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Degree Distribution on a Random Network
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An Erdés-Rényi random graph is one chosen at random from all the graphs with a given number of nodes (;;) and edges
(). The degree of a vertex in such a graph follows a Poisson distribution with mean 2 ¢ /. The blue curve in the left plotis
a continuous approximation of 1 — f k) where fk) is the cumulative distribution function of a Poisson distribution with
parameter } =2 ¢ /». The red dots show the fraction of nodes of a particular graph with degree .
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REGULAR NETWORKS
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Link Efficiency

® Link Efficiency

® The tradeoff between number of links and number of hops in

the average path length of a network:
E(G) = m—avg path length(G)
m

where m is the number of links in G

® Let t be the total number of paths and r,; the length of the

direct path between node v.andv.:
avg_path_length = Z Z ITJ
I J

® A network is scalable if link efficiency approaches 100% as
network size n approaches infinity 1@
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TABLE 1

Link Efficiency of Several Network Classes, n > 1

Network
Class Efficiency Example
_ 2n — 4 : )
Line m Asymptotic (o 5
Ri on— | Asymptotic to 3
ing symptotic to 3
= 4n ymp 4
2logob (n+ 1) —6
Binary tree A +1 )~ 0 n=127, m= 126, E = 93.4%
n—
1
Toroid | — n= 100, m= 200, E=97.5%
4y/n
Random 98.31% n = 100, m = 200, avg_path_length = 3.38
I
Hypercube | — l n= 128, m=448, E=99.2%
n—
— 1
Complete ~ 1.0 m=n & 5 avg_path_length = 1

P
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Binary Tree Network

® A line graph is not link-efficient

® The number of links grows as fast as the number of hops in its
average path length

® The binary tree is more link-efficient

® A binary tree is defined recursively

® The root node, has degree 2 and connects two subtrees,

which in turn connect to two more subtrees, and so forth

This recursion ends with a set of nodes called the leaf nodes,
which have degree |

As it grows, its average path length grows much slower than@
|ts numbﬁlch®£ellilm\l([5ty of Hong Kong, CMSC5733 Social Computing, Irwin King hpe s



Binary Tree Network

® Balanced binary tree
® A balanced binary tree contains k levels and exactly
2~ 1 nodes, m = (n — 1) links, for k =1,2, . . ..
® Unbalanced binary tree

® An unbalanced binary tree contains less than 2 - | nodes
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Properties

® Center
® The root node with radius r = k — |

® the leaf nodes lie at the extreme diameter, which is D = 2(k —

|) hops
® Diameter
® Grows logarithmic with size n because k = O(log,(n))

® Average path length

® Also grows logarithmically, is proportional to its diameter

’@
"‘.i- £\
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Entropy of Binary Tree Network

® A balanced binary tree network is regular, but its entropy
IS hot zero

Entropy is a function of the degree sequence distribution

The degree sequence distribution for the binary tree is
g =[53%; 7%; 40%]

® Entropy is calculated as I(G) =- 2 plog, p
p1 = n/2 = 2” = % leat node frequency
n n
1
Dy = — root node frequency
n
n—n/2)—1 n—2

p3 = = internal node frequency
n 2n A
The Chinese University of Hong Kong, CMSC5733 Social Computing, Irwin King



Entropy of Binary Tree Network

, 1 1 1 1 n—2 n—2
I(balanced binary tree) = —[5 log, 5 + ’—zlogz . -+ o log, o jl
—l—l-llo n+ n—210 2n
2 n 52 2n 52 n—2
1
I(Balanced binary tree) = 1 + og’zz(n); > 1
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Binary Tree Average Path Length v. k

18
16 = = Diameter-4
14 Approximation
"E,,lz ® avg path length
2 10
5
Si 8
o
& 6
4
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0 I 1] Al L] 1] T 1] 1 T
o 1 2 3 4 5 6 7 8 9 10 11 12

Figure Path length and (D — 4) versus level k for a balanced binary tree with n = 25 — 1

nodes, m = n — 1 links, and diameter = D = 2(k — 1).

