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ABSTRACT
In this paper, we tackle the problem of top-N context-aware
recommendation for implicit feedback scenarios. We frame
this challenge as a ranking problem in collaborative filtering
(CF). Much of the past work on CF has not focused on eval-
uation metrics that lead to good top-N recommendation lists
in designing recommendation models. In addition, previous
work on context-aware recommendation has mainly focused
on explicit feedback data, i.e., ratings. We propose TFMAP,
a model that directly maximizes Mean Average Precision
with the aim of creating an optimally ranked list of items
for individual users under a given context. TFMAP uses
tensor factorization to model implicit feedback data (e.g.,
purchases, clicks) with contextual information.

The optimization of MAP in a large data collection is com-
putationally too complex to be tractable in practice. To ad-
dress this computational bottleneck, we present a fast learn-
ing algorithm that exploits several intrinsic properties of av-
erage precision to improve the learning efficiency of TFMAP,
and to ensure its scalability. We experimentally verify the
effectiveness of the proposed fast learning algorithm, and
demonstrate that TFMAP significantly outperforms state-
of-the-art recommendation approaches.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information Filtering

Keywords
Collaborative filtering, context-aware recommendation, mean
average precision, implicit feedback, tensor factorization

1. INTRODUCTION
Collaborative Filtering (CF) methods are at the core of

most recommendation engines. Most of the data traces left
by online users come in the form of implicit feedback, i.e., we
know which items a user interacted, e.g., purchased, used, or
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clicked, etc., and possibly also the count of each interaction;
however, we do not have an explicit rating, i.e., a relevance
score, that represents the strength of the user’s interest in
that item [13]. Learning the suggestion function from im-
plicit feedback data, such as purchase or usage logs, can
either be considered a classification problem, where items
are classified to relevant or irrelevant, or a ranking problem
where an optimal list of items is to be computed.

Top-N recommendation has recently attracted increased
research interest because it generates a ranked list of results,
which is directly connected to the end-user satisfaction [9].
Conventionally, recommender systems have been optimized
to produced scores. A predicted score reflects the system’s
hypothesis of the strength of a particular user’s preference
for a particular item. In an overwhelmingly large number of
recommender system use scenarios, users do not want prefer-
ence strength information on all the items in the collection,
but rather a compact list of top recommended items.

Although ranking-oriented CF approaches have been pro-
posed for explicit feedback domains, e.g., EigenRank [19]
and CoFiRank [34], those approaches are difficult to apply to
implicit feedback domains, since they require training exam-
ples that are derived from the users ratings on various items.
In particular, implicit feedback is often binary in nature. We
notice that in top-N recommendation, the quality of a rec-
ommendation list that contains items of binary relevance
can be quantified using Mean Average Precision (MAP), a
well known evaluation measure in the information retrieval
(IR) community. MAP provides a single-figure measure of
quality across recall levels, has especially good discrimina-
tion and stability properties, and roughly corresponds to
the average area under the precision-recall curve [21]. It is
thus a good measure of performance when a short list of the
most relevant items is shown to users [27]. A state-of-the-
art approach, Bayesian Personalized Ranking (BPR) [24],
has been recently proposed to train recommendation mod-
els by optimizing the measure of the Area Under the ROC
Curve (AUC), which is based on pairwise comparisons be-
tween items. Note that in the AUC measure mistakes at the
top of the list carry equal weight to mistakes in the bottom of
the recommendation list. In contrast to AUC, MAP is a list-
wise measure, for which mistakes in the recommended items
at the top of the list carry a higher penalty than mistakes at
the bottom of the list [10, 39]. Users typically consider only
few (5 -10) top-ranked items in the recommendation list, it
is thus particularly important to get the recommendations
at the top of the list right. The top-heavy bias of MAP
is thus particularly important in the recommendation prob-
lem. For this reason, we propose a recommendation model
for implicit feedback domains by directly optimizing MAP.



Typically, recommender systems have access to additional
information about the user-item interactions, such as the
context that is associated with the user-item interaction [1].
The context could be the location where the user listened to
a song on his/her mobile phone or the time of the user-item
interaction. Context-aware recommendations (CARs) are
a new paradigm that can significantly improve the recom-
mendation relevance and quality, compared to conventional
recommendations solely based on user-item interactions [1,
4, 14, 25]. In this paper we present a generic CF model that
is based on a generalization of matrix factorization to ad-
dress context-aware recommendations. We extend the con-
cept of matrix factorization to tensor factorization. A tensor
is a generalization of the matrix concept to multiple dimen-
sions. In the example above the user-item two-dimensional
matrix is converted into a three-dimensional tensor of user-
item-location interactions (see Figure 1).

Two key issues need to be considered in CARs: (1) Con-
text Integration. The contextual information needs to be
integrated in the recommendation model to be able to bene-
fit the quality of the recommendation; and (2) Optimiza-
tion Function. The recommendation model needs to be
optimized under an objective function that corresponds to
the recommendation quality for each user under each given
context. Previous work in CARs has extensively studied
the context integration issue, such as using tensor factor-
ization [14] (TF) and factorization machines [25]. However,
the second issue (optimization function) has only been ad-
dressed in a simplistic way. In the work of [14] and [25], the
objective function in the recommendation model consists of
minimizing the rating prediction error. This is an effective
strategy where explicit feedback data is available from users,
however, optimizing this objective is infeasible for scenarios
with only implicit feedback data. In these scenarios, the
quality of a recommendation list for a user is solely depen-
dent on the positions of the relevant items in the list under
the given context.

Here we propose a new context-aware recommendation ap-
proach based on tensor factorization for MAP maximization
(TFMAP) that is designed to work with implicit feedback
datasets. Taking insights from the area of learning to rank,
TFMAP directly optimizes MAP for learning the model pa-
rameters, i.e., latent factors/features of users, items and
context types, which are then used to generate item rec-
ommendations for users under different types of context.

