figure 3). Thus, we try to fit models of the following form:

c(0)r,t =
$logn%∑

h=0

w∑

i=1

λ(h)
i,r c

(h)
r,t−i + εt. (5)

5.2 Complex event forecasting
Here we answer two questions:

• Count estimate: Howmany clicks xi,j,t should we expect to
see from user/actor j, to URL/object i, at the next time-tick
t (e.g., the next hour)?

• Event-set forecast: How can we generate a realistic set of
event entries of form {object , actor} for time-tick t.

Clearly, the second question is more general. if we can answer that,
we can easily give the count estimate for the first question (and also
the variance etc, since we can generate many event samples).
A few clarifications, first: (a) without loss of generality, we as-

sume that we have agreed on the aggregation length l, and each
time-tick is l seconds long. (b) We can easily extend our solu-
tions to long-term forecasting such as estimate the number of clicks
from user ‘Smith’ to URL ‘CNN.com’, for the next 30 days, i.e.,
xi,j,t, (t = 1, 2, ..., 30). (c) We can easily extend our answers to
marginals (or “don’t cares”), for example, estimate the number of
clicks from user ‘Smith’, to any URL, for tomorrow, i.e., estimate
x∗,j,t where we follow the Unix convention and ‘*’ means “don’t
care”.
Count estimation. The ‘count’ question can be answered easily

by using following steps: (a) forecasting the strength cr,t for every
topic r = 1, . . . , k at time-tick t, and (b) using the participation
matricesO andA to translate from topic activity to URL-and-user
activity (= clicks). We can then estimate the count of an element
(xi,j,t) of the i-th object and the j-th actor at time t:

x̂i,j,t = nx̄i

k∑

r=1

oi,r · ar,j · ĉr,t, (6)

where n is the duration of forecasted events, and x̄i is the average
number of events per time-tick for the i-th object.

Complex event generation. For the event-generation problem,
the answer is more elaborate, and is illustrated by Algorithm 2.
The idea is again to forecast the future activity ĉt,r and then draw
multinomial samples using the participation matrices O, A, and
Ĉ. To generate a set of event entries, our sampling-based approach
obtains an appropriate number of independent samples of the statis-
tic directly from the underlying generative model. The samples can
then be organized into a set of entries of form {object , actor , time},
simply by gathering all the event entries together.

Algorithm 2 EventGeneration (x̄1, . . . , x̄u, n,O,A, Ĉ)
/* Ê is a set of generated entries of form {object , actor , time} */
Ê ← ∅
for each object i = 1, . . . , u do
for each entry j = 1, . . . , nx̄i do
Draw a hidden variable zi,j ∼ Multinomial(Oi)
Draw an actor e ∼ Multinomial(Azi,j )

Draw a timestamp t ∼ Multinomial(Ĉzi,j )

Ê = Êt ∪ {i, e, t}
end for

end for
Return Ê

6. EXPERIMENTS
To evaluate the effectiveness of TriMine, we carried out exper-

iments on real datasets. Our experiments were conducted on an
Intel Core 2 Duo 1.86GHz with 4GB of memory, running Linux.
The experiments were designed to answer the following questions:

1. Effectiveness: How successful is TriMine in capturing time-
stamped events, and spotting meaningful patterns?

2. Forecasting accuracy: How well does our method forecast
future event entries?

3. Scalability: How does our method scale with the dataset size
in terms of computational time?

Datasets. We performed experiments on two real datasets:

• WebClick: This dataset consists of web-click records, ob-
tained over one month, (from 1st to 30th Apr. 2007). It con-
tains one billion records, each of which has three attributes:
URL ID (1,797 URLs), user ID (10,000 heavy users), and
the time stamp of the click. There are various types of URLs,
such as “blog”, “news”, “money”, and “diet”.

• Ondemand TV: This consists of 13,231 TV programs that
100,000 users viewed in a 6-month time frame (from 14th
May to 15th Nov. 2007), and there are many genres of TV
programs including “cartoons”, “sports”, “movies”, and “mu-
sic”. This dataset contains a list of attributes (e.g., channel ID
(object), user/viewer ID (actor), the date the user watched the
program). We selected 100 TV programs from the dataset.

6.1 Effectiveness - patterns and visualization
WebClick dataset. For a few users (or URLs), human could eye-

ball them, and derive meaningful patterns. But, how can we ac-
complish this automatically for thousands of users? Some of the
results obtained with for our method for the WebClick dataset have
already been presented in Section 1 (see Figure 1), which shows
that TriMine effectively and efficiently discovers the three-way
patterns (i.e., TriMine-plot). Figure 4 also shows a TriMine-plot
on WebClick in relation to three different topics, ‘communication’,
‘blog’, and ‘food’.
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Figure 4: TriMine finds patterns (see (a-c)), when raw data seem noisy (part (d)). WebClick dataset and its TriMine-plot (a-c); number
of clicks for 100 random users (d). TriMine-plot shows clear groups (‘food’, ‘communication’ etc), and clear temporal trends (daily
periodicity etc, see (c)). Raw data (d), appears bursty and noisy.