Average path length and (D — 4) merge for high values of k. Thus, average path length
1s asymptotic to (D — 4):

avg_path_length(balanced binary tree) = (D —4); k > |
D =2(k — 1),s0 avg_path_length =2k — 6 = 2log,(n + 1) — 6
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® For smaller values of k, say, k < 9, the approximation
breaks down

® The nonlinear portion of the approximation diminishes

exponentially as k increases — reaching zero as (D — 4)
dominates:
avg_path_length = (D — 4) +

I 4+ exp(Bk)

where A =10.67, B = 0.45 gives the best fit.

® Substituting D = 2(k — 1) and k =log,(n+1)
10.67
I 4+ exp(0.45log,(n + 1))

avg_path_length = 2log,(n+ 1) — 6 +
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Link Efficiency

® A balanced binary tree has m = n — | links

® Link efficiency of a “large” balanced binary tree is:

D—4  @k-D-4

E(balanced binary tree) = 1 —
| m n—1

k>9

2log,(n+ 1) — 6
n— 1

E=1

, because kK = log,(n+ 1)

® Assuminc k >> |
E(balanced binary tree) = 1 —

2logy(n)

n

k> 9

® Binary tree link efficiency approaches 100%, as n grows
without bound %

The Chinese University of Hong Kong, CMSC5733 Social Computing, Irwin King e




Toroidal Network

® Problem with a binary tree is the logarithmic growth in
the distance from its root node to its leaf nodes

® Can we shorten paths without adding more links?

® How about a grid-like structure with wrap-around?

The Chinese University of Hong Kong, CMSC5733 Social Computing, Irwin King



A Toroidal Network

N=7 N=10
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Toroidal Networks

How many links are there!
What is the entropy of a toroidal network!?

The mapping function

f - Ui ™ U(i+1) mod /n> Ui ™~ V(i+./n) mod n

The Average Path Length

TABLE 3.2 Results of Path Matrix Analysis of Toroidal Networks

Size, n Toroid Row Sum Factored Row Sum Average Path Length
4 2 x2 4 2*2 $=1.33
9 3x3 12 3*4 g = 1.50
16 4 x 4 32 4*8 % =2.13
25 5x5 60 5*12 60 —2.50
36 6 x6 108 6*18 13& = 3.09
49 7 x7 168 7*24 % = 3.50
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Hypercube Networks

0 1

Q Q

(a)

(d)
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TABLE 3.3 Hamming Distance between Binary Numbers“

Hamming

Distance 000 001 010 011 100 101 110 111
000 0 1 1 2 1 2 2 3

001 1 0 2 1 2 1 3 2

010 1 2 0 1 2 3 1 2

011 2 1 1 0 3 2 2 1

100 1 2 2 3 0 1 1 2

“Columns, 0---7; rows, 0---4.

\
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|
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Link Efficiency v. Size

100%

Average Path Length v. Size

A C a A o
90% o‘ Q -~ O Binary Tree 0
80% & & 6 A Toroid
- o
é 70% - % 5 {—{ O Hypercube a
60% - c
g O Binary Tree S 4 A
o oo A Toroid £ = A
£ 40% 3 A e
w & © Hypercube g o
= 30% 4 = o Q
o o %
20% m
1 {o
10%
0 — .
0% o — 4
Size (n) Size (n)
(a) (b)

Figure 3.6 Comparison of actual link efficiency (a) and average path length (b) of binary
tree, toroidal, and hypercube networks.
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RANDOM NETWORKS




Generation

® Not as straightforward as it seems
® The resulting network should be “random” (high-entropy)
® Avoid node isolation, duplicate links, and loops

® Random network generation procedures

® Gilbert Random Network

® Erdos—Renyi (ER) Random Network

® Anchored Random Network

The Chinese University of Hong Kong, CMSC5733 Social Computing, Irwin King



Gilbert Random Network

ldea

Select links with probability p from a complete graph with n
nodes such that the resulting network ends up with m = p[n(n
— 1)/2)] links on average

A Gilbert network has density p
n

. . C .
A Gilbert network is one network from (zgosmble
networks with n nodes and m links

100 100! ~100(99)

cly o, > = = = 4950
2 2(98!) 2

a Gilbert network is one of 4950 possible networks, selecteg;

at Ima'nd(}';pChinese University of Hong Kong, CMSC5733 Social Computing, Irwin King ne