Directly optimizing MAP across all the users in a data
collection is an expensive and non-trivial task. Therefore,
we also propose a fast learning algorithm that exploits sev-
eral properties of the average precision (AP) measure. We
show that the computational complexity of the fast learning
algorithm for TFMAP is linear in the number of observed
items in a given data collection. Our contributions in this
paper can be summarized as: 1) We propose a new gen-
eralized CF approach, TFMAP, that directly optimizes for
MAP and leverages contextual information when available.
We demonstrate that TFMAP outperforms state-of-the-art
context-aware and context-free approaches. We observe sig-
nificant improvements not only in MAP but also in precision
at the top-N ranked recommendations. 2) To the best of
our knowledge, TFMAP is also the first approach that can
exploit datasets with implicit user feedback and contextual
information. 3) We propose a fast learning algorithm that
ensures the scalability of TFMAP and that exploits several
properties of the AP measure.

The paper is organized as follows: in Section 2 we dis-

cuss the most relevant previous work and position our paper
with respect to it. The research problem and the terminol-
ogy used throughout the paper are presented in Section 3.
In Section 4, we present the detail of TFMAP and the fast
learning algorithm. Our experimental evaluation is reported
in Section 5. Finally, Section 6 summarizes our main con-
tributions and highlights a few areas of future work.

2. RELATED WORK
The work in this paper closely relates to three research

areas: CF with implicit feedback, context-aware recommen-
dation, and learning to rank. In the following, we present
the most relevant related work in each of them.

CF with Implicit Feedback. Most CF approaches in
the literature deal with the rating prediction problem, as de-
fined in the Netflix prize competition1. A common approach
to CF is to fit a latent factor model to the data, e.g., latent
semantic models [12, 28], and matrix factorization models,
which learns a latent feature/factor vector for each user and
item in the dataset such that the inner product of these
features minimizes an explicit or implicit loss function [5].
Factor models have been shown to perform well in terms of
predictive accuracy and scalability [2, 18, 26].

One of the first studies that used latent factor models for
large implicit feedback datasets was introduced in [13]. It
uses a least squares loss function and exploits the structure
of the data (dominated by zero entries that correspond to
negative preference), such that observed user-item interac-
tions are weighted proportionately to the count of the in-
teractions. Some extensions following this approach are in-
troduced in [23] and [29]. In [24] a factorization approach
based on the optimization of a smoothed pairwise ranking
objective function was proposed. Optimizing the proposed
objective function corresponds to maximizing the AUC. In
this paper, we propose to learn a recommendation model
by optimizing MAP, whose top-bias property is a significant
advantage over AUC for recommender systems, as discussed
in Section 1. In addition, our work is substantially different
from the aforementioned work, since various types of con-
textual information are exploited for the recommendation.

Context-aware recommendation (CAR). Early work
in CAR utilized contextual information for pre-processing,
where context drives data selection, or post-processing, where
context is used to filter recommendations [1, 4]. Recent work
has focused on building models that integrate contextual in-
formation with the user-item relations and model the user,
item and context interactions directly. Two state-of-the-
art approaches have been proposed to date, one based on
tensor factorization [14, 35] and the other on factorization
machines [25] (FM). However, both approaches have been
designed for the explicit rating prediction problem.

In this paper we utilize a tensor factorization approach,
i.e., the CANDECOMP/PARAFAC (CP) model [15], to
represent the interactions among the user, the item and the
context type. Our approach includes two substantial in-
novations, compared to the state of the art in CARs: (1)
It targets recommendation scenarios with implicit feedback;
and (2) it takes the evaluation metric (MAP) into account
for learning the recommendation model.

Note that recommendation approaches have been proposed
to take into account additional information (also referred as
metadata, side information, or attributes) about users or
items, e.g., collective matrix factorization [30], localized fac-

1http://www.netflixprize.com/



tor models [3] and graph-based approaches [16]. However,
this type of information would go beyond our definition of
“context”, since we refer to context as information that is as-
sociated with both the user and the item at the same time.
Finally, note that a recommended item set from a recom-
mender is regarded as the “context” of user choice in the
work of [38]. However, this type of context is still extracted
from the user-item relations, and thus, does not fall in the
scope of the context studied in this paper.

Learning to Rank. Learning to rank has been an at-
tractive research topic in both the machine learning and the
information retrieval communities [20]. Our work in this
paper is closely related to recent research where proxies for
common IR evaluation measures, such as NDCG and MAP,
are used as the objective functions. The main difficulty of
directly optimizing evaluation measures lies in their non-
smoothness [7], i.e., they are dependent on the rank values
of ranked documents/items but not directly on the predicted
relevance scores.

Ranking approaches can be broadly classified into two cat-
egories, those that implicitly optimize the IR measure and
those that formulate an explicit approximation of the mea-
sure. LambdaRank [7] is a popular implicit optimization
method, which was proposed to apply gradient descent on
an implicit loss function, that is related to IR measures.
Methods that explicitly optimize IR measures include struc-
tured estimation techniques [32] that minimize convex upper
bounds of loss functions based on evaluation measures [37],
e.g., SVM-MAP [39] and AdaRank [36]. In the case of CF,
CoFiRank [34] introduced a matrix factorization method
where structured estimation was used to minimize over a
convex upper bound of NDCG. SoftRank [31] was the first
approach that proposed an explicit smoothed version of an
evaluation measure, in which a rank distribution was em-
ployed, resulting in the expected values of document ranks
that are smooth to the predicted relevance scores. In ad-
dition, a more general extension of SoftRank was presented
by Chapelle et al. [8].

In this paper, we also employ an explicit approximation
of MAP, which is a smooth function of model parameters.
Our work is different from aforementioned research, since
we target context-aware recommendation rather than query-
document search, and we propose a fast learning algorithm,
which is critical for large-scale recommender systems.

3. PROBLEM AND TERMINOLOGY
The research problem studied in this paper is stated as

follows: Given implicit feedback and contextual information
on user-item interactions, recommend to each user and un-
der a given context, an optimal (from a MAP perspective)
item list.