• Membership Clusters: Most objects (URLs) fall along the
center-to-vertex spokes. The route map and restaurant sites
are related as a food topic (see Figure 4 (a)), and the diet
site also falls into the same topic. From the figure, we can
recognize that the users carefully check out restaurants, the
route map in their area, and also the calories of their meals.

• Temporal Trends: In Figure 4 (c), we observed that the food-
related URLs are visited in the early evening before the users
go out. We consider the communication sites (web mail,
SNS, etc.) to be used heavily in the late evening for pri-
vate purposes. Figure 4 (d) shows the original sequence of
the “blog” site for randomly selected users. Unlike Figure 4
(c), Figure 4 (d) does not exhibit any daily periodicity or any
relationship between users.

Ondemand TV dataset. Figure 5 shows the major topics, ‘sports’,
‘action’, and ‘romance’ (namely, ‘soap operas’).

• Membership Outliers: The ternary plot of the URLs shows
clear clustering of the URLs with only one exception, the
2007 French Open men’s tennis final. Soap operas and ro-
mances (like the series ‘Desperate Housewives’) probably at-
tract a female audience, who do not seem to be interested in
sports, except, apparently, for the men’s tennis final of the
French Open. We think perhaps that they are interested in
one or both of the players in that match (i.e., Rafael Nadal
and/or Roger Federer).

• Temporal Trends: The time-evolution pattern of the sports
topic agrees with our intuition – daily periodicity for all three
topics; ‘action’ and ‘sports’ show high peaks on weekends,
but there is no weekly periodicity for the ‘soap opera’ topic.

6.2 Accuracy - forecasting
We demonstrate how our forecasting method, TriMine-F, works

well for time-stamped events, specifically, we evaluate our method
using a real dataset, WebClick, in terms of long-term forecasting,
which is a challenging task. We should note that generating more
than, say, 10 steps ahead is very rare: most reported methods [26]
generate one step ahead, obtain the correct value of time-tick t, and
only then try to generate t+ 1. Nevertheless, our goal is to capture
long-term behavior, and we will show that our method achieves
this, unlike the alternative methods.
Experimental setup. In our setting, we first trained our models

by using the click entries of the first two weeks, and then forecasted
the following weeks. We selected the window size l0 = 2, that is,
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Figure 5: Effectiveness of TriMine on the Ondemand TV dataset.
Rather clear separation of URLs into ‘action’, ‘sports’ and ‘ro-
mance’ (see (a)); clear daily periodicity for all topics (see (b)),
with weekly periodicity for ‘sports’ and ‘action’, but not for
‘romance’.

the length of the training set X (0) was n = 168. We chose the total
forecasting coefficients as 40, and the hidden topics k = 30.
We compared our algorithm with state-of-the-art methods with

respect to forecasting the number of “future” clicks for all possi-
ble URL and user combinations. (a) AR: This is a straightforward
solution to the forecasting problem. We turned the event tensor
X into a set of u × v sequences for each URL and user. Af-
ter obtaining the sequence set, we applied standard AR modeling
for each sequence individually. For a fair comparison, we used
40 regression coefficients. (b) PLiF: We compared our algorithm
with PLiF [13], which is based on Linear Dynamical Systems (also
known as Kalman filters). It captures the correlations between mul-
tiple sequences, and has the ability to forecast sequences. The orig-
inal signals are bursty, thus we take their logarithm according to
[13]. (c) T2: Very recently, Hong et al. present a new topic model
for tracking trends [6]. We refer to it as T2 in this paper. We used
the model parameters of T2, which can capture the evolution of
topics in data collections. In our setting, we inferred the model pa-
rameters using entries of duration n. At time-tick n, we stopped
the inference, and the latest model parameters were used to predict
all of the future events.

6.2.1 Forecast accuracy
Temporal perplexity. We first evaluate the forecasting accuracy

of our method in terms of perplexity. Here, we compare TriMine-F
with T2. A lower perplexity indicates a higher predictive accuracy.
The perplexities per time-tick are shown in Figure 6. TriMine-F
captures the general periodic trend, with a desirable slight confu-
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Figure 6: Perplexity at each time-tick. TriMine achieves the
lower perplexity; we can appropriately forecast the dynamics
of hidden patterns.