Procedure

Given n and probability p, generate a Gilbert network by applying the following
microrules:

. Initially: generate n nodes and number them from O to (n—1).
2. Set m: Let m = n((n — 1)/2) = the number of nodes in a complete graph.
3. Repeat for i =0,1,...,(m — 1):

a. Given (Math.random () < p), connect link 7 to a node pair; otherwise
ignore.

b. Count the number of links connected and compute the density:

, number of connected links
Density =

m

The Chinese University of Hong Kong, CMSC5733 Social Computing, Irwin King et



ER Random Network
® Proposed in 1959 by Paul Erdos and Alfred Renyi

® The standard method of random network generation
today

® |dea

® Fixes the number of links m and nodes n and does away with
the probability variable p

® Avoids loops and duplicate links, but it does not guarantee a
strongly connected network

’@
) ‘ s &
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Procedure

Given n and m, construct an ER random network as follows:

W N —

a.
b. Select random node: head = (Math.random() ) n.

C.

d. Avoid duplicate: if (no duplicate) insert new link between tail and

Initially: Generate n nodes and number them from O to (n — 1).
Initially: m given, and #links (number of links) = 0.
Repeat until m = #links have been inserted:

Select random node: taill = (Math.random() ) n.
Avoid loop: while (tail == head) head = (Math.random () ) n.

head and increment #links. Otherwise, do nothing.

!
l E
LI T
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Anchored Random Network

® Idea

® A sslight modification to the ER generative procedure
guarantees that all nodes are connected to at least one other
node

® Visiting every node at least once (in round-robin style) and
testing the degree of each node

® If the degree is zero, the algorithm attaches the tail of the link to the

solitary node

® Otherwise, it selects a tail node at random

The Chinese University of Hong Kong, CMSC5733 Social Computing, Irwin King ’



Procedure

Given n and m, construct an anchored random network as follows:

1. Initially: Generate n nodes and number them from O to (n—1).
2. Initially: m > (n/2) given, and #links=0.
3. Repeat until m = #links have been inserted:

a.

¢ &0 T

Round robin: i = 0,1,2, ..., (n—1); 0,1,2, . ...

Select tail: If (degree(i) > 0) taill = (Math.random () n, else tail = 1.
Select random node: head = (Math.random() ) n.

Avoid loop: While (tail == head) head = (Math.random () ) n.

Avoid duplicate: If (no duplicate), insert new link between tail and head and
increment #links. Otherwise, do nothing.

ll
o .
I - v )
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Degree Distribution

® Gilbert and ER generation procedures both obey a Poisson
distribution (n >> 1)

® How to show it?

® Show that random selection of node pairs follows a binomial
distribution

Show that the binomial distribution transforms into the
Poisson distribution as the number of links m grows large, thus
eliminating m from the distribution equation

Note: Use the fact that ((1 — A )/m) becomes e * as m grows
without bound
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Degree Distribution

® The degree distribution of G is binomial

Consider G with n = |0 nodes, m = 30 links, so the
avg_degree(G) = A = 2m/n) links

According to the ER generation procedure, each node
receives an average of six connections in m = 30 timesteps

For a node v

A k 1 — A\ m—k
Prob(v selected k times in m steps) = (—) ( )

m m

n\ (AN /1 —AY"*
Prob(degree(v) = k) = B(m,k) = C('") <_> <_>
k m m
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Degree Distribution

® As nand m increase in size, B(m, k) is approximated by the
Poisson distribution

n—k+ 1Y\ /Af A
lim {B(m.,k)} = lim (m(m — 1)) --- m _+ — ] — —
1m—s 00 m—00 mk k! m

~ ~ -~ —
1 1’ 15
Lim(m — infinity) 7, = 1
k
Lim(m — infinity) 75 = il

Lim(m — infinity) 75 = ¢ *

Ne=A
k!