We denote the implicit feedback data from M users to
N items under K types of context as a binary tensor Y ,
i.e., a 3-dimensional tensor, with M ×N ×K entries which
are denoted with ymik: (1) ymik = 1 indicates that user
m has interacted (i.e. purchased, used) with item i under
context type k. We can thus assume that the user has a
preference for this item; and (2) ymik = 0 indicates the
absence of an interaction and thus the preference of user m
to item i under context type k is unknown. |Y | denotes the
number of nonzero entries in Y . Ymk denotes a binary vector
that indicates the user m’s preference on all the items under
context type k.

As mentioned in Section 2, the main idea behind factor
models is to fit the original user-item interaction matrix with
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Figure 1: CP tensor factorization model.

a low rank approximation. In this work we use tensor fac-
torization (TF) as a generalization of the classical matrix
factorization methods that accommodates for the contex-
tual information. The latent features are stored in three
matrices U ∈ RM×D , V ∈ RN×D and C ∈ RK×D that
correspond to users, items, and context types, respectively.
We use Um to denote a D-dimensional row vector, which
represents the latent features for user m. Similarly, Vi rep-
resents the latent features of item i, and Ck represents the
latent features of context type k.

We use the CP model [15], as illustrated in Fig. 1, for
tensor factorization, in which user m’s preference to item i
under context type k is factorized as the inner product of
the latent feature vectors, as shown below:

fmik = 〈Um, Vi, Ck〉 =

D∑
d=1

UmdVidCkd (1)

Based on user’s m preference over all the items under
context type k, we can then generate a recommendation
list by ranking all the items in a descending order of the
computed scores. Then, the AP of this list is defined as:

APmk =
1∑N

i=1 ymik

N∑
i=1

ymik

rmik

N∑
j=1

ymjkI(rmjk ≤ rmik) (2)

where rmik denotes the rank of item i in the list of user m
under context type k and I(·) is an indicator function, which
is equal to 1 if the condition is satisfied, and otherwise 0.

The MAP is defined as the average of AP across all the
users and all the context types, as shown below:

MAP =
1

MK

M∑
m=1

K∑
k=1

∑N
i=1

ymik
rmik

∑N
j=1 ymjkI(rmjk ≤ rmik)∑N

i=1 ymik

(3)

4. TFMAP
In this section, we present the main technical contribu-

tions of this paper: (1) our proposed smooth approximation
of MAP, its optimization and associated complexity analy-
sis; and (2) a novel fast learning algorithm for optimizing
over the smooth MAP measure in a context-aware setting.

4.1 Smoothed Mean Average Precision
It is apparent from Eq. (2) and (3), that AP (or MAP)

depends on the rankings of the items in the recommendation
lists. The rankings of the items change in a non-smooth way
with respect to the predicted user preference scores and thus,
the AP measure ends up being a non-smooth function with
respect to the latent features of users, items and context
types. We thus cannot use any of the standard optimization
methods that require smoothness in the objective function.

As previously mentioned, significant progress has been
made in the area of learning to rank regarding the explicit
optimization of evaluation metrics, such as MAP. The key



issue is to approximate rmik and I(rmjk ≤ rmik) in Eq. (2)
and (3) by smoothed functions with respect to the model
parameters, i.e., U , V , and C.

Based on insights in [8], we approximate I(rmjk ≤ rmik)
by the following logistic function:

I(rmjk ≤ rmik) ≈ g(fmjk − fmik) = g(〈Um, Vj − Vi, Ck〉)
(4)

where g(x) = 1/(1 + e−x). The basic assumption is that the
condition of item j being ranked higher than item i is more
likely to be satisfied, if item j has relatively higher relevance
score than item i. The authors in [8] also proposed a sophis-
ticated approximation for rmik, which, to the best of our
knowledge, has not been deployed in practice. In the case
of MAP, we argue it is not necessary to approximate rmik,
since only 1/rmik is in use. For this reason, we propose to
directly approximate 1/rmik with another logistic function:

1

rmik
≈ g(fmik) = g(〈Um, Vi, Ck〉) (5)

Note that the larger the predicted relevance score fmik the
closer g(fmik) gets to 1, resulting in a low value of rmik.
Reversely, the lower fmik, the larger is rmik. Substituting
Eq. (4) and (5) into Eq. (3), we obtain a smoothed approx-
imation of MAP:

MAP =
1

MK

M∑
m=1

K∑
k=1

1∑N
i=1 ymik

N∑
i=1

ymikg(〈Um, Vi, Ck〉)

×
N∑

j=1

ymjkg(〈Um, Vj − Vi, Ck〉) (6)

4.2 Optimization
Since Eq. (6) is smooth with respect to Um, Vi, and Ck, we

can now optimize it using standard methods, such as gradi-
ent ascent. In order to avoid overfitting , we add the Frobe-
nius norms of the latent factors for regularization. Hence,
the resulting TFMAP objective function is given by:

L(U, V,C) =

M∑
m=1

K∑
k=1

1∑N
i=1 ymik

N∑
i=1

ymikg(〈Um, Vi, Ck〉)

×
N∑

j=1

ymjkg(〈Um, Vj − Vi, Ck〉)

− λ

2
(‖U‖2 + ‖V ‖2 + ‖C‖2) (7)

Note that we neglect the constant coefficient in MAP,
since it has no influence on the optimization. Given a set
of training data Y , a local maxima of Eq. (7) can be ob-
tained by alternatively performing gradient ascent on one
of the latent feature vectors at each step, while keeping the
other latent vectors fixed. The gradients with respect to U ,
C, and V are given by Eq. (8∼10). Note that for notation
convenience, we have performed the following substitutions:
fmik := 〈Um, Vi, Ck〉, fm(j−i)k := 〈Um, Vj − Vi, Ck〉,
δ := g′(fmik)

∑N
j=1 ymjkg(fm(j−i)k)−g(fmik)

∑N
j=1 ymjkg

′(fm(j−i)k).

