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2006-07 HARVARD College
2007-08 19 HARVARD College
2008-09 20 HARVARD College
2009-10 21 HARVARD College
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2011-12 23 NYK NBA
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Welp. Looks like I may have been wrong about Lin
ascending to Teflon Don ranks
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Floyd Mayweather I Hope You Watched Jeremy
Hit The Gamewinning 3 Pointer With .005 Seconds
Left.Our Guy Can BALL PLAIN AND
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Jose Calderon's having his way with Lin. Like I
said, don't forget about him. #RTZ

'Data from http://www.basketball-reference.com
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What if machine learning/data mining techniques are applied?
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Pre-requisites Knowledge

Calculus
Linear algebra
Probability theory

Optimization

Geometry
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Introduction Learning Paradigms

“l applied my heart to what | observed
and learned a lesson from what | saw.”

— Proverbs 24:32 (NIV)

“A few observations and much reason-
ing lead to error; many observations and
a little reasoning lead to truth.”

— Alexis Carrel
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Lezyinies Parexligie
Supervised Learning

Learning from labeled observations

Horse

# Given labeled data: £ = {(x;,y;)}’,, x; € RY, y; € {+1}/R
¢ Classification: f (x) — {—1,+1}
¢ Regression: f(x) > R

== 2t =)
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Lezyinies Parexligie
Semi-supervised / Transductive Learning

Learning from labeled and unlabeled observations
Horse Donkey

Unlabeled data

P S, .

# Given data: £, and U = {(x))};, x; € R

® learn f(x) = {-1,+1}

€ Semi-supervised learning: In-class exam

¢ Transductive learning: Take-home exam w
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Lezyinies Parexligie
Unsupervised Learning

Learning patterns from unlabeled observations.

9
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Lezyinies Parexligie
Learning from Universum

Learning from labeled and universum observations
Horse Donkey

# Given data: £, and Uy = {(xk)}L_;, xx €RY
¢ Learn f(x) —» {—1,+1}
@ Criterion: Maximizing contraction on Universum 9

RSt
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Lezyinies Parexligie
Transfer Learning

Transfer knowledge across domains, tasks, and distributions
that are similar but not identical

Task 1: Learn to distinguish horse and donkey

9
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Introduction Learning Paradigms

Summary of Learning Paradigms

] ; :
() =) @ Supervised learning

<‘,:> == Support vector machines (SVM), Lasso,
Ser Labeled i etc.
e = % d}] Data
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Introduction Learning Paradigms

Summary of Learning Paradigms

@ Supervised learning
z Support vector machines (SVM), Lasso,
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Introduction Learning Paradigms

Summary of Learning Paradigms

Leammq

@

@ Supervised learning

Support vector machines (SVM), Lasso,
etc.

@ Semi-supervised/Transductive learning
S3VM, TSVM

@ Learning from universum
Unsupor K Unlabel d} Tss(
2, U-SVM
<‘;> “3’":" ﬂ: Q @ Transfer learning

Multi-task learning
D=@sE
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Introduction Learning Paradigms

Summary of Learning Paradigms

Leammq raining . .
() (=) Supervised learning

e Q:ge ¢p Support vector machines (SVM), Lasso,
@ eE)

‘ etc.
Supervis
Semi-supervised / Transductive learning

@ =@<E ST
@ Learning from universum
) @ d}‘ @ 1.SVM

P &"u":w‘:‘f ﬂ: Q @ Transfer learning
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Applications

@ Pattern recognition

@ Computer vision

Natural language

processing
@ Information retrieval
. . . (@
@ Medical diagnosis
@ Market decisions e e
- . . A‘:“ g
@ Bioinformatics - K
® O g g
o . @8 5 &g 6B
.uoj juj
WA SW/ ;" ] ";
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0 Introduction

@ Regularization Framework
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Supervised Learning Procedure

Data: N i.i.d. paired data sampled from P over X x ) as
D={(xi,yi)}L1, i €XCR?I y cVYCR

Procedure:
Hypotheses H Learning Prediction
find f =>{u = fx)
Training Dataset s.t. yi =~ f(x;), Vi 1

{(Xiayi)}ﬁil

Tasks:

Classification Regression

Haiqin Yang (CUHK) Machine Learning



Regularization

@ Formulation

f* =argmingcy (R[f] + CR%[f])

R[f]: Regularization, complexity of f
R5[f]:  Empirical risk, measured by square, hinge, etc.
C > 0: Trade-off parameter

@ Advantages

o Controlling the functional complexity to avoid overfitting
e Providing an intuitive and principled tool for learning from
high-dimensional data

o Lasso: Perform regression while selecting features
@ SVM: Regularization corresponds to maximum margin

Haiqin Yang (CUHK) Machine Learning June 10, 2012 17 / 134



ReglbiEEien Fameai
Typical Regularizers

Ly Ly Lp (p < 1)
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Introduction Regularization Framework

Typical Loss Functions

0/1-loss Logit loss
0/1 loss Logit loss
2 4
15 3P,
g4 Bl e
- - ‘0"
05 1 o,
E}2 -1 0 1 92 -1 0 1 2
yf(x) yi(x)
Square loss Huber loss
Square Huber (0.5)
1.5
15
1
g g
- -
0.5
0.5
92 -1 0 1 92 -1 0 1 2
y=f(x) y=f(x)

Haiqin Yang (CUHK)

Machine Learning

Hinge loss

Hinge loss

1 2
¥f(x)

e-insensitive loss

e-insensitive (€=0.3)

9
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Introduction Overview

Outline

0 Introduction

@ Overview
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Introduction Overview

Overview

Regularization
a

Sparse in featu

S
( 3C-SVM ) (e ) ((mroc)

Sparse in sample

Sparse learning models under regularization
o Sparse in feature level
e Sparse in sample level

Online learning

Semi-supervised learning

Multiple kernel learning (MKL) g

= S
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Introduction Overview

Sparse in Feature Level

Regularization
Sparse in feature Sparse in sample
il Qe
Grou
Lagso @ 2
T
o Models
Lasso Group Lasso
n}jn L{w)+ A (H (w1, w2) |24 |Jwsll2)
10 )
w3 0
-05-
e
1
f(x) = w*Tx + b*, most elements of w* vanish! @