Lim(m — infinity) B(m.,k) =

® This is a Poisson distribution @
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D1 2 3 4 5 6 7 8 9 1011 12131415 16 17

2 3 45 6 7 8 9 1011121314
(c)

Figure Degree sequence distribution of random networks (n = 100, m = 400) generated
by (a) Gilbert generation procedure, (b) ER generation procedure, and (c) anchored
ER generation procedure.

X
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ER Random Network Entropy vs. Density

4.0

-

T+ 1 1L

I?‘

3:5 f

3.0

7 5

2.0

Entropy, I

1.5

] .“N J

1.0

0.5

0.0 e

0% 10%

@

20% 30% 40% 50% 60% 70% 80% 90% 100%

Density %

Figure Entropy of ER random network versus density as a percentage of fully
connected (complete) network: n = 100, m = 100 to 4950.

A random network is fully random only in the middle of its range of density values
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Model of Entropy

® In the left half, entropy rises exponentially and then
flattens off near density = 50%, and similarly declines to

zero over the right half

® The left half and right-half expressions model I(x) and I(|
— X),for0<x < I:

Left(x) = A(1 — exp (—Bx)); left halt
Right(x) = A(1 — exp (—B(1 — x))); right half

Combining the two halves. we have:
I[(x) = 0.5[left(x) + right(x)] = 0.5[A(]l — exp (—Bx)) + A(l —exp(—B(1 — x)))]

) ,E £
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Average Path Length

® The average path length of a random network decrease as
the number of links increases

Avg Path Length v. Density

Ln(avg_path_length)

— O ER:Ln(avg_path_length)
2.50 - e Gilbert:Ln(avg_path_length)
-

2.00 - s = = = -Model(n, A, C, D)

‘\
1.50 ] &l g

@B, °
1.00 [e] S~

O -
0.50 ® @~ W9~ -
0.00 ‘ ‘ T [¢]
0.00 1.00 2.00 3.00 4.00 5.00
Log,(density)

Figure Average path length versus density of links for ER, Gilbert networks, and model
(dashed line), based on the modified theoretical approximation and base 2 logarithms:
n=100, A=132, C=151,D=0.
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Cluster Coefficient

The cluster coefficient increases proportional to density

cluster_coefficent(random network) = —
n

where A = mean degree = (2m/n) = (n— 1)density ~ n(density); n > 1.

1.00
DER:CC ,Ju

0.90 H Iy

0-80 M «agilbert:cC

0.70 ]

0.60 /
0.50 / [o}
0.40 /

0.30 /E
0.20 /
0.10 myw

0.00 M

0 20 40 60 80 100
100*Probability

cC

Figure Cluster coefficient of ER and Gilbert random networks versus link density
(probability). A straight line approximates the relationship cluster_coefficient

(random network) = O(density). r@
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Link Efficiency

m — avg_path_length(random) | avg_path_length(random)

E(random) = -1 —
m m

Number of links m and density d are related by

2m

d=——
nn—1)

so link efficiency can be expressed in terms of m or d:

A log (n)

E(random) = 1 — : -
m log (n(density)C)

The Chinese University of Hong Kong, CMSC5733 Social Computing, Irwin King
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Example
® Whenn =100, d=0.04 (m=200, A=1.32 C=1.5I):

1.321og (100) L 664

=1—-132—
200 log ((100)(0.04)(1.51)) 200 log (6.04)

g 877
~ T (2000(2.59)

= 0.983

E(random) = 1 —

® Compare this with results of regular networks, random

networks are highly efficient users of links because of the
small-world effect

® A small amount of randomness in any network injects a major
drop in average path length

® Randomness results in a large jump in link efficiency
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Properties

® Diameter

® The maximum-length path across all node-pairs

® Center

® The minimum of the maximum length paths, from any node to any

other node

® Radius

® The longest path from a node v to all other nodes of a connected graph

® Closeness

® The number of direct paths from all nodes to all other nodes that must

pass through the node v
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Diameter

® We model the decrease in diameter as density increases
using a modified average path length model:

Alog (n)
log (n(density)C) + D

® Given the parameters n = 100, A = 2.0, C = 0.44,

Model(n, A, C, D) =

D = 1.0, density = 0.5:

2 log (100
Diameter = og (100) = 2.43 hops
log ((0.44)(100)(0.5)) + 1
1.321og (100
avg_ path_length = og (109) = 1.41 hops

log ((100)(0.5)(1.51))
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Radius

® Random network centrality “shrinks” with increasing
density:

Radius(random) Alog (n)
adius(random) =
log (n(density)C) + D

® Given the parameters n = 100, A = 1.59, C =0.88, and D
= 0.5, density = 0.5:

Radius(random) 1.591og (100)
adiuas(random) =
acit log ((100)(0.5)(0.88)) + 0.5

6.64
— 1.59 .
log (44) + 0.5

= 1.77 hops

The Chinese University of Hong Kong, CMSC5733 Social Computing, Irwin King npy



Closeness

#Paths(ER)/n vs. Avg. Path Length(ER)

10.0
9.0
8.0

i A #Paths(200 ER)/200 e
6:0 & W
4.0
3.0 A
2.0 W
1.0
0.0 "ﬁ/

1.0 1.5 2.0 2.5
Average Path Length

» #Paths(100 ER)/100

#Paths/n Thru Intermediary

Figure Number of paths through the largest intermediary node versus average path
length of a random network for n = 100,200.

There is a somewhat linear relationship between closeness and path length:

Number of paths through intermediate node

= O(avg_path_length)
n

log (n)
log (A)

avg_ path_length = 0( ) and A = n(density):

loe
Number of paths through intermediate node = O nos ("?
log (n(density))

The Chinese University of Hong Kong, CMSC5733 Social Computing, Irwin King
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Closeness

Closeness(ER) vs Density
45

40
35
30
25

20 © 100 x avg Closeness(100 ER)
15 \

10 A 100 x avg Closeness(200 ER) \

Avg Closeness x 100

0

0.0 0.1 02 03 04 05 06 07 08 09
Density

Figure Average closeness versus density for random networks of size n = 100,200.
Closeness rises to a peak and then declines with increase in number of links.

Consider length of average paths and number of direct paths (suppose
n = 100):

100(closeness(random)) = Cp(1 — density)A" + C;

Alog, (n)
r= _
log, (BA) + C

The Chinese University of Hong Kong, CMSC5733 Social Computing, Irwin King == Lt e




Weak Ties

The population of Pointville, Flatland is 129.The village is unusual in that
everyone is equally likely to know everyone else, but because of their
busy social life, Flatlanders have time to

become friendly with an average of only 24 other Flatlanders.What are
the longest and shortest weak ties across Pointville?

A weak tie is a chain of acquaintances that leads from
person u to person w, for any node pair u~w, across the
entire population

The longest and shortest weak ties are equivalent to the
diameter and radius of this population

’@
"‘.i- £\
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Weak Ties

2m 2A(n/2) A

Density =d = = —
nn—1) nn—1) n-—1

Substitution of density into the approximations for diameter and radius derived earlier
(we assume that n = 100 and n = 129 give similar values of parameters A,C, and D):

2log(n)

Diameter =
log (0.44nd) + 1
_ 1.591og (n)
Radius =

log (nd0.88) + 0.5

Now, let n = 129 and A = 24:

24
d =——=0.1875
128
2log (129
Diameter = o8 ') = 3.18 or 4hops
log ((0.44)(129)(0.1875)) + 1

. 1.59 log (129)
Radius = = 2.77 or 3 hops
log ((129)(0.1875)(0.88)) + 0.5

The longest and shortest weak ties differ by | hop. Every person in Pointville knows
every other person through at most four intermediaries.

The Chinese University of Hong Kong, CMSC5733 Social Computing, Irwin King



Randomization of
Regular Networks

Ring Network v. Random Links

60 B Diameter
o .
50 - A Radius
(o)
® Avg_path_length
40 o
D © 100*Entropy
B =
@ 30 2
S A : = m
a
20 L) _ A A A
®
o ® @ P
10
0
0 2 4 6 8

Additional Random Links

Figure Effect on diameter, radius, average path length, and 100 x entropy of ring
network as the number of additional random links increases.
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SMALL-WORLD NETWORKS
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Definition

Small-world networks are sparse networks with high
cluster coefficient, relatively short average path length,
and scalable entropy

Small-world effect is the rapid decline in average path
length as a small number of random links are added to a
(structured) network

Random links tend to bisect a network, effectively dividing

the distance between opposite halves of the network by
50%

“six degrees of separation” — “50% elimination of
separation” 3@
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Generation
The Watts—Strogatz (WS) Procedure

1. Given n, rewiring probability p, and k = 2, generate a k-regular graph by
connecting each of n nodes to their immediate neighbors, and neighbor’s
neighbors. This network has m = 2n links [A = 4, density = (4/n)].