∂L

∂Um
=

K∑
k=1

1∑N
i=1 ymik

N∑
i=1

ymik

[
δ(Vi � Ck)

+g(fmik)

N∑
j=1

ymjkg
′(fm(j−i)k)(Vj � Ck)

]
− λUm (8)

∂L

∂Ck
=

M∑
m=1

1∑N
i=1 ymik

N∑
i=1

ymik

[
δ(Um � Vi)

+g(fmik)

N∑
j=1

ymjkg
′(fm(j−i)k)(Um � Vj)

]
− λCk (9)

∂L

∂Vi
=

M∑
m=1

K∑
k=1

ymik(Um � Ck)∑N
i=1 ymik

N∑
j=1

ymjk

[
g′(fmik)g(fm(j−i)k)

+
(
g(fmjk)− g(fmik)

)
g′(fm(j−i)k)

]
− λVi (10)

where � denotes element-wise product, and g′(x) denotes
the derivative of g(x). Note that since neither Um or Ck is
coupled with other latent feature vectors as in Eq. (6), the
derivation of Eq. (8) and (9) is straightforward. However,
Vi is coupled with other latent feature vectors in Eq. (6),
resulting in a more complicate derivation of Eq. (10). We
leave the detailed derivation of Eq. (10) in the Appendix.

In order to understand the practical utility of TFMAP,
we analyze the complexity of the learning process for one
iteration. Given the data sparseness in the tensor Y and the
fact that we usually have |Y | >> M,K, the computational
complexity of calculating the gradients in Eq. (8) and (9) is
O(D|Y |), which is linear to the number of observed user-item
interactions in the given tensor. Hence, the computation of
the gradients with respect to the latent user features and
latent context features is tractable, and able to scale up for
large-scale use cases. However, the complexity of Eq. (10)
is O(DN |Y |). Considering that we usually have |Y | >> N ,
this complexity is even larger than quadratic in the number
of items in the given collection. Thus, the computation of
gradients regarding latent item features could be intractable
in practice.

In the next section, we propose a novel fast learning algo-
rithm to address the computational bottleneck in Eq. (10),
reducing its complexity to O(D|Y |).

4.3 Fast Learning
The proposed fast learning algorithm is outlined in Al-

gorithm 1. Note that according to the definition of AP in
Eq. (2), it is not necessary to optimize the latent features of
all the items in order to maximize AP (as explained below).

The key idea of speeding up the learning process is to
optimize, for each fixed pair of user m and context type
k, the latent features of only a set of representative items,
denoted as a buffer Bmk.

The gradient of the objective in Eq. (7) with respect to
the latent features of item i in Bmk can be computed as:

∂L

∂Vi
=

M∑
m=1

K∑
k=1

ymik(Um � Ck)∑
i∈Bmk

ymik

∑
j∈Bmk

ymjk

[
g′(fmik)g(fm(j−i)k)

+
(
g(fmjk)− g(fmik)

)
g′(fm(j−i)k)

]
− λVi (11)

The computational complexity then depends on the size
of the buffer, i.e., the number of items selected for each pair
of user-context type. When all items are included in the
buffer, Eq. (11) is equal to Eq. (10), while selecting fewer
items in the buffer results in lower complexity.

The key issue with this approach is finding the right items
to include in the buffer, as the quality of the learning process
and hence the resulting model directly depends on the items
included in the buffer. The buffer needs to be constructed in



such a way that it both reduces the computational complex-
ity of the learning algorithm and conserves the necessary
information to yield a high quality model.

4.3.1 Representative Item Selection
Relevant Items. For each user in a given context, we

first include in the buffer all the items that have been ob-
served by the user in that context, i.e., for which we have
the user’s implicit feedback. These items are the basis for
the computation of AP. Note that AP is defined based on
the ranks of relevant items. Updating the latent features of
relevant items should improve (i.e., reduce) their rankings,
thus, resulting in improved AP.

Irrelevant Items. Note that the ranking of irrelevant
items influences AP indirectly, since their rankings are rel-
ative to the rankings of relevant items. Updating the latent
features of irrelevant items will also improve (i.e., raise) their
rankings, thus, resulting in overall improved AP.

However, in practice, there are many more irrelevant items
than relevant items for a user under a given context. The
quantity of irrelevant items thus becomes the computational
bottleneck in the learning algorithm of TFMAP.

For this reason, we choose to select only a relatively small
number of irrelevant items in the buffer, nmk, for user m and
context type k. AP is a top-heavy list-wise ranking measure
such that the lower the ranking of an item (the closer it is
to the top of the list), the higher its influence in the final
score. Top-ranked irrelevant items are the most influential
items for AP optimization, yielding the following lemma:

Lemma 1. If we try to improve the AP of a ranking list
by optimizing ( i.e., raising) the ranks of n irrelevant items,
then raising the ranks of the top n irrelevant items should
yield the largest improvement in AP.

The proof in the case of n = 1 is provided in the Appendix.
The proof for the case of n > 1 can be obtained in a similar
way. Note that we could first sort all the irrelevant items for
user m under context k in a descending order, according to
the preference scores computed by the current model, i.e.,
Um, V and Ck in current iteration, and then select the top-
ranked nmk irrelevant items into the buffer.

In this work, we choose the set of irrelevant items in the
buffer, nmk, to be equal to the number of observed/relevant
items for user m under context k, resulting in a total of 2nmk

items in the buffer.
We now optimize Eq. (7) for the latent features of the

items within the buffer only. The complexity of Eq. (11)
over each iteration is O(2ñ2MKD), where ñ denotes the
average number of observed items per user and context type.
Note that we have ñMK = |Y | and |Y | >> ñ. Therefore,
the complexity of Eq. (11) is O(D|Y |), which is linear to the
number of observed items in the given collection.

4.3.2 Efficient Buffer Construction
In order to select the top-ranked irrelevant items in each

iteration, we need to make a prediction for each item and
sort them according to the current predicted scores. Consid-
ering that most recommender systems contain large numbers
of items, the computational cost for the prediction and sort-
ing process would be very high. For this reason, we propose
to sample a small set of irrelevant items and to select the
top-ranked irrelevant items within the sampled set into the
buffer.