== it
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Introduction Overview

Sparse in Sample Level

Sparse in leal

)

Regularization

Sparse in sample

o Models

SVM lllustration SVR lllustration

X X

N
f(x) = > arK(x;,x) + b*, most elements of a* vanish! g
i=1
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Outline

e Main Techniques
@ Online Learning for Group Lasso
@ Online Learning for Multi-Task Feature Selection
@ Kernel Introduction
@ Sparse Generalized Multiple Kernel Learning
@ Tri-Class Support Vector Machines
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Outline

e Main Techniques
@ Online Learning for Group Lasso
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(\YETLMES IS Online Learning for Group Lasso

Online Learning for Group Lasso

Regularization

Sparse in featu
S DD
Lasso 7
T
LSVR 3C-SVM GMKL MTOC
o) D
@ H. Yang, Z. Xu, I. King, and M. R. Lyu. Online learning for group lasso. In ICML, pages

1191-1198, 2010.
@ Toolbox: http://appsrv.cse.cuhk.edu.hk/~hqyang/doku.php?id=0LGL

Sparse in sample

=
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\ETLMES IS Online Learning for Group Lasso

A Motivated Example

Data with group structure appear sequentially

9937
s

intron

I

T acceptor
3 exon

How to update the decision function adaptively?

O o O o O
:>/:>
° ° *
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\ETLMES IS Online Learning for Group Lasso

Motivations

@ Applications with group structure

|

N acceptor
3 exon

McAuley et al., 2005 Meier et al., 2008 Harchaoui & Bach, 2007

@ Group features

o Continuous features represented by k-th order expansions

_ 2 k
X1 = X1 = [x1, X{, ..., X{]
o Categorical features represented a group of dummy variables
X2 = Xa = [X21, %02, - - -, X2m]

9
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Online Learning for Group Lasso

@ Problems
e Some features are redundant or irrelevant
e Data come in sequence
o Massive data
@ Related work
o Group lasso and its extensions (Yuan & Lin, 2006; Meier et al., 2008;
Roth & Fischer, 2008; Jacob et al., 2009; etc.)
o Online learning algorithms (Shalev-Shwartz & Singer, 2006; Zinkevich,
2003; Bottou & LeCun, 2003; Langford et al., 2009; Duchi & Singer,
2009; Xiao, 2009)
Batch learned algorithms cannot solve the above problems!
@ Our contributions
A novel online learning framework for the group lasso
Easy implementation: three lines of main codes
Efficient in both time complexity and memory cost, O(d)
Sparsity in both the group level and the individual feature level
Easy extension to group lasso with overlap and graphical lasso @

Haiqin Yang (CUHK) Machine Learning June 10, 2012 26 / 134



Qe (Laarwii o Eraup Lesse
Models

Lasso: A shrinkage and selection method for linear regression
min - [[Xw — Y[ + Afjwllx

Group Lasso: Find important explanatory factors in a grouped manner
_ G
min || Xw — Y2+ X 37 \/dg]|wE]2
g=1
Sparse Group Lasso: Yield sparse solutions in the selected group

G

min [Xw — Y[]2+ X Zl(\/ dg||w8||2 + rg|lwe]|1)
g:

R

Haiqin Yang (CUHK) Machine Learning June 10, 2012 27 / 134
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Formulation Summary

o Model framework

w

N
min ;E(w, z;) + Qx(w)

(-, -): Loss function, e.g., square loss, logit loss, etc.
Q(+): Regularization

o Favorable properties

o Obtain sparse solution
o Perform feature selection and classification/regression simultaneously
e Attain good classification/regression performance

Haiqin Yang (CUHK) Machine Learning June 10, 2012 28 / 134



Online Learning Algorithm Framework for Group Lasso

Initialization: w; = wg, tig = 0

for
t=1,2,3,...

1. Compute the on we, us € 0y
average subgradient '
2. Calculate the U

= t—1 = 1
Up = —— g1+ FUt

Update
3. the next iteration wyy1:

= inT(w) 2 {6/ w+Q ~h
Wit argwmm (w) {ut w+ )‘(W)+\/E (w)}

end for

Motivated by the dual averaging method for Lasso (Xiao, 2009)

FOBOS (Duchi & Singer, 2009): w11 =arg minw{%wa(wtfr]tut)||2+nt§2(w)}

o

@ h(w): Make the new search point in the vincinity

o

@ Overlapped groups or graphical lasso @
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Qe (Laarwii o Eraup Lesse
Updating Rules for Online Group Lasso

® Group Lasso: Qx(w) =AY 7 \/dg|[wé]|2, h(w) = 1]|wl]?

- NG Aﬁ —

Efficiency: O(d) in memory cost and time complexity g
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Qe (Laarwii o Eraup Lesse
Updating Rules for Online Group Lasso

@ Group Lasso: Q,(w) )\Zg 1V dg|WE||2, h(w) = L[|lw]]?

A —
ot 3] 7

@ Sparse Group Lasso: Q) ,(w) = /\ZgG:1 (\/dg|lwel2 + rg||we]|l1),
h(w) = 3|lw]?

A/ d, _ej
[wfﬂ = - [1 pﬂ j B = [[a] — Arg| - sign (a)
+

Efficiency: O(d) in memory cost and time complexity g
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Qe (Laarwii o Eraup Lesse
Updating Rules for Online Group Lasso

@ Group Lasso: Q,(w) )\Zg 1V dg|WE||2, h(w) = L[|lw]]?

A —
ot 3] 7

@ Sparse Group Lasso: Q) (w) = )\Zgzl (1/dg||W&]2 + rg||wE]l1),
h(w) = 3|lw]?