2. For every link, w= 1,2,...,m, rewire p with probability p, as follows. If
(Math.random () < p), disconnect the head(w), and rewire it to a different
randomly selected node. Avoid (trandom = head(w)), and duplicate links.
Otherwise, do nothing.

Figure WS small-world generation starts with (a) a 2-regular network and then evolves
into (b) a semirandom and semistructured “slightly small-world” network: n = 10, m = 20.

The Chinese University of Hong Kong, CMSC5733 Social Computing, Irwin King
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Degree Sequence

Small worlds are hybrids

® Part k-regular and part random

The topology of a small-world network falls somewhere
between that of a k-regular network and random network

Degree Distribution vs. Degree

60% T —a—Poisson: Random

50% T+ sw Data

of - o
40% —o— Barrat-Weigt: Small World /\

N W
o o
¥ 3
\
/

Degree Distribution %

>

5 10 15 20 25 30
Degree, d

Figure Degree sequence distribution for random and small-world networks with n = 50, r@

o

m = 400, and rewiring probability p = 5%.
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Closed-form Expression

1. The degree of a typical node u stays the same if none of its links are rewired,
and increases if other node’s links are redirected to u.

2. The probability that links are not rewired follows a binomial distribution,
B(k,i,(1—p)), where V\ = m/n, i = number of links not rewired, and p = rewiring
probability.

3. The probability that another node’s links are redirected to node u follows
a Poisson distribution, P(A,d — k —1); d > k, where A} = pk is the
expected value of redirected links, d = degree, and i = number of links
redirected to u.

4. The probability of increasing the degree of node u is equal to the joint prob-
ability, B(k,i,(1 —p))P(A,d—k—1).

5. The degree distribution /(d) 1s equal to the sum of joint probabilities over i =
1, 2, 3,...min{d—k.,k} links.

The distribution of nodes with  links after rewiring is the sum
min{d—k.k}

hd)= Y Bk.i.(1 =p)P\.d—k—i): d=>k

i=1 _
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Degree Distribution vs. Degree

Exam

60% 1 ——Poisson: Random
o L ]
© 50% T« sw Data
s
= of R
E 40% —o— Barrat-Weigt: Small World /\
T 30% / \
Q
o
8 20% ] o\
[a]
10% e
e R
0% < y ‘ -
0 5 10 15 20 25
Degree, d

Figure Degree sequence distribution for random and small-world networks with n = 50,

m = 400, and rewiring probability p = 5%.

S

d=15

p = 0.05

om0
n 50

min{d — k, k} = min{15 —8, 8} =7
A =pk =0.05(8) =04

:
h(15) = > {B(8.i. (0.95)P(0.4, 15 — 8 — i)}

i=1

P0O.4,15—8 —1i) = (0'4)15—8—1' ex

B(8. i, 0.95) = C(§)(0.95)(0.05)%*

—04
Pas—g—i)

7

(7 —10)!

h1s) =3 {C(;)(0.95)"(0.05)X—f(o.4)7—i exp ﬂ}

i=1

TABLE Summation Terms for /(d)
min

d (d-k. k) h(d) i=1 i=2 =3 i=4 (=5 i=6 i=7 i=8
10 2 0.0% 0% 0% 0 0 0 0 0 0

11 3 0.0% 0% 0% 0% 0O 0 0 0 0

12 4 0.0% 0% 0% 0% 0.02% 0 0 0 0

13 5 0.3% 0% 0% 0% 001% 024% 0O 0 0

14 6 2.5% 0% 0% 0% 001% 0.19% 231% 0 0

15 7 14.5% 0% 0% 0% 0.00% 0.08% 1.85% 12.55% 0

16 8 40.6% 0% 0% 0% 0.00% 0.02% 0.74% 10.04% 29.81%
17 8 28.1% 0% 0% 0% 0.00% 0.00% 020% 4.02% 23.85%
18 8 10.7% 0% 0% 0% 0.00% 0.00% 0.04% 1.07% 9.54%
19 8 2.8% 0% 0% 0% 0.00% 0.00% 0.01% 0.21% 2.54%
20 8 0.5% 0% 0% 0% 0.00% 0.00% 0.00% 0.03% 0.51%
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Properties

