CMSC5733 Social Computing

Tutorial IV: HW?2 Solution and More
about NetworkX

Shenglin Zhao
The Chinese University of Hong Kong
slzhao@cse.cuhk.edu.hk

|.1 Radius

* Radius of one node
means the largest
direct path length
from the node to
other nodes.

* Answer:
—a: 3 (a-c-f-g)
—d: 3 (d-c-f-g)
— f: 3 (f-d-a-d)

| .2 Diameter

* Diameter means the
largest one among all
direct path length of
any node pair, namely,
longest shortest path.

e Answer:4

— b-a-c-f-g

|.3 Center

e Center is the node
with smallest radius.

* Answer:c
—a: 3
— b:4
—c:2
—d:3
—e:3
—f:3
—g:4

| .4 Center

* Cis the best place.

 Because node c is
the center of the
graph. It can reach
other nodes in
smallest average
numbers of link, and
that will reduce
transit time most.

T i | S | S | S
L

% — o o — — o o
(V) —_

n _...I.. L LS LS

|.5 Adjacency Matrix

|.5 Laplacian Matrix

The Laplacian matrix of graph G, namely, L(G), is a
combination of the connection matrix and (diagonal)
degree matrix: L = C - D, where D is a diagonal matrix
and C is the connection (adjacency) matrix

g — degree(v;) 1f j =i
10 otherwise

|.5 Laplacian Matrix

|.5 Laplacian Matrix

e Answer:C-D

=]

LN— LN— — | N— | N— _ —
T —) —
[t

.4
— _ —f = =
—f
oY

|.5 Laplacian Matrix

e Answer:

=]

LN— LN— — | N— | N— _ —
T —) —
[t

.4
— _ —f = =
—f
oY

1.7

* The deletion of which
vertex will make the
network unconnected?

* Answer: (c is the center)

—f: (g vs.a,b,c,d,e)

NetworkX for QI

* Draw the graph

Drawing in

daraw (G[, pos, ax, hold])

draw_networkx (G[, pos, arrows, with_labels])
draw_networkx_nodes (G, pos|, nodelist, ...])
draw_networkx_edges (G, pos|, edgelist, ...])
draw_networkx_labels (G, pos[, labels, ...])
draw_networkx_edge_labels (G, pos|,...])
draw_circular (G, **kwargs)

draw_random (G, **kwargs)

draw_spectral (G, **kwargs)

draw_spring (G, **kwargs)

draw_shell (G, **kwargs)

draw_graphviz (G[: prc’g])

NetworkX

Draw the graph G with Matplotlib.
Draw the graph G using Matplotlib.
Draw the nodes of the graph G.
Draw the edges of the graph G.
Draw node labels on the graph G.
Draw edge labels.

Draw the graph G with a circular layc
Draw the graph G with a random layz«
Draw the graph G with a spectral lay
Draw the graph G with a spring layot
Draw networkx graph with shell layc

Draw networkx graph with graphviz

3

Radius for nodes in Networlkx

eccentricity

eccentricity(G, v=None, sp=None) [source] S
Return the eccentricity of nodes in G.

The eccentricity of a node v is the maximum distance from v to all other nodes in G.

Parameters: ¢ G (NetworkX graph) - Agraph
» v (node, optional) - Return value of specified node
« sp (dict of dicts, optional) - All pairs shortest path lengths as a
dictionary of dictionaries

Returns: ecc - A dictionary of eccentricity values keyed by node.

6]: nx.eccentricity(G)

{'a’: 3, 'b’: 4,

Radius of Graph

radius

radius(G, e=None) |[source]
Return the radius of the graph G.

The radius is the minimum eccentricity.

Parameters: ¢ G (NetworkX graph) - A graph
» e (eccentricity dictionary, optional) - A precomputed
dictionary of eccentricities.

Returns: r - Radius of graph

Return type: integer

4]: nx.radius(G)

2

Diameter

diameter

diameter(G, e=None) [source]

Return the diameter of the graph G.

The diameter is the maximum eccentricity.

Parameters: * G (NetworkXgraph) - A graph
» e (eccentricity dictionary, optional) - A precomputed
dictionary of eccentricities.