[wfﬂzﬁ - Qﬂ j 7 = [1989] ~ v - sigm (@)

@ Enhanced Sparse Group Lasso:

G
Qar(w) = A3, (Velwelz + relwé 1), h(w) = 3[lw* + pllwl;

[wfﬂ =-& [1 - |ﬂ c] ey = [|a8] — A — 28] - sign (&)
+

Efficiency: O(d) in memory cost and time complexity u@

llllll
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Qiftie eari 2 Eaup lesse
Average Regret for Group Lasso

@ Definition

(Qa(we) + fe(we)) — S7(w)

;( A(w) + fr(w))

Py}
=
z

I
-
M=

~+

9
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Average Regret for Group Lasso

@ Definition

@ Theoretical bounds

Rr ~O(1/VT)
Rt ~ O(log(T)/T) if h(-) is strongly convex

llllll
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Summary

A novel online learning algorithm framework for group lasso

o

@ Apply this framework for variant group lasso models
@ Provide closed-form solutions to update the models
o

Provide the convergence rate of the average regret

Evaluate on more datasets and compare with more other online
frameworks

Study lazy update schemes to handle high-dimensional data

Derive a faster convergence rate for the online learning algorithm

Haiqin Yang (CUHK) Machine Learning June 10, 2012 32 /134
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Outline

e Main Techniques

@ Online Learning for Multi-Task Feature Selection
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(VETL SIS Online Learning for Multi-Task Feature Selection

Online Learning for Multi-Task Feature Selection

Regularization

Sparse in sample

Sparse in feature

(m (scswm ) ( GI\ZKL‘)( MTOC )

OLMTFS

( oLGL )

@ H. Yang, I. King, and M. R. Lyu. Online learning for multi-task feature selection. In
CIKM2010, pages 1693-1696, 2010.
@ Toolbox: http://appsrv.cse.cuhk.edu.hk/~hqyang/doku.php?id=0LMTFS

9
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Online Learning for Multi-Task Feature Selection
An Example of Multi-Task Learning

Given several similar, but not identical tasks

Task 1: Learn to recognize real horses
" ; S

How to learn these tasks simultaneously to achieve better performance?

9
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Online Learning for Multi-Task Feature Selection
Why Multi-Task Feature Selection?

@ Observation I: Training data are limited for each task

== VEx\ S
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Online Learning for Multi-Task Feature Selection
Why Multi-Task Feature Selection?

@ Observation I: Training data are limited for each task

@ Observation Il: Related tasks contain helpful information
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Online Learning for Multi-Task Feature Selection
Why Multi-Task Feature Selection?

@ Observation I: Training data are limited for each task

@ Observation Il: Related tasks contain helpful information

o Gene selection from microarray data in related diseases
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Online Learning for Multi-Task Feature Selection
Why Multi-Task Feature Selection?

@ Observation I: Training data are limited for each task

@ Observation Il: Related tasks contain helpful information

o Gene selection from microarray data in related diseases
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\VEIINESONIGIE  Online Learning for Multi-Task Feature Selection

Why Multi-Task Feature Selection?

@ Observation I: Training data are limited for each task

@ Observation Il: Related tasks contain helpful information

o Gene selection from microarray data in related diseases

¢ Variables: Gene expression coefficients corresponding to the amount
of mRNA in a patient’s sample (e.g., tissue biopsy)

@ Tasks: Distinguish healthy from unhealthy for different diseases

¢ Problems: few samples (< 100's), large variables (>1000's)

June 10, 2012 35 /134
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(\VETIMESNIGIES  Online Learning for Multi-Task Feature Selection

Why Multi-Task Feature Selection?

@ Observation I: Training data are limited for each task

@ Observation Il: Related tasks contain helpful information

o Gene selection from microarray data in related diseases

¢ Variables: Gene expression coefficients corresponding to the amount
of mRNA in a patient’s sample (e.g., tissue biopsy)

@ Tasks: Distinguish healthy from unhealthy for different diseases
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(\VETIMESNIGIES  Online Learning for Multi-Task Feature Selection

Why Multi-Task Feature Selection?

@ Observation I: Training data are limited for each task

@ Observation Il: Related tasks contain helpful information

o Gene selection from microarray data in related diseases

¢ Variables: Gene expression coefficients corresponding to the amount
of mRNA in a patient’s sample (e.g., tissue biopsy)

¢ Tasks: Distinguish healthy from unhealthy for different diseases

¢ Problems: few samples (< 100's), large variables (>1000's)

o Text categorization from documents in multiple related categories

@ Features: A vector of vocabulary on word frequency counts

4 Vocabulary: > 10000's words

¢ Tasks: 1) Detecting spam-emails from persons with same interests;
2) Automatic classifying related web page categories

@ Observation Ill: Redundant/irrelevant features exist

Learning multiple tasks simultaneously CAN improve the model performance! @

I ity
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Online Learning for Multi-Task Feature Selection
Problems and Contributions

@ Problems
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Online Learning for Multi-Task Feature Selection
Problems and Contributions

@ Problems

4 Features among tasks are redundant or irrelevant
4 Data come in sequence
¢ Massive data
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(VETL SIS Online Learning for Multi-Task Feature Selection

Problems and Contributions

@ Problems

4 Features among tasks are redundant or irrelevant
4 Data come in sequence
¢ Massive data

@ Related work
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¢ Massive data
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Online Learning for Multi-Task Feature Selection
Problems and Contributions

@ Problems

4 Features among tasks are redundant or irrelevant
4 Data come in sequence
¢ Massive data

@ Related work

¢ A generalized Lj-norm single-task regularization (Argyriou et al. 2008)
¢ Mixed norms of Ly, Ly, and L, norms (Obozinski et al. 2009)

¢ Nesterov's method on MTFS (Liu et al. 2009)

¢ L, o-regularization based on MIC (Dhillon et al. 2009)
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Online Learning for Multi-Task Feature Selection
Problems and Contributions

@ Problems

4 Features among tasks are redundant or irrelevant
4 Data come in sequence
¢ Massive data

@ Related work

¢ A generalized Lj-norm single-task regularization (Argyriou et al. 2008)
¢ Mixed norms of Ly, Ly, and L, norms (Obozinski et al. 2009)

¢ Nesterov's method on MTFS (Liu et al. 2009)

¢ L, o-regularization based on MIC (Dhillon et al. 2009)

Batch trained algorithms CANNQOT solve the above problems!
@ Our contributions
¢ A novel online learning framework for multi-task feature selection
4 Easy implementation: three lines of main codes
4 Efficient in both time complexity and memory cost, O(d x Q)
4 Find important features and important tasks that dominate the features
4 Easily extend to nonlinear models @
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Idea lllustration
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Online Learning for Multi-Task Feature Selection
Multi-Task Feature Selection

o Data

i.i.d. observations of D = Ug):l Dy
D, ={z] = (x?,yﬁ)}?ﬁl sampled from Py, g =1,...,Q
x € R7%input variable, y € R-response