Figure WS small-world generation starts with (a) a 2-regular network and then evolves
into (b) a semirandom and semistructured “‘slightly small-world” network: n = 10, m = 20.

TABLE WS Small-World Networks Generated by Rewiring a 2-Regular
Network versus a Toroidal Network

WS Small Toroidal Toroid —
Property 2-Regular World Network SW Random
avg_path_length 3.5 2.87 2.5 2.37 2.33
Cluster
coefficient
cc 0.500 0.363 0 0.055 0.169
Entropy 0 2.83 0 3.61 5.82

B i . B
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Entropy versus Rewiring Probability

® Explore the relationship between each small-world
property and the rewiring probability and density of the
network

® Hold the size and density of a 2-regular WS network constant
while varying the rewiring probability p

® Hold the size and rewiring probability constant while varying
density.

® Do this by starting with a k-regular network k = m/n, and
noting that density = 2 k/(n—1)

’@
) ‘ s &
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Small World Entropy vs. Probability

-
o

N
)
)

i~
o

Entropy, I
=
183

=
o

o
wn

0-0 | I I I
1 2 3 4 5 6

log,(100*Probability)

Figure Entropy of a WS small world versus logarithm of rewiring probability p; n = 100,
m = 200. Rewiring probability ranges from 1% to 100%.

Entropyws(p) = Iws(p) = A log, (100p); p = 0.01,0.02,...,1.0
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Entropy versus Density

Properties of Small World Network vs Density

7
'\ « avg_path_length
6
a o Cluster Coefficient
§s |
=
(8}
g 4 \ a Entropy
O
=
B 3
f o
S 2 —
&
B
1 =)
W
0 T T T T T T T
0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Density %
Figure Properties of small-world network with rewiring probability p = 4%, n = 100,

and 4% < density < 80%; [Note: kn (density /2)].

k densit
Density(k-regular) =2—; k =n —Cn;l Y on>=>>1
n

Entropy rises very slowly with density according to the logarithmic function
[WS(densily) =A 10g3 (B(dCHSitY)) - C.

The Chinese University of Hong Kong, CMSC5733 Social Computing, Irwin King

Ny v



Path Length

® Deriving average path length

1. When rewiring is nonexistent, and the initial network is 2-regular, average path
length is n/4k.

\0)

. For very small rewiring probability p, average path length begins a rapid
decline, after p > (1/m) .

3. At some (early) point p*, rewiring is sufficiently large that the network tran-

sitions from mostly regular, to mostly random. This is known as the crossover

point p*, and signifies a phase transition in the network. The value of p* is of

interest to physicists, who associate it with phase transitions in materials.

® Average path length declines from an initial ( p = 0) value of n/4k
according to a scaling function f (r), r is 2 times the average

number of rewired links (r = 2pm) (Newman—Moore—VWVatts

expression)
tanh ! (r/B)
G

» 2 ' ”
avg_ path_length(SW) = n& = ltanh_1 r
2k Bk B
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Example

Properties of Small World Network vs Density

-
H * avg_path_length
6,
5. o Cluster Coefficient n= 100, m = 200, k = 2, density = 0.04, and p = 0.04
§4 \ » Entropy r=1(2)0.01)400) =8, B=+/(64+32)=098
g3 8
g , \ ‘// arc__tanh (ﬁ) = 1.15
N 2n 200
AP i — = =10.2
Bk 2(9.8)

0 T T T T T T T T
0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Density % avg_ path_length (SW) = (10.2)(1.15) = 11.7 hops

Figure Properties of small-world network with rewiring probability p = 4%, n = 100,
and 4% < density < 80%; [Note: kn (density /2)].