We can maintain the representativeness of the top-ranked
irrelevant items from the sampled set by using a key property

ALGORITHM 1: Fast Learning TFMAP

Input: Training set Y , regularization parameter λ, sampling
size n, learning rate γ, and the maximal number of
iterations itermax.

Output: The learned latent features U , V , and C.
Initialize U(0), V (0), and C(0) with random values, and t = 0;

p0 = MAP based on Y and U(0), V (0), C(0);
repeat

for m = 1, 2, . . . ,M do

U
(t+1)
m = U

(t)
m + γ ∂L

∂U
(t)
m

based on Eq. (8);

for k = 1, 2, . . . ,K do

C
(t+1)
k = C

(t)
k + γ ∂L

∂C
(t)
k

based on Eq. (9);

for m = 1, 2, . . . ,M do
for k = 1, 2, . . . ,K do

Bmk = BufferConstruct(Ymk, U
(t)
m , V, C

(t)
k , n);

for i ∈ Bmk do

V
(t+1)
i = V

(t)
i + γ ∂L

∂V
(t)
i

based on Eq. (11);

t = t+ 1;

p = MAP based on Y and U(t), V (t), C(t);
if p− p0 ≤ 0 then

break ;

p0 = p;
until t ≥ itermax;

U = U(t), V = V (t), C = C(t)

ALGORITHM 2: BufferConstruct

Input: User m’s preference on all the items under context type
k, i.e., Ymk, and Um, V , Ck, and sampling size n.

Output: Bmk.
Bmk =Ø;
Bmk = Bmk ∪ {i|ymik = 1};
nmk = cardinality(Bmk);
p = mini,ymik=1 〈Um, Vi, Ck〉;
S = {i|ymik = 0} ∩ {i| 〈Um, Vi, Ck〉 > p};
Randomly sample n items from S as Q;
Descendingly sort items in Q, according to 〈Um, Vi, Ck〉 , i ∈ Q;

Set top-ranked nmk items in Q as B−;

Bmk = Bmk ∪B−;

of AP: The items below the last relevant item in a ranked
list have no contribution to AP. This property can be easily
understood from the definition of AP (see Equation 2).

Therefore, for each user under a given context type, we
first find the relevant item with the lowest score. This oper-
ation is computationally cheap since the number of relevant
items is usually very small. We then sample ns irrelevant
items from those irrelevant items (assuming that most unob-
served items are irrelevant) that have higher predicted rele-
vance scores than the minimum predicted relevance score of
the relevant items. This sampled set has higher probability
to contain the globally top-ranked irrelevant items than a
randomly sampled set. Note that the relevance scores are
calculated by the model in each iteration. We illustrate the
buffer construction for user m under context type k in an
single iteration in Fig. 2.

In addition, since the model will become more accurate
with each iteration, the minimum predicted score of the rel-
evant items will also increase gradually. In other words, the
position of the last relevant item in the ranked list will grad-
ually move to the top of the list. As another by-product,
this effect also helps to reduce the buffer construction time
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Figure 2: Illustration of buffer construction.

with each iteration. An experimental analysis confirming
this property will be presented in Section 5.

Note that the sampling size for the irrelevant items does
not only influence the buffer construction time, but also the
quality of the learned latent item features. We investigate
this tradeoff between buffer size (i.e., computational cost)
and performance in Section 5.

4.3.3 Termination Criterion
Since Eq. (6) is an approximation of MAP for the training

data Y , we can use MAP (given by Eq. 3) as another termi-
nation criterion apart from conventional criteria, such as the
number of iterations or the convergence rate. We stop the
optimization process when we observe deteriorating values
of MAP. Degrading values of MAP on the training data in-
dicates that further optimizing the approximation of MAP
as in Eq. (6) may not contribute to raising the true MAP.

5. EXPERIMENTAL EVALUATION
In this section we present a collection of experiments that

evaluate the proposed TFMAP. We first give a detailed de-
scription of the datasets and setup that are used in the ex-
periments. Then, we investigate the impact of several pa-
rameters in the proposed fast learning algorithm that are
critical for TFMAP, as mentioned in Section 4.3. Finally,
we evaluate the recommendation performance of TFMAP,
compared to several baselines, and analyze its scalability.

The experiments were designed to address the following
research questions: 1) Does the proposed fast learning al-
gorithm benefit TFMAP in achieving MAP maximization?
2) Does TFMAP outperform state-of-the-art context-aware
and context-free approaches? 3) Is TFMAP scalable for
large-scale context-aware recommendation?

5.1 Experimental Setup

5.1.1 Dataset
The main dataset we use in this paper is from the Ap-

pazaar project2 [6]. Appazaar recommends mobile applica-
tions to users from the Android Market. The application
usage data is recorded in the form of implicit feedback since
Appazaar logs which apps are run by each user. In addi-
tion, Appazaar also tracks available contextual information
from the phone sensors, such as motion sensor and GPS.
We use two contextual factors in the experiments, i.e., mo-
tion (unavailable, slow, fast) and location (workplace, home,
elsewhere). Note that both of the contextual factors were
inferred from a GPS trace. Hence, the context variable has

2http://appazaar.net/

9 possible types that take into account all the combinations
of the two contextual factors, i.e., K = 9 for C in Eq. (1).
For example, context type“1”denotes that implicit feedback
about a user running an application was observed when the
user was at work and his/her motion status was unavail-
able. Finally, we represent one observation in the dataset as
a triplet (UserID, ItemID,ContextTypeID). The dataset
contains 300469 triplets, 1767 users, 7701 items, 9 combina-
tions of contextual features. On average, there are 18.9 app
usage events per user and context type. A more detailed
description of the dataset and its collection procedure can
be found in [6].

Note that conventional CF benchmark datasets, e.g., Net-
flix dataset, are not enriched with contextual information.
Although the Appazaar dataset is not as large as these bench-
mark datasets, it is still much larger than datasets that
have been used in previous context-aware recommendation
work [14, 25]. Moreover, the datasets previously used in the
CAR literature are all based on explicit ratings rather than
implicit feedback, thus, not ideal for our study.