.n,miiEu :
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Multi-Task Feature Selection

o Data
i.i.d. observations of D = U3:1 Dq
D, ={z] = (x?,y,.q)},’.\gl sampled from Py, g =1,...,Q
x € R%input variable, y € R-response

o Model

[fq(x):qux, qzl,...,Q]

llllll

Haiqin Yang (CUHK) Machine Learning June 10, 2012 39 /134



Online Learning for Multi-Task Feature Selection
Multi-Task Feature Selection

o Data
i.i.d. observations of D = U3:1 Dq
D, ={z] = (x?,y,.q)},’.\gl sampled from Py, g =1,...,Q
x € R%input variable, y € R-response

o Model

[fq(x):qux, q:1,.--,QJ

@ Objective

Q N,
min 3 A S 09(Wag, 29) + (W)
W =1 731

W = (wl,w2,...,wo) = (We1,...,W,q) = (WI,,...,W;.)T

llllll
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Online Learning for Multi-Task Feature Selection
Multi-Task Feature Selection

@ Different regularization achieves different properties

@ Regularization

IMTFS: Q\(W) =AY & [Wagll, =AY, [WL,

iMTFS aMTFS MTFTS
x 0 0 x x X X X X X x 0 x x O
0 x x x 0 0 0 0 0 O 0O 0 0 0 O
x 0 x x x X X X X X 0 x 0 x x
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Online Learning for Multi-Task Feature Selection
Multi-Task Feature Selection

@ Different regularization achieves different properties

@ Regularization

IMTES: Q\ (W) = A9 [Wagll, = A WL

aMTFS: Q,\(W) = )\27:1 Wil

MTETS: 05, = A5 (5 WL, + [WEIL)

iMTFS aMTFS MTFTS
x 0 0 x x X X X X X x 0 x x O
0 x x x 0 0 0 0 0 O 0O 0 0 0 O
x 0 x x x X X X X X 0 x 0 x x
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Online Learning Algorithm Framework for MTFS

Initialization: W; = Wy, Go = 0
for
t=1,2,3,...

1. Compute the on Wy, G € 0t
average subgradient ' _
2. Calculate the Ge:

G = %Ct—l + %Gt

Update
3. the next iteration Wy yq:

W, 1 = argminT(W) = {GTWJrQ(W W)}
w

end for

@ W: a matrix, not a vector

@ Easily extend to non-linear case

@ Motivated by the success of dual averaging method (Xiao, 2009; Yang et al. 2010)
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Online Learning for Multi-Task Feature Selection
Updating Rules for Online MTFS

Define: h(W) = 1||W|2
@ iIMTFS: Fori=1,...,dand g=1,...,Q,

Efficiency: O(d x Q) in memory cost and time complexity 9
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Online Learning for Multi-Task Feature Selection
Updating Rules for Online MTFS

Define: h(W) = 1||W|2

® iIMTFS: Fori=1,...,dandg=1,...,Q,
(We)ess = =L (1G] = ], -sign (G )

@ aMTFS: Forj=1,....d,

[(Wjo)Hl =-4 {1 a mL ' (Gj.)t]

Efficiency: O(d x Q) in memory cost and time complexity 9
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Online Learning for Multi-Task Feature Selection
Updating Rules for Online MTFS

Define: h(W) = 1||W|2
® iIMTFS: Fori=1,...,dandg=1,...,Q,
(We)ess = =L (1G] = ], -sign (G )

® aMTFS: Forj=1,...,d,
; — NVt _ 2 | (G
[(Wf')f“_ 7 [1 H(GJ.):uzL ( f')fj

@ MTFTS: Forj=1,....d,

[(Wjo)t-‘rl - 7% [1 - H(UJ).\)rH2:|+ ! (010)1“]

where the g-th element of (U}, ), is calculated by
(Uig)e = [I(Grg)el = Arj] - sign ((Giq)e), a=1,....Q.
Efficiency: O(d x Q) in memory cost and time complexity “@

llllll
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(VETL SIS Online Learning for Multi-Task Feature Selection

Average Regret for MTFS

@ Definition
Rr(W) = & f;’:”ztl(m(wwt( e)) — ST(W)
Sr(W) == min 532 L5 QW) + (W)

.n,miiEu :
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Online Learning for Multi-Task Feature Selection
Average Regret for MTFS

@ Definition
Rr(W) = $X81 73010 (W) + l(Wy)) — Sr(W)
ST(W) 1= min X qls + Lt (W) + (W)

@ Theoretical bounds

Ry ~O(1/VT)
Rt ~ O(log(T)/T) if h(-) is strongly convex
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Online Learning for Multi-Task Feature Selection
Experimental Setup for Online MTFS

@ Data
% Computer survey data

@ Comparison algorithms

* iIMTFS
* aMTFS
* DA-IMTFS
* DA-aMTFS
* DA-MTFTS

@ Platform
% PC with 2.13 GHz dual-core CPU
% Batch-mode algorithms: Matlab
% Online-mode algorithms: Matlab

llllll
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Conjoint Analysis

@ Description

e Objective: Predict rating by estimating respondents’ partworths

vectors
o Data: Ratings on personal computers of 180 students for 20 different
PC, Q =180

o Features: Telephone hot line (TE), amount of memory (RAM), screen
size (SC), CPU speed (CPU), hard disk (HD), CDROM/multimedia
(CD), cache (CA), color (CO), availability (AV), warranty (WA),
software (SW), guarantee (GU) and price (PR); d = 14

@ Setup

o Evaluation: Root mean square errors (RMSEs)
e Loss: Square loss
o Parameters setting: Cross validation (hierarchical and grid search)
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(\VETIMESNIGIES  Online Learning for Multi-Task Feature Selection

Conjoint Analysis Results

@ Learning partworths vectors across respondents can help to improve
the performance

@ Online learning algorithms attain nearly the same accuracies as
batch-trained algorithms