Returns: d - Diameter of graph

Return type: integer

7]: nx.diameter(G)

Yy

Center

center

center(G, e=None) [source]
Return the center of the graph G

The center is the set of nodes with eccentricity equal to radius.

Parameters: * G(NetworkX graph) - Agraph
» e (eccentricity dictionary, optional) - A precomputed
dictionary of eccentricities.

Returns: ¢ - List of nodes in center

Return type: list

8]: nx.center(G)

[c’]

Adjacency Matrix

adjacency_matrix

adjacency matrix| (G, nodelist=None, weight="weight) [source]

Return adjacency matrix of G.

Parameters: G:graph
A NetworkX graph

nodelist : list, optional

The rows and columns are ordered according to the nodes in nodelist.
If nodelist is None, then the ordering is produced by G.nodes().

weight : string or None, optional (default="weight’)

The edge data key used to provide each value in the matrix. I[f None,
then each edge has weight 1.

Returns: A : SciPy sparse matrix

Adjacency matrix representation of G.

9

10

Adjacency Matrix

A = nx.adjacency_matrix(G, ['a’,'b’

A.todense()

matrix([[0,

11

[1,
[1,
[1,
[0,
[0,
[0,

print A

. 1)
, 2)
. 3)
, 0)

. 0)
. 3)
. 1)
, 5)
. 0)
, 2)
. 2)
, 2)
)

— el ek ek ek ek el ek ek ek ek ek ek

12

13

14

A = nx.adjacency_matrix(G)

A.todense()

matrix([[0,

[1,
[1,
[0,
[1,
[0,
[O,

G.nodes()
['a", '¢e', b’

Laplacian Matrix

laplacian_matrix

laplacian_matrix (G, nodelist=None, weight="weight) [source]
Return the Laplacian matrix of G.

The graph Laplacian is the matrix L = D - A, where A is the adjacency matrix and D is the
diagonal matrix of node degrees.

Parameters: G:graph
A NetworkX graph

nodelist : list, optional
The rows and columns are ordered according to the nodes in nodelist.
If nodelist is None, then the ordering is produced by G.nodes().
weight : string or None, optional (default="weight’)

The edge data key used to compute each value in the matrix. If None,
then each edge has weight 1.

Returns: L : SciPy sparse matrix

The Laplacian matrix of G.

Laplacian Matrix

17]: L = nx.laplacian_matrix(G,
18]: L.todense()
matrix([[3. -
[-1
[-1
[-1,
[O,
[©
[©
19 -L . todense()

matrix([

3
1
1
1,
@,
0
0

[-
[
[
[
[
[
[

2.1 Density

2|E|
VI(VI=1)

Density =

e Answer:
— 2 *%5/(5%4) = 0.5

2.2 Degree Sequence

* Degree sequence: g=[d|,
d2,...,dn] defines a
degree sequence
containing the degree
values of all n nodes in G.

—[3,1,3,2,I],fromatoe

2.3 Average Path Length

* The average path length
of the graph is the
average of all shorted
paths

AB=1,AD=1,AC=1,AE =2;
BC=2,BD=2,BE=3;
CD=1,CE=1;

DE =2;

— Answer: 16%2/(5%4)=1.6

NetworkX for Q2

* Draw the graph

Density

density

density (G) [source]

Return the | density of a graph.

The | density for undirected graphs is

2m
d= ———
n(n — 1)
and for directed graphs is
m
d= "~
n(n—1)’

where 1 is the number of nodes and m is the number of edges in (.

MNotes

The density is O for a graph without edges and 1 for a complete graph. The density of
multigraphs can be higher than 1.

Self loops are counted in the total number of edges so graphs with self loops can have
density higher than 1.

21 nx.density(G)

0.5

Average Path Length

average _shortest_path _length

average!_shortest_lpath!_length (G, weight=None) [source]

Return the | average shortest path length.

The | average shortest| path | lengthis

B d(s,t)
¢ Z n(n — 1)

s, teV

where V' is the set of nodes in G, d(s,t) is the shortest path from s to ¢, and 12 is the
number of nodes in G

Parameters: G:NetworkX graph
weight : None or string, optional (default = None)

If None, every edge has weight/distance/cost 1. If a string, use this
edge attribute as the edge weight. Any edge attribute not present
defaults to 1.