sion about the period in both datasets (i.e., WebClick and Onde-
mand TV). T2, on the other hand, is not intended to capture long-
term trends. The figure shows that T2 fails to predict the future
events.
Accuracy of event forecasting. We also compared our algo-

rithm with the standard AR method and the state-of-the-art meth-
ods, PLiF and T2, with respect to forecasting a number of “future”
events. Figure 7 (a)-(b) shows the root mean square error (RMSE)
between the original and the forecasted event sets of each URL and
each user (we call it “individual forecasts: xi,j,t”). Similarly, Fig-
ure 7 (c)-(d) describes the results of “marginal” forecasts: x∗,j,t,
that is we forecast the aggregated counts of each user j at every
time-tick t. A lower value indicates a better forecasting accuracy.
Note that cyclic dips occur in the middle of the night, because we
have only a few click entries at this time interval. T2 was partially
successful in generating the future clicks, however, it frequently
failed to forecast future event entries. The alternative forecasting
methods, AR and PLiF also failed to forecast the entries, because
each sequence was too sparse to capture the cyclic patterns. Un-
like the alternative methods, our method achieves high forecasting
accuracy for every time-tick. TriMine-F outperforms the state-of-
the-art methods in terms of forecasting accuracy, and similar trends
were observed with the other dataset. We omit the results due to
space limitations.

6.2.2 Benefit of multi-scale approach
In this subsection, we discuss how TriMine-F captures the pat-

tern dynamics. To evaluate the effort from the properties of mul-
tiple time scales in our model, we implement a special version of
TriMine-F by removing this property. Specifically, we use only a
single regression coefficient set, (i.e., Equation (4)). We refer to
it as TriMine-F (single). We used the same coefficients (= 40)
for a fair comparison. Figure 8 shows the temporal evolution of
two major topics for the WebClick dataset. We trained our mod-
els with click events over a period of two weeks (dotted lines in
the figure), and then forecasted the following two weeks. The top,
middle and bottom rows of this figure show the output of TriM-
ine, TriMine-F (single), and TriMine-F, respectively. In this figure,
TriMine does not undertake forecasting, it simply shows the current
topic weights at each time. TriMine-F is our full solution for event
forecasting, which includes multi-scale analysis. The figure shows
that our forecasting method, TriMine-F, successfully forecasts the
subsequent weeks. Specifically, TriMine-F (single) failed to cap-
ture the dynamics and moved towards convergence. On the other
hand, our full solution successfully captured cyclic patterns and pe-
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Figure 7: Forecasting accuracy for individual xi,j,t (top) and
marginal x∗,j,t (bottom): TriMine-F consistently outperforms
the state-of-the-art methods with respect to accuracy (root
mean square error (RMSE) between real values and fore-
casts). WebClick dataset, long-term forecasts starting at t=168
(i.e., after two weeks) (also see Figure 8). Lower is better. We
omit the AR results for hourly error (a) and (c), due to high er-
ror values. Notice that TriMine-F gives the lowest error. Also
see the text for more observations.

riodicity. Consequently, using multi-scale analysis has a significant
advantage, which leads to high forecasting accuracy.

6.3 Scalability
We now evaluate the efficiency of TriMine-F for event forecast-

ing. Figure 9 compares our method with the AR method in terms
of wall clock time when duration n is varied. We use theWebClick
dataset for this experiment, where the numbers of URLs and users
are u = 1, 000, and v = 10, 000. The wall clock time is the pro-
cessing time needed to compute statistics/coefficients and provide
the output (i.e., forecasts). Note that T2 and PLiF are based on the
Kalman filter and are not scalable for large datasets. These meth-
ods need more than 106 seconds to compute even at n = 100, thus
we omit the results. We present our efficient approach for multi-
scale analysis in Section 4.2.2. To evaluate the efficiency of this
approach, we also show the basic approach, which we call TriMine-
F (naive). The empirical results in these figures fully substantiate
the superiority of TriMine-F (i.e., our full solution). We observed
that TriMine-F achieved a dramatic reduction in computation time
that can be up to 7 times faster than TriMine-F (naive), and 74 times
faster than AR.

7. CONCLUSIONS
We addressed the problem of finding patterns and trends, for

“complex” events of the form (URL, userID, timestamp), and,
in general (object, actor, time).
We presented TriMine, which has all of the following properties:

• Effective: TriMine finds meaningful patterns in several real
datasets. It thus enables visualization (TriMine-plots), anomaly
detection, summarization and ‘sense-making’ (see Figures 1,
4, 5).
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Figure 8: Benefit of multiple time scales. Top: the two main
trends of the WebClick dataset, namely, ‘business’ (blue) and
‘media’ (red). Middle and bottom: TriMine-F clearly outper-
forms TriMine-F (single). Both methods start long-term fore-
casting at t=168 (i.e., after two weeks). Ourmulti-scale TriMine-
F reflects reality better, while TriMine-F (single) quickly con-
verges to the mean (red), and even worse, predicts near-zero
for (blue), blinded by the low activity during weekends.

• Accurate TriMine enables forecasting, and specifically, our
multi-scale TriMine-F is significantly faster and consistently
more accurate than state-of-the-art methods.

• Scalable: TriMine scales very well, being linear on the database
size, and several times faster than its competitors (7x, 74x).

We also demonstrated the practicality of TriMine, by applying it
to several real datasets, both for pattern discovery and forecasting.
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