The Newman—Moore—Watts expression overestimates average path length
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Cluster Coefficient

CC vs. Rewiring Probability

6
O SW100: CC x 10
5 ® SW200: CC x 10
4 & —+—SW100:Newman—-Watts 10 x CC
3 —a—SW:Barrat—Weigt 10 x CC
>
o3 \8\\
L o |
2 |
\i \\—h
1 w r
O

]
= (] g 0O 5?
0 T T T T T T T T e
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Rewiring probability, p

Figure Cluster coefficient of WS small-world versus rewiring probability for n = 100,
200, and m = 200, 400 (A =4, k = 2).

k(k —1
Newman-Watts: CC(k-regular) =3 Kk = l)(+ 8/7/33 el p = rewiring probability
k—1
. oo lar) — 3 e _ o
Barrat-Weigt: CClk-regular) = CCO)1 —py’,  where CCO) =357, k=2.3,...
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Closeness

® Closeness increases with increasing density—up to a
point—and then dips

Closeness(ER, SW) vs. Density
45 S

40

—o—Model(100 ER) \
—— Model(200 ER) \
10

O avg Closeness{100 SW) ~

Avg Closeness x 100

> + avg Closeness(200 SW)

0 T . . ‘

0.0 g1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Density

Figure Average closeness versus density for small worlds of size n = 100, 200, com-
pared with equivalent random networks of the same size.
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Model Approximation

1. Modify the mean-field approximation obtained in the previous
chapter, closeness(random) = O((1 — density)z), to accommodate the impact
of k-regularity on the network, where z= A", A= mean degree, and
r(random) = O(log(n)/ log (A)):

a. Replace (1-density) with density because small worlds increase closeness as
density increases—up to a point (50%),

b. Note that the transformation from small-world to k-regular network occurs
around r = 1.

c. Use the fact that a direct path of length 1 contributes zero closeness because
of the way closeness 1s defined.

2. Estimate curve-fit parameters C, and C», from data points collected by simu-
lation.

closeness(small world, p) = C;(density)z + C>

Aif r>1
Z s
— therwis
> omerwise
Alog, (n — (1 — p)A)
=
log, (A)
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Phase Transition

® Phase transition in the physical world occurs when matter
changes from a solid state to a liquid, from liquid to gas,
and so on

The idea is related to the sudden transition from a 2-
regular to random network as rewiring probability
increases

® Phase transition is a particular property of small worlds
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Phase Transition

Path Length vs Rewiring Probability

160 « SWS500: Path length
140

—e— p=nf(4k*(pm)”™q)
120

—=— Newman et al. Equation
100

avg_path_length(p)

[ ] - 3

0.0% 0.2% 0."40/0 0.6% 0.8% 1.0% 1.2% 1.4% 1.6% 1.8% 2.0%
Rewiring Probability, p

The transition from “mostly vertical” to “mostly horizontal” line in the figure is considered a
phase transition point, and the rewiring probability corresponding
to the transition is considered the crossover point p*
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Phase Transition

Define p* as the point where the slope of the avg_path_length L versus

p equals (—457). This corresponds with a rate of change 6L/ér = —1:
4k
/ — n/.
(r)?
oL | — ng
Sr Qkrat]

Solving for r, we obtain

o (”q) 1/(g+1)
"k

*® r M
= pm, SO p° = —at crossover point
m

. ro ng/m 1/q+1)
P = m 4k
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avg_path_length(p)

Example

Path Length vs Rewiring Probability

160

e SW500: Path length
140

—e— p=nf(4k*(pm)”"~q)
120

—a— Newman et al. Equation
100

80

60 1

40

20

0.0% 0.2% 0.4% 0.6% 0.8% 1.0% 1.2% 1.4% 1.6% 1.8% 2.0%
Rewiring Probability, p

g=1.1/(g+1)=0.75n = 500,m = 1000,and k = 2:

~ng\075 (500(d) "'75_975
' (ﬂ) “ s ) T

. 975 o L
p=—=——=0.00975 = 0.975%
m 1000
Therefore, the crossover point is approximately 1%.
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