Raises: NetworkXError:

if the graph is not connected.

23]: nx.average_shortest_path_length(G)

1.6

3 Cluster Coefficient

* For a node u, suppose that the neighbors share c
links, then the cluster coefficient of node u,

2
degree(u)(degree(u) — 1)

Celu) =

* The cluster coefficient of the graph is average
cluster coefficient over all nodes,

CC(G) _ Z C('(l‘i)

n

=1

3.1 Cluster Coefficient

* Answer:
—cc(l)=0
—cc(2) =0

— ce(3) = 2¥1/(3%2) = 1/3

* neighbors: 1,4,5

* shared links: I, (4,5)

* degree(3): 3
—cc(4) = 2¢1/(2*1) = |

* neighbors: 4,5

* shared links: I, (4,5)

* degree(4):2
—cc(5) = 1/3

* symmetric with node 3

3.2 Cluster Coefficient

« CC(G)
e Answer:;
— (0+0+1/3+1+1/3)/5=1/3

NetworkX for Q3

* Draw the graph

Coefficient
clustering

clustering (G, nodes=None, weight=None) [source]
Compute the clustering coefficient for nodes.

For unweighted graphs, the clustering of a node u is the fraction of possible triangles through
that node that exist,

B 27T (u)
- deg(u)(deg(u) —1)’

where T'(u) is the number of triangles through node u and deg(u) is the degree of .

Cy

For weighted graphs, the clustering is defined as the geometric average of the subgraph edge

[aTalata

weights
27]: nx.clustering(G)

333333333333333,

0.0
0.0
0.3
1.0
0.3

333333333333333)

Graph Coefficient

average_clustering

average_clustering (G, nodes=None, weight=None, count zeros=True) [source]

Compute the average clustering coefficient for the graph G.

The clustering coefficient for the graph is the average,

C = %Zcm

velG
where 1 is the number of nodes in G.

Parameters: G:8raph
nodes : container of nodes, optional (default=all nodes in G)

Compute average clustering for nodes in this container.

weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If
None, then each edge has weight 1.

count_zeros : bool (default=False)

If False include only the nodes with nonzero clustering in the average.

Returns: avg : float 25]: nx.average_clustering(G)
Average clustering 0.3333333333333333

4.| Closeness

* Closeness of a node u is the reciprocal of sum of
the shortest path distance from u to all n-1 other

nodes.

1
‘E-: 1 d‘ (U,u:}

C(u) =

d(v, u) is the shortest path distance between v and
u,and n is the number of nodes in the graph.

4.| Closeness

e Answer:

* shortest paths from node 3:
¢ 3-1:1,
¢ 3-2:2,
* 3-4:1,
« 3-5:1,
¢ 3-6:2,

* sum of shortest paths:
|+2+[+14+2=7

* closeness = |/7

4.| Closeness

e Answer:

* shortest paths from node 5:
* 5-l:1,
« 5-2:1,
* 5-3:1,
 5-4:1,
* 5-6:2,

* sum of shortest paths:
|+1+1+1+2=6

e closeness = |/6

4. | Normalized closeness

* Closeness is normalized
by the sum of minimum
possible distance n-|

n—1

Clu) =
() > e d(v, u)

e Answer:
.« C(3)=(6-1)/7=5/7=0714
. C(5) = (6-1)/6 = 5/6 = 0.833

4.) Betweenness

Betweenness Centrality of a node counts the number of times that a node lies
along the shortest path between two others vertices in the graph. It is defined
as

CB('U)= Z Uat(r”).

sAvA£LEV 90 st

where o, is the number of shortest paths from s to ¢ and og(v) is the number
of shortest paths from s to ¢ that pass through a vertex v.

4.) Betweenness

* |.For each pair of vertices (s, t), compute the
shortest paths between them.

* 2.For each pair of vertices (s, t), determine the
fraction of shortest paths that pass through
the vertex in question (here, vertex v).