5.1.2 Experimental Protocol
We separate the dataset into a training set and a test

set, according to the timestamps. The training set consists
of the first 80% implicit feedback data, while the test set
contains the remaining 20% data. The target is to use the
training set to learn a recommendation model, i.e., U , V
and C, which is then used to generate recommendation lists
for each user under each type of context.

We use the MAP measure as in Eq. (3) to evaluate on the

testset Ỹ . Note that in order to have fair comparison with
context-free approaches, we only preserve one context type
for each user in the test set, i.e., we randomly select one con-
text type for each user in the test set and preserve the user’s
feedback within the selected context type, while excluding
all the user’s feedback data under other context types. To
further clarify this design choice, we give a negative example
in which a user in the test set has implicit feedback on the
items under two different types of context. In this case, the
MAP of context-aware approaches, such as TFMAP, should
be measured according to AP under the two different types
of context, while context-free approaches would only calcu-
late AP based on the items and ignore the context. For
this reason, our choice is necessary in order to attain fair
comparative results to other context-free approaches.

In addition, note that since we only have implicit feedback
from users, we cannot treat all the items that have no feed-
back in the test set as irrelevant/negative ones, in which case
the recommendation performance could be severely under-
estimated. For this reason, we adopt a conventional widely-
used evaluation strategy [9, 17], in which we randomly select
1000 items that have no feedback as irrelevant ones for each
user in the test set. The performance is measured according
to the recommendation list that only contains these 1000
items together with relevant items, i.e., the items for which
there is implicit feedback for that user.

In order to carry out our validation experiments, we ran-
domly select 10% of all the implicit feedback data available
in the training set. In our validation experiments we inves-
tigate the impact of the parameters and the fast learning
algorithm in TFMAP.

Finally, note that we empirically tune the following con-
ventional parameters so they yield the best performance in
the validation test: regularization parameter λ=0.001, la-
tent dimensionality D=10, and learning rate γ=0.001.



5.1.3 Setup for Comparison to FM
As mentioned in Section 2, the state-of-the-art context-

aware approaches, such as FMs [25], are designed to tackle
the rating prediction problem (explicit feedback), and hence
they are difficult, if not impossible, to apply to implicit
feedback data. For this reason, we use another dataset,
Food dataset [22], which has also been used in the work
on FMs [25]. This dataset contains ca. 6K 5-scale ratings
from 212 users on 20 menus/items, and each rating is associ-
ated with 2 contextual factors, i.e. one factor about whether
the user’s feeling about hunger is real or virtual (2 values:
real, virtual) when she rated a menu, and the other factor
about the user’s hunger degree (3 values: normal, hungry
and full). By taking into account all the combinations of
the two contextual factors, we obtain 6 types of context in
the Food dataset.

In our experiments, we randomly select 80% of the ratings
as the training set and the remaining ratings as the test set.
Items with a rating higher than 3 in the test set are consid-
ered to be relevant. Note that a different rating threshold
could be set to define the relevant items. Under this setting,
we use FM approach to first predict the ratings of the users
on the items under each context type, and then generate the
recommendation list according to the predicted ratings. For
TFMAP, we train the model by converting the training set
to an implicit feedback dataset, in which each rated item is
regarded as an indicator of implicit feedback (i.e., the user
tried the food item).

5.2 Validation: Impact of Fast Learning
We investigate the properties of the fast learning algo-

rithm in TFMAP, presented in Section 4.3. The experimen-
tal results reported in this subsection are measured on the
validation set previously described.

5.2.1 Impact of Sampling Size
By varying the sampling size in the fast learning algorithm

of TFMAP, we investigate the buffer construction time and
the performance variation in terms of MAP in the validation
set, i.e., an issue discussed in Section 4.3.2. We measure the
buffer construction time cumulatively across all the users
under all the context types in the training set over one iter-
ation. The result is shown in Fig. 3.

Note that the buffer construction time increases almost
linearly as the sampling size increases. Hence, with a rela-
tively small sampling size, we could significantly reduce the
buffer construction time compared to the case where all the
irrelevant items for each user under a given context need
to be ranked. For example, in the Appazaar dataset we
have over 7000 items, which means that a sampling size of
200 could save over 50% of the buffer construction time, as
illustrated in Fig. 3. Also note that the recommendation
performance in terms of MAP increases sharply as the sam-
pling size increases up to 200, and then saturates. There-
fore, even with a relatively small size of irrelevant items, e.g.,
200, (compared to all the irrelevant items), the top-ranked
irrelevant items within the sampled set are sufficiently rep-
resentative to be used for MAP optimization.

In sum, these results empirically verify the selection of
a small set of irrelevant items to create the buffer in the
fast learning algorithm of TFMAP and justify our algorithm
design choices. For the remaining experiments we will keep
a sampling size of 200.

Figure 3: The impact of sampling size on buffer con-

struction time and MAP of TFMAP.

5.2.2 Impact of Representative Irrelevant Items
Here we aim to understand the the effectiveness of choos-

ing the representative irrelevant items in the buffer. Rather
than selecting representative irrelevant items to construct
the buffer, an alternative is to use randomly selected irrele-
vant items. To test the random procedure we abandoned the
ordering step of the algorithm and instead we randomly se-
lected nmk irrelevant items from the sampled set of size 200.
In this case the accuracy yields a MAP of 0.083, dropping
by 18.6% compared to the case where top-ranked irrelevant
items are selected, i.e., MAP of 0.102 as shown in Fig. 3.
Increasing the sampling size further emphasizes the bene-
fit of carefully selecting the representative items. When we
choose to sample 5000 irrelevant items, the benefit over the
random strategy is 21.7%. This experiment validates the
benefit of using representative irrelevant items in the buffer,
as discussed in Section 4.3.1.

5.2.3 Effect of the Lowest-ranked Relevant Item
As discussed in Section 4.3.2, it is not necessary to sample

from all the irrelevant items in order to construct the buffer
for a user in a given context, since the items ranked below the
lowest-ranked relevant item have no influence on AP. Thus,
the sampling process could be more efficient by neglecting
the items ranked below the lowest-ranked relevant item.