Method RMSEs | NNZs Parameters
aMTEFS 1.82 2148 A=1445

iIMTFS 1.91 789 A=3
DA-aMTFS 2.04 540 A =20.0,v =0.9, ep=1
DA-aMTFS 1.83 1800 A=5,v=0.9, ep=20
DA-IMTFS 2.43 199 A=2.0,7=2.0, ep=1
DA-IMTFS 1.92 662 A=0.5,y=1.0, ep=20
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(VETL SIS Online Learning for Multi-Task Feature Selection

Effect of A and ~

€ NNZs decreases as \ increases
€ NNZs increases as 7y increases

@

e IMTFS (=3)

-+ -aMTFS (\=44.5)
DA-IMTFS (5=1)

—=—DA-aMTFS (y=0.9)

a A DA-MTFTS (y=0.95)|
25
&
2)
1
81 05 1 5 10 20
A
2.
e IMTFS (A=3)
- +-aMTFS (\=44.5)
2.4 DA-IMTFS (A=0.5)
—=— DA-aMTFS (=5)
A DA-MTFTS (A=5)

1gE==F==
085 09 095 1 2 3 4 5
v

Haiqin Yang (CUHK)
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- + - aMTFS (=44.5)
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A DA-MTFTS (4=0.95)|

1 05 1 5 10 20

e IMTFS (=3)
_{-*-aMTFs (1=44.5)
DA-IMTFS (1=0.5),
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Learned Features

@ Features learned from the online algorithms are consistent to
those learned from the batch-trained algorithm

4 Ratings are strongly negative to the price and positive to the RAM,
the CPU speed, CDROM, etc.

o
E RAM SC CPU HD CD CA CO AV WA SW GU PR TE RAM SC CPU AD CD CA CO AV WA SW GU PR TE RAM SC CPU HD CD CA CO AV WA SW GU PR

aMTFS DA-aMTFS DA-MTFTS
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Summary

@ A novel online learning algorithm framework for multi-task feature
selection

Apply this framework for variant multi-task feature selection models
Provide closed-form solutions to update the models

Provide the convergence rate of the average regret

Experimental results demonstrate the proposed algorithms in both
efficiency and effectiveness

llllll
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Main Techniques Kernel Introduction

Outline

e Main Techniques

@ Kernel Introduction
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Main Techniques Kernel Introduction

How to Define Data Similarity?

==t
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What are Kernels?
@ Similarity defined in original space: x/x;

@ Similarity defined in kernel space: K(x;,x;) = ¢(x;)7 d(x;)

Original space Mapping 2D space
x.’ L]
:> L L]
0 x °
¢ L]
[ ] ° °®
0 X
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What are Kernels?

@ Similarity defined in original space: x/x;

@ Similarity defined in kernel space: K(x;,x;) = ¢(x;)7 d(x;)
Original space Mapping 2D space

x2

=

0
From RBF kernel
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Main Techniques Kernel Introduction

The Kernel Trick: An Example

@ Suppose the vectors x = [x1; xo] € R?
o Let K(x;,x;) = (1 +x/x/)?
o Question: Show ¢(x), such that K(x;,x;) = é(x;) T ¢(x;)

llllll

Haiqin Yang (CUHK) Machine Learning June 10, 2012 52 /134



Main Techniques Kernel Introduction

The Kernel Trick: An Example
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The Kernel Trick: An Example

@ Suppose the vectors x = [x1; xo] € R?
o Let K(x;,x;) = (1 +x/x/)?
o Question: Show ¢(x), such that K(x;,x;) = é(x;) T ¢(x;)

K(xi,x) = (1+x]x)?

_ 2.2 2 .2
= 14 x7x7 + 2Xnx1Xj2Xj2 + XX + 2Xi1Xj1 + 2Xj2Xj2
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The Kernel Trick: An Example

@ Suppose the vectors x = [x1; xo] € R?
o Let K(x;,x;) = (1 +x/x/)?
o Question: Show ¢(x), such that K(x;,x;) = é(x;) T ¢(x;)

Cxl) — Ty )2
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The Kernel Trick: An Example
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The Kernel Trick: An Example

@ Suppose the vectors x = [x1; xo] € R?
o Let K(x;,x;) = (1 +x/x/)?
o Question: Show ¢(x), such that K(x;,x;) = é(x;) T ¢(x;)

Cxl) — Ty )2
K(xi,x;) = (1+x/x)

= 14 xZx% + 2x1X1X2Xi2 + X3X3 + 2x;1%1 + 2Xj2X;

- 171 i1Xj1Xj2X)2 272 i1%j1 i2%j2

= (1 X% V2xiaxi2i x5 V2xi1; V2xia] T
X[ XA V2xiux2i xhi V2xj1; V23]

= o(xi)To(x)
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The Kernel Trick: An Example

@ Suppose the vectors x = [x1; xo] € R?
o Let K(x;,x;) = (1 +x/x/)?
o Question: Show ¢(x), such that K(x;,x;) = é(x;) T ¢(x;)

Cxl) — Ty )2
K(xi,x;) = (1+x/x)

= 14 xZx% + 2x1X1X2Xi2 + X3X3 + 2x;1%1 + 2Xj2X;

- 171 i1Xj1Xj2X)2 272 i1%j1 i2%j2

= (1 X% V2xiaxi2i x5 V2xi1; V2xia] T
X[ XA V2xiux2i xhi V2xj1; V23]

= o(xi) o(x))
where ¢(x) = [1; x; V2x1x0; x3; V/2x1; V/2x0] € R®
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What Functions are Kernels?