* 3.Sum this fraction over all pairs of vertices (s,

t).

4.) Betweenness

 For node 3,

(1,4) (1,5,4), (1,3,4)
(1,6) (1,54,6), (1,3,4,6) 2 | 0.5
betweenness =

0.5+0.5 = |

Betweenness

* For node 5,

(1,4) (1,54),(1,3.4) 2
(1,6) (1,546),(1,346) 2 | 0.5
23) (21,3),(253) 2 | 0.5
(2,4) (2,5,4) | | |
(2,6) (2,5,4,6) | | |

e betweenness = 0.5+0.5+0.5+[+[=3.5

Normalized Betweenness

* Betweenness is normalized by 2/((n-1)(n-2))
for undirected graphs, and |/((n-1)(n-2)) for
directed graphs

* Betweenness(3) = 2*1/((6-1)*(6-2)) = 0.1
* Betweenness(5) = 3.5%2/(5*%4) = 0.35

NetworkX for Q4

* Draw the graph

closeness

closeness _centrality

S18SEREss) centrality (G, u=None, distance=None, normalized=True) [source]

Compute | closeness centrality for nodes.

Closeness centrality [R174] of a node u is the reciprocal of the sum of the shortest path
distances from w to all i — 1 other nodes. Since the sum of distances depends on the number

of nodes in the graph, closeness is normalized by the sum of minimum possible distances
72— 1.

nn— 1
Srtd(v,u)’

where d(w, 2t) is the shortest-path distance between v and u, and n is the number of nodes in
the graph.

C(u) =

MNotice that higher wvalues of | closeness indicate higher centrality.

Parameters: G:graph
A NetworkX graph

u : node, optional

Return only the value for node u

distance : edge attribute key, optional (default=None)
Use the specified edge attribute as the edge distance in shortest path
calculations

normalized : bool, optional

If True (default) normalize by the number of nodes in the connected
part of the graph.

Returns: nodes : dictionary

Dictionary of nodes with [closeness | centrality as the value.

Closeness

hx.closeness_centrality(G, u="3")
0.7142857142857143

nx.closeness_centrality(G, u='5")
0.8333333333333334

41 hx.closeness_centrality(G)

. 625,

. 2555555555555556,
L T142857142857143,
L T142857142857143,
.8333333333333334,
CHSHSHSHSH555453)

Betweenness

betweenness_centrality

betweenness_centrality (G, k=None, normalized=True, weight=None,
endpoints=False, seed=None) [source] %o

Compute the shortest-path betweenness centrality for nodes.

Betweenness centrality of a node v is the sum of the fraction of all-pairs shortest paths that

pass through v:

cp(v) = Z o(s,t|v)

s,teV J(S’ t)

where V is the set of nodes, o(s,) is the number of shortest (s, t)-paths, and o(s, t|v) is
the number of those paths passing through some node v other than s, t. If s = £, r:r(s, t) =1,
andifv € s,t,0(s,t|v) = 0[R172].

Betweenness

Parameters: G:graph
A MNetworkX graph

k :int, optional (default=MNone)

If k is not None use k node samples to estimate betweenness. The
value of k <= n where n is the number of nodes in the graph. Higher
values give better approximation.

normalized : bool, optional

If True the betweenness values are normalized by
2/((n —1)(n — 2)) for graphs,and 1/((n — 1)(n — 2)) for
directed graphs where mn is the number of nodes in G.

weight : None or string, optional
If None, all edge weights are considered equal. Otherwise holds the
name of the edge attribute used as weight.

endpoints : bool, optional

If True include the endpoints in the shortest path counts.

Returns: nodes : dictionary

Dictionary of nodes with betweenness centrality as the value.

43]: nx.betweenness_centrality(G)
{'1': 0.85, '2': 0.0, "3': 0.1, : 0.4, : 0.35000000000000003, '6°

0.0)

Q5

Answer: toroidal network

avg_path_length

=]

——

Average Path Length v. Size

O Binary Tree |

| & Toroid

{ ©OHypercube |

=
|y
s
A
A -
O

=

5 10 15 20 25

30 35 40 45 S0 55 60 6%
Size (n)