Here, we present an experimental study that examines the
change of the position of the lowest-ranked relevant item,
i.e., the maximal rank of relevant items in a recommenda-
tion list, during iterations, and also the change in the corre-
sponding buffer construction time, as shown in Fig. 4. Note
that this experiment is conducted on the validation set, with
sampling size of 200 in TFMAP, and the results shown in
Fig. 4 are the average values across all the users under all
context types in each iteration.

We observe that the maximal rank of relevant items de-
creases with each iteration as the model is gradually opti-
mized, i.e., the model is more likely to rank relevant items
higher in the list along iterations. This observation provides
empirical evidence that exploiting the lowest-ranked relevant
item in the sampling process does contribute to improving
the quality of the representative irrelevant items, and also
the efficiency of the buffer construction with each iteration.
For example, the buffer construction time reduces by over
10% in the second iteration, compared to the first iteration.

5.2.4 Effectiveness of the Termination Criterion
Our final validation experiment investigates the effective-

ness of the proposed termination criterion for the fast learn-
ing algorithm, as discussed in Section 4.3.3. We show the
MAP measured in both the training (excluding the valida-



Figure 4: The average maximal rank of relevant items

and the buffer construction time along iterations.

Figure 5: The MAP of the training set and the valida-

tion set in the learning process

tion set) and the validation sets across the iterations, as in
Fig. 5. Both MAP measures gradually improve towards an
optimal value with only a few iterations (less than 20), in-
dicating that TFMAP effectively learns latent features for
users, items and context types for MAP optimization. Also
note that both MAP measures start dropping consistently
after a few iterations, indicating that it is effective to use the
MAP measured in the training set as a termination criterion
for the learning process to avoid model overfitting.

From all the findings described in this section, we can give
a positive answer to our first research question.

5.3 Performance Comparison
We now compare the performance of TFMAP with that of

5 baseline algorithms, according to the recommendation per-
formance measured on the test set. The baseline approaches
involved in this comparative experiment are listed below:

• Pop. A naive baseline that recommends items in terms
of their popularity (i.e., the number of observations
from all the users) under the given context.
• iMF. A state-of-the-art CF approach proposed by Hu

et al [13] for implicit feedback data.
• BPR-MF. Bayesian personalized ranking (BPR) rep-

resents another state-of-the-art optimization framework
of CF for implicit feedback data [24]. BPR-MF repre-
sents the choice of using matrix factorization (MF) as
the learning model with BPR optimization criterion.
Note that the implementation of this baseline is done
with the publicly available software MyMediaLite [11].
Although various learning models are available to be
used with BPR, we find BPR-MF gives the best per-
formance.
• TFMAP-noC. A variant of the proposed TFMAP, in

which contextual information,i.e., C, is not involved

Table 1: Performance comparison of TFMAP and

context-free baselines on Appazaar dataset
MAP P@1 P@5 P@10

Pop 0.090 0.312 0.292 0.227
iMF 0.577 0.698 0.642 0.583

BPR-MF 0.612 0.800 0.712 0.602
TFMAP-noC 0.629 0.834 0.720 0.602

TFMAP 0.659 0.879 0.732 0.611

Table 2: Performance comparison of TFMAP and FM

on Food dataset
MAP P@1 P@5 P@10

FM 0.152 0.036 0.050 0.055
TFMAP 0.219 0.089 0.075 0.059

in the learning algorithm. Note that iMF, BPR-MF
and TFMAP-noC are context-free methods, i.e., the
contextual information has no influence on the recom-
mendations to individual users.
• FM. Factorization machine (FM) is a state-of-the-art

context-aware approach [25]. As mentioned in Sec-
tion 5.1.3, the comparison between FM and TFMAP
is conducted on the Food dataset, due to the applica-
bility of FM. Note that the implementation of FM is
done with the publicly available software libFM3.

Based on the Appazaar dataset, the recommendation per-
formance of TFMAP and all the baselines except FM is
shown in Table 1, from which we obtain three observations.

First, the context-free version of the proposed TFMAP,
i.e., TFMAP-noC significantly outperforms the other base-
lines in terms of MAP. Note that in our experiments, sta-
tistical significance is measured based on AP and precision
values of all the users in the test set, according to Wilcoxon
signed rank significance test with p<0.01. This result in-
dicates that in the case that contextual information is un-
available, directly optimizing MAP as proposed in TFMAP
could still lead to substantial improvement over state-of-the-
art context-free approaches, such as iMF and BPR-MF.

Second, we can see that both BPR-MF and TFMAP-noC
attain dramatic improvement in MAP over the other two
baselines, Pop and iMF. As mentioned in Section 2, BPR
is designed to optimize the evaluation metric AUC. The su-
perior performance of BPR-MF and TFMAP-noC suggests
that directly optimizing an evaluation metric that measures
the recommendation performance in implicit feedback sys-
tems would yield significant improvements in the recommen-
dation performance. In addition, note that TFMAP-noC
achieves a significant improvement in MAP of 3% over BPR-
MF, and 4% improvement of P@1. This result indicates that
optimizing MAP is a better choice for recommender systems
than optimizing AUC, since the top-heavy bias in MAP is a
critical factor that provides substantial benefit for the rec-
ommendation performance.

Third, as can be seen, TFMAP achieves an additional sig-
nificant improvement over TFMAP-noC, e.g., 5% in MAP
and P@1. This result indicates that TFMAP succeeds in
utilizing contextual information together with user-item im-
plicit feedback for maximizing MAP. In addition, the ex-
ploitation of context could greatly improve implicit feedback
recommenders; a similar conclusion was reached by previous
work on CAR with explicit feedback [25, 14].

As mentioned before, we compare TFMAP with FM us-
ing the Food dataset, according to the protocol described in
Section 5.1.3. The results are shown in Table 2. As can be
observed, TFMAP significantly improves over FM to a large

3http://www.libfm.org/



extent, i.e., by more than 40% in MAP, 100% in P@1 and
50% in P@5 and 8% in P@10, showing a great competitive-
ness for top-N context-aware recommendation. From all the
experimental results presented in this section, we confirm a
positive answer to our second research question.