@ Functions that satisfy Mercer's condition can be kernel functions.
That is

V square integrable functions g(x), // K(x,y)g(x)g(y)dxdy >0

@ Examples of typical kernel functions:
o Linear kernel: K(x;,x;) = x/x;
o Polynomial kernel: K(x;,x;) = (1 + x/x;)P
o Gaussian/Radial-Basis Function (RBF) kernel:

K(xi,x;) = exp(—7[xi — ;%)
e Hyperbolic tangent:
K(x;,x;) = tanh(kx; x; + c), for some & >0, and ¢ <0

llllll
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Main Techniques Kernel Introduction

What is the relation between Kernel and SVM?

llllll
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Main Techniques Kernel Introduction

SVM-Maximum Margin Linear Classifier

o +1
o -1
Margin

Xz

@ A linear classifier with the
maximum margin

"safe zone"

@ Margin is defined as the width
that the boundary could be
increased by before hitting a
data point

@ Why it is the best?

o Robust to outliers
e Strong generalization ability

X4

==t
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Main Techniques Kernel Introduction

SVM-Maximum Margin Linear Classifier

.+1

o -1

e Given data, D = {x;, i}V,
where x; € RY, y; € {—1,+1}

For y; = +1, wa,- +b>0
For y; = —1, wixi+b<0

@ Scaling on both w and b yields

For y; = +1, wa,- +b>1
For y; = —1, wa,-+b§ -1

==t
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Main Techniques Kernel Introduction

SVM-Maximum Margin Linear Classifier

@ Support vectors: Data points
closest to the hyperplane

@ Support vectors satisfy

wixt+b = 1
wix +b = -1

@ The margin width is

M = (xt—x7)'n
w
- )T
[lw
_ 2
[[w]]

9

== 2t =)
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Main Techniques Kernel Introduction

SVM-Maximum Margin Linear Classifier

@ Formulation

max
w
such that
For y; = +1,
For y; = —1,

9

[== 2t =2
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SVM-Maximum Margin Linear Classifier

@ Formulation

min
w

st. yi(wx;+b)>1

Haiqin Yang (CUHK)

Main Techniques Kernel Introduction

1
Slw]?

i=1,...,N

Machine Learning

June 10, 2012

9

== 2t =)
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Main Techniques Kernel Introduction

How to Solve the Optimization Problem?

@ Quadratic programming with linear constraints

= miiEN :
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Main Techniques Kernel Introduction

How to Solve the Optimization Problem?

@ Quadratic programming with linear constraints

min  5|lwl?

w
st. yiwxj+b)>1, i=1,...,N

@ Lagrangian multipliers

N

min  L(w,b,a) = 3[|w|?2 = > a; (yi(w x; + b) — 1)
i=1

st. a>0
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How to Solve the Optimization Problem?

@ Quadratic programming with linear constraints

min 3| lw|?

w
st. yiwxj+b)>1, i=1,...,N

@ Lagrangian multipliers

N

min  L(w,b,a) = 3[|w|Z2 =3 a; (yi(w x; + b) — 1)
i=1

st. a>0

@ Optimal condition

¢ N

G =0 = w=>"" ajyx
N

=0 = Zi:l ajyi =0 @
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Main Techniques Kernel Introduction

How to Solve the Optimization Problem?

o Lagrangian multipliers

N

min  L(w,b,a) = 3||w|?2 = > a; (yi(wTx; + b) — 1)
i=1

st. a>0

9
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How to Solve the Optimization Problem?

o Lagrangian multipliers

N

min  L(w,b,a) = 3w|?> = 3 a; (yi(wTx; + b) — 1)
i=1

st. a>0

@ Dual problem

N N
max > o — i > 2 aiajyiyix] x;

st. a>0,and Y ajyi=0
i=1
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Main Techniques Kernel Introduction

SVM Solution

o KKT conditions are

ai (yi(wTxi+b)—1) =0, i=1,....N
@ Support vectors: «o; # 0
@ The solution is

N

W= oiyiXi = Y. uYkXk
=1 kESV

Extract b from
o (}/k(WTXk +b)—1) =0,
where k € SV

9

== it
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SVM Solution

@ The linear classifier is

f(x)=w'x+b= Z aix] x4 b
icsv
@ The score is decided by the dot product between the test point x and
the support vectors x;

@ It is noticed that solving the optimization problem also involved
computing the dot products x,-ij between all pairs of training data
points
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SVM-Non-separable Case

o +1
Xy o -1
e What if data is not linear e o °
separable? (noisy data, outlier, °
etc.)

@ Slack variables &; are introduced
to allow misclassification on
difficult or noisy data points

X

llllll
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SVM-Non-separable Case

@ Formulation

min  3w|?+C Z i

s.t. YI(W x,+b) > 1-¢&
&E>0,i=1,...,N

@ Parameter C is to balance the margin and the errors, which can be
also viewed as a way to control over-fitting.
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SVM-Non-separable Case

@ Formulation—-Lagrangian dual problem

N N N
max Y. «a; — % e oz,-ozjy,-ijlTXj
o i=1 i=1j=1
s.t. 0<a<Cly,
N

aiyi=0
1

1

@ How to seek the optimal o 7

e Convexity: The optimization is convex; every local optimal is the global
optimall!
e Optimization techniques: Sequential minimal optimization (SMO), etc.
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Main Techniques Kernel Introduction

Non-linear SVMs

o Datasets that are linearly separable with noise work out great:

@ But what are we going to do if the dataset is just too hard?
0 X

@ How about mapping data to a higher-dimensional space:

llllll
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Non-linear SVMs: Feature Space

@ ldea: Make the data separable by mapping it to a

(higher-dimensional) feature space

-, e
; o
4 ™ o
{ o
° [ ] L @ o
HEE ) i -
e *
L . ;
o\ g
s, = &
., @ P
o
P o °
®
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Non-linear SVMs: The Kernel Trick

o With the mapping, the discriminant function becomes

g(x) =w'¢(x) + b= Z ajid(xi) " p(x)|+ b

ieSv

@ Only the dot product of feature vectors are needed. No need to know
the mapping explicitly.

@ A kernel function is defined as a function that corresponds to a dot
product of two feature vectors in some expanded feature space:

K(xi,x7) = d(xi) " d(x;)

Haigin Yang (CUHK Machine Learning June 10, 2012 69 / 134
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Non-linear SVMs: Optimization

@ Formulation-Lagrangian Dual problem

N
mcfx z:lai 22 ZO‘O‘JYIyJ (xiaxj)
=

i=1j=
st. 0<a<Cly,

N
Yoaiyi=0
i=1

@ The solution of the discriminant function is
= Z Oz,'K(X,',X) +b
iesv

@ The optimization technique is the same as the linear SVM
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Main Techniques Kernel Introduction

Non-linear SVMs—QOverview

@ SVM seeks a separating hyperplane in the feature space and classify
points in that space

@ It does not need to represent the space explicitly, simply by defining a
kernel function

