
1

Homework	2	Solution	

SPECIAL NOTICE: for binary search tree (including AVL and B-tree) insertion and deletion operations,

the following answers are only recommended. The answers may not be unique since there are many

ways to finish the operations, e.g. deleting an element in a binary search tree is not unique. Different

books could also describe different algorithms for these operations. However, the basic idea remains

the same.

3.2 (2);

(((9 − 2) + 3) ∗ (7 − 1))

60

3.3 (2);

(4 − ((5 ∗ 6) /(7 + 8)))

2

3.5;

Advantage: dynamically change the size of the stack; no need to pre-assign the memory for the stack

Disadvantage: additional space is needed to store the pointers; implementation is more complicated

than the continuous array based implementation

3.9;

Prefix: -**ab+cde

Infix: (((a*b)*(c+d))-e)

Postfix: ab*cd+*e-

3.10;

(1) after insertion, the tree is :

2

(2) after deleting the root twice, the trees are:

3.11;

(1) after insertion, the AVL tree is :

3

(2) after deleting the root twice, the trees are:

3.12 (2);

3.18;

(1) after insertion, the 2-3 tree is:

4

(2) after deleting 0, 9, 1 and 5, the tree are as follows:

4.1 (1) and (2);

open hash table:

0

1 4371

2

3 1323 6173

4 4344

5

6

7

8

9 4199 9679 1989

closed hash table:

0 9679

1 4371

2 1989

3 1323

4 6173

5 4344

6

7

8

9 4199

4.4;

(1) True

(2) False

(3) 3000,007 bits

(4)(5) The problem is not clearly defined.

4.15;

5

1 + 2 + ⋯ + � � �(��)

5.1;

The built trees are as follows, corresponding to (1) and (2):

5.2;

After deleting the minimal value for the above heaps three times, the heaps are listed in the following.

The left is for 5.1 (1); while the right is for 5.1(2).

6