5.4 Scalability
The last experiment investigates the scalability of TFMAP

by measuring the model training time against the amount
of data used for training the model. We use from 10% to
100% of the training data (the observed implicit feedback
data in the training set) for learning the latent features,
and the corresponding training times are shown in Fig. 6.
Note that we have normalized the training time by the time
that is required for training the model with all the data in
the training set. It can be observed that the training time
increases almost linearly with the amount of the training
data, empirically verifying the property of linear computa-
tional complexity. This finding also allows us to answer our
last research question positively.

6. CONCLUSIONS AND FUTURE WORK
We have presented TFMAP, a novel top-N context-aware

recommendation approach for implicit feedback domains.
This approach utilizes tensor factorization to model each
user’s preference for each item under each type of context,
and the factorization model is learned by directly optimiz-
ing MAP. We also propose a fast learning algorithm that
exploits several properties of AP to keep the complexity of
TFMAP linear to the number of implicit feedback data in
a given collection, thus, making TFMAP scalable. Our ex-
perimental results verify the effectiveness of the proposed
fast learning algorithm for TFMAP, and demonstrate that
TFMAP could outperform several state-of-the-art context-
aware and context-free recommendation approaches.

Taking insights from recent statistical analysis on evalua-
tion measures [33], one line of our future work is to investi-
gate the potential of optimizing other measures for context-
aware recommendation, since different measures may repre-
sent different aspects of the recommendation quality. An-
other interesting topic of future work is to integrate contex-
tual information together with metadata of users and items,
as discussed in Section 2, to further advance the state-of-
the-art in recommender systems.
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APPENDIX
A. DERIVATION OF EQ. (10)

Note that in the following derivation, we leave out the derivative
of the regularization term, i.e., −λVi, due to the space limit.

∂L

∂Vi

=

M∑
m=1

K∑
k=1

ymik(Um � Ck)∑N
i=1 ymik

(
g
′
(fmik)

N∑
j=1

ymjkg(fm(j−i)k)

− g(fmik)

N∑
j=1
j 6=i

ymjkg
′
(fm(j−i)k) +

N∑
p=1
p6=i

ympkg(fmpk)g
′
(fm(i−p)k)

)

Since we have g′(−x) = g′(x), we obtain:

∂L
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=

M∑
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)

By replacing index “p” by “j”, we obtain:
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=
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Since the term in the last summation is 0 when j = i, we obtain:
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′
(fm(j−i)k)

))

=
M∑

m=1

K∑
k=1

ymik(Um � Ck)∑N
i=1 ymik

N∑
j=1

ymjk

(
g
′
(fmik)g(fm(j−i)k)

+
(
g(fmjk)− g(fmik)

)
g
′
(fm(j−i)k)

)

B. PROOF OF LEMMA 1
For the case of n = 1, consider that r = [r1, r2, . . . , rN ] denotes

the current ranks of all N items in a ranked list and r′ denotes their
ranks after some optimization. We can optimize the latent features
of a single irrelevant item a using a very small step size until its
rank would increase from ra = q to r′a = q + 1. Consequently, the
rank of item b that was ranked q + 1 would now be ranked q, i.e.,
rb = q + 1 and r′b = q. Now the Lemma can be proved by proving
that ∆AP = APr′ −APr is a non-increasing function of q. It follows
that the largest improvement ∆AP can be achieved by raising the
rank of the irrelevant item with the lowest rank. Note that this proof
is not related to a user or a context, so we simplify the notations.
The ∆AP can be expressed as:

∆AP =
1

NR

N∑
i=1

yi

r′i

N∑
j=1

yjI(r′j ≤ r
′
i)−

1

NR

N∑
i=1

yi

ri

N∑
j=1

yjI(rj ≤ ri)

where NR denotes the number of relevant items. Since we have the
condition: ri = r′i, if i 6= a, b, we can obtain

∆AP =
1

NR

(
ya

r′a

N∑
j=1

yjI(r′j ≤ r
′
a) +

yb

r′b

N∑
j=1

yjI(r′j ≤ r
′
b)

−
ya

ra

N∑
j=1

yjI(rj ≤ ra)−
yb

rb

N∑
j=1

yjI(rj ≤ rb))

Since we also have ya = 0 as known, we further obtain:

∆AP =
1

NR

(
yb

r′b

N∑
j=1

yjI(r′j ≤ r
′
b)−

yb

rb

N∑
j=1

yjI(rj ≤ rb))

Substituting rb = q + 1 and r′b = q, we have:

∆AP =
1

NR

yb

N∑
j=1

yj(
1

q
I(r′j ≤ q)−

1

q + 1
I(rj ≤ q + 1))

Again, when j 6= a, b, we have rj = r′j , and:

I(r′j ≤ q) = I(rj ≤ q + 1) = 1, if r
′
j ≤ q

I(r′j ≤ q) = I(rj ≤ q + 1) = 0, if r
′
j > q + 1

Accordingly, we obtain:

N∑
j=1,j 6=a,b

yj(
1

q
I(r′j ≤ q)−

1

q + 1
I(rj ≤ q + 1)) = Nq(

1

q
−

1

q + 1
)

where Nq denotes the number of relevant items within top-q items.
Finally, we obtain:

∆AP =
1

NR

yb

( N∑
j=1,j 6=a,b

yj(
1

q
I(r′j ≤ q)−

1

q + 1
I(rj ≤ q + 1))

+ ya(
1

q
I(r′a ≤ q)−

1

q + 1
I(ra ≤ q + 1))

+ yb(
1

q
I(r′b ≤ q)−

1

q + 1
I(rb ≤ q + 1))

)
=

1

NR

yb

(
Nq(

1

q
−

1

q + 1
) + yb(

1

q
−

1

q + 1
)
)

=
1

NR

Nqyb + y2b
q(q + 1)

Note that Nq ≤ q and yb ∈ {0, 1}. We complete the proof with ∆AP

is a non-increasing function of q. A similar proof can be deduced for

the case of n > 1.