@ The kernel function plays the role of the dot product (similarity
measurement) in the feature space

llllll
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Properties of SVM

Flexibility in choosing a similarity function

Sparseness of solution
e Only support vectors are used to specify the separating hyperplane

Ability to handle large feature spaces
o Complexity does not depend on the dimensionality of the feature space

Overfitting can be controlled by soft margin approach

@ Nice math property: a simple convex optimization problem which is
guaranteed to converge to a single global solution
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Main Techniques Kernel Introduction

Packages

@ LibSVM: A Library for Support Vector Machines

e An integrated software for SVM; core codes are written in C4++
o Implementation includes: C-SVC, v-SVC, e-SVR, v-SVR, one-class
SVM, multi-class classification

o Link: http://www.csie.ntu.edu.tw/~cjlin/libsvm/
e R package:

http://cran.r-project.org/web/packages/e1071/index.html
e SVMlight

e An SVM package in C
o Link: http://svmlight.joachims.org/
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Main Techniques Kernel Introduction

R Packages for SVM

@ Link http://cran.r-project.org/web/packages/e1071/index.html

llllll
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An Example

> # load library, class, a dependence for the SVM library
> library(class)

> # load library, SVM
> library(e1071)

> # load library, mlbench, a collection of some datasets from the UCI repository
> library(mlbench)

> # load data
> data(Glass, package = "mlbench")

> # get the index of all data
> index <- 1l:nrow(Glass)

> # generate test index
> testindex <- sample(index, trunc(length(index)/3))

> # generate test set
> testset <- Glass[testindex, ]

> # generate trainin set .
> trainset <- Glass[-testindex, ] @
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An Example (2)

> # train svm on the training set

> # cost=100: the penalizing parameter for C-classication

> # gamma=1: the radial basis function-specific kernel parameter

> # Output values include SV, index, coefs, rho, sigma, probA, probB
> svm.model <- svm(Type~ ., data = trainset, cost = 100, gamma = 1)

> # show output coefficients
> svm.model$coefs

> # generate a scatter plot of the data

> # of a svm fit for classification model

> # in two dimensions: RI and Na true

> plot(svm.model, trainset, RI"Na) pred 1 235617
1 16 31010

> # a vector of predicted values, 2 7233321

> # for classification: a vector of labels 3 0 11000

> svm.pred <- predict(svm.model, testset[, -10]) 5 0 00200
6 0 00010

> # a cross-tabulation of the true 7 0O 00O0O0G©G6

> # versus the predicted values
> table(pred = svm.pred, true = testset[, 10]) @

I ity
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Main Techniques Kernel Introduction

SVM Plot Figure

SVM classification plot
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Sigarse Gamereileed Wil e e
Outline

e Main Techniques

@ Sparse Generalized Multiple Kernel Learning

9

== 2t
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(\ETLMES IS Sparse Generalized Multiple Kernel Learning

Sparse Generalized Multiple Kernel Learning

Regularization

Sparse in feature
<> D
<> S

| e
v 5
(sve ) | (acswi ) (Cemre ) (mroc )
@ H. Yang, Z. Xu, J. Ye, I. King, and M. R. Lyu. Efficient sparse generalized multiple kernel

learning. IEEE Transactions on Neural Networks, 22(3):433-446, March 2011.
@ Toolbox: http://appsrv.cse.cuhk.edu.hk/~hgyang/doku.php?id=GMKL

Sparse in sample

=
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Sparse Generalized Multiple Kernel Learning
How to Measure Data Similarity More Accurately?

Labeled: Horse Labeled: Donkey

e Data characteristics

e Multi-source
o Heterogeneous

9

[== 2t =2
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Sparse Generalized Multiple Kernel Learning
Why Multiple Kernel Learning?

Harchaoui & Bach, 2007 Zien & Ong, 2007

@ Applications: Multi-source data fusion (web classification, genome
fusion); Image annotation; Text mining; etc.

== VEx\ S
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Sparse Generalized Multiple Kernel Learning
Why Multiple Kernel Learning?

Harchaoui & Bach, 2007 Zien & Ong, 2007

@ Applications: Multi-source data fusion (web classification, genome
fusion); Image annotation; Text mining; etc.

@ Characteristics: Complex tasks; Heterogenous—various medias (text,
images, etc.); Huge data

9
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(\ETLMES IS Sparse Generalized Multiple Kernel Learning

Why Multiple Kernel Learning?

Harchaoui & Bach, 2007 Zien & Ong, 2007
@ Applications: Multi-source data fusion (web classification, genome
fusion); Image annotation; Text mining; etc.

@ Characteristics: Complex tasks; Heterogenous—various medias (text,
images, etc.); Huge data

@ Solution: Kernel methods=-Multiple kernels learning

‘quu.
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(\ETLMES IS Sparse Generalized Multiple Kernel Learning

Why Multiple Kernel Learning?

Harchaoui & Bach, 2007 Zien & Ong, 2007

@ Applications: Multi-source data fusion (web classification, genome
fusion); Image annotation; Text mining; etc.

@ Characteristics: Complex tasks; Heterogenous—various medias (text,
images, etc.); Huge data
@ Solution: Kernel methods=-Multiple kernels learning

e Learning combinations of kernels: K = (?:1 0qKq, 05 >0
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(\ETLMES IS Sparse Generalized Multiple Kernel Learning

Why Multiple Kernel Learning?

Harchaoui & Bach, 2007 Zien & Ong, 2007

@ Applications: Multi-source data fusion (web classification, genome
fusion); Image annotation; Text mining; etc.

@ Characteristics: Complex tasks; Heterogenous—various medias (text,
images, etc.); Huge data
@ Solution: Kernel methods=-Multiple kernels learning
e Learning combinations of kernels: K = 23:1 0qKq, 05 >0

@ Summing kernels corresponds to concatenating feature spaces
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(\ETLMES IS Sparse Generalized Multiple Kernel Learning

Why Multiple Kernel Learning?

Harchaoui & Bach, 2007 Zien & Ong, 2007

@ Applications: Multi-source data fusion (web classification, genome
fusion); Image annotation; Text mining; etc.

@ Characteristics: Complex tasks; Heterogenous—various medias (text,
images, etc.); Huge data
@ Solution: Kernel methods=-Multiple kernels learning
e Learning combinations of kernels: K = 23:1 0qKq, 05 >0

@ Summing kernels corresponds to concatenating feature spaces
o E.g, ki(z1,22) = (¢1(21), 91(22)), ka(2z1,22) = (¢2(21), P2(22))
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(\ETLMES IS Sparse Generalized Multiple Kernel Learning

Why Multiple Kernel Learning?

Harchaoui & Bach, 2007 Zien & Ong, 2007

@ Applications: Multi-source data fusion (web classification, genome
fusion); Image annotation; Text mining; etc.

@ Characteristics: Complex tasks; Heterogenous—various medias (text,
images, etc.); Huge data
@ Solution: Kernel methods=-Multiple kernels learning
e Learning combinations of kernels: K = 23:1 0qKq, 05 >0

@ Summing kernels corresponds to concatenating feature spaces

o Eg, ki(z1,22) = (¢1(21), $1(22)), ka(21,22) = (¢2(21), P2(22))

9

==

Haiqin Yang (CUHK) Machine Learning June 10, 2012 80 / 134



(\ETLMES IS Sparse Generalized Multiple Kernel Learning

Why Multiple Kernel Learning?

Harchaoui & Bach, 2007 Zien & Ong, 2007

@ Applications: Multi-source data fusion (web classification, genome
fusion); Image annotation; Text mining; etc.

@ Characteristics: Complex tasks; Heterogenous—various medias (text,
images, etc.); Huge data

@ Solution: Kernel methods=-Multiple kernels learning

e Learning combinations of kernels: K = 3:1 0qKq, 05 >0

@ Summing kernels corresponds to concatenating feature spaces

o Eg, ki(z1,22) = (¢1(21), $1(22)), ka(21,22) = (¢2(21), P2(22))
e reme)=((20)).(50)) g

llllll
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Sparse Generalized Multiple Kernel Learning
MKL-Related Work

@ Formulation: Learning combinations of kernels

o L1-MKL (Bach et al. 2004; Lanckriet et al. 2004, etc.): |||0|; <1
o L,-MKL, L,-MKL (Cortes et al. 2009; Kloft et al. 2010; Xu et al.
2010; etc.): | |6, <1,p#1

@ Speedup methods

Semi-Definite Programming (SDP) (Lanckriet et al. 2004)
Second-Order Cone Programming (SOCP) (Bach et al. 2004)
Semi-Infinite Linear Program (SILP) (Sonnenburg et al. 2006)
Subgradient method (Rakotomamonjy et al. 2008)

Level method (Xu et al. 2009; Liu et al. 2009) g
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Sparse Generalized Multiple Kernel Learning
Problems and Our Contributions

@ Properties and problems
o L1-MKL yields sparse solutions, but discard some useful information
o L,-MKL (p > 1) yields non-sparse solutions, but prone to noise

@ Contributions

o Generalize [1-MKL and L,-MKL
o Theoretical analysis on the properties of grouping effect and sparsity
e Solved by the level method

llllll
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Our Generalized MKL

@ Formulation

Q
min max D(0,a) =1ja— J(aoy)’ (El HqKq> (aoy)
0=

0cO acA
©={0cRY:v|0]1+(1—Vv)0]5 <1}, (p=2)
A={acRY a'y=0 a< Cly}
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(\VEILM IS IS Sparse Generalized Multiple Kernel Learning

Properties

6>0

where D0, a) =1} —

o v[|o*]l1 + (1 - v)[|*]3 = 1

o For K,': o

min  D(0,a) + A (v]6lls + (1 - V)[6]3)
Yaoy) (T

Q, quq) (aoy)

v#1 07 =max {0, ﬁ (%(a oy) ' Ky(aoy) — v)} Sparsity
v=1 0;and 0; are not unique

(a*oy) TKj(a*oy) ~ ;
W ~1= 97 ~ 91* Grouplng effect
L;-MKL|L,-MKL|GMKL |Lasso|Elastic net|Group Lasso
Sparsity v X v v v v
Non-linearity| v v v X X X
Grouping X v v X v X

Haiqin Yang (CUHK)

Machine Learning

June 10, 2012
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(\VETIIMESNIGISI  Sparse Generalized Multiple Kernel Learning

Algorithm—Level Method

Given: predefined tolerant error § > 0
Initialization: Let t =0 and 6° = clg;
Repeat

1. Solve the | dual problem | of an SVM

with 23:1 05Kq to get o;
2. Construct the model,
ht(0) = D(6,a');
(6) max, (6,a')

3. Calculate the | lower bound | and the

upper bound | of the cutting plane
Dt = min ht(8), D' = min D(O', a')
0co 1<i<t

and the gap, At = D' — Dt;
4. 6* onto the level set by solving
min [|6 — 6|3
6co .
s.t. D(0,a') <D+ 1AL < t.
5. Update t =t +1;
until At < 6.

Haiqin Yang (CUHK)

Machine Learning

@ Formulation:

min max D(0, a)
6cO acA

O={0cRY:v|0]1+(1-v)[0],<1}
A={acRY, aTy=0, a<Cly}

o Convergence rate
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(\ETLMES IS Sparse Generalized Multiple Kernel Learning
Demo

@ Download codes from
http://appsrv.cse.cuhk.edu.hk/~hgyang/doku.php?id=gmkl

@ Note: Required toolbox, Mosek from http://www.mosek.com
@ In Matlab, type “demo_MKL_L12"

@ See "Readme.txt” if needed

) MATLAB 7.8.0 (R2009a) 04
Ele Edt Debug paralel Desktop window tep
D& % %@ 9 [ 2| @ curent Drectory: [ DADIOPbo-UNO250 Data MringWachine Leaming LICKN2012 035
Shorteuts (el How to Add. (el What's New
o Works)) d Wind 03
FECELLY B (O New to MATLAB? Watch i Vo, see Demos, o read Gettrg Stted
£
2 Name Vale || fi >> demo_MKL_L12 025
g 02
015
01
005
o
o 20 40 60 80 100 120
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Experiments

@ Datasets

@ Two toy datasets
@ Eight UCI datasets

@ Three protein subcellular localization data

@ Algorithms

e GMKL

@ Li-norm MKL (SimpleMKL)

@ Ly-norm MKL

@ Uniformly Weighted MKL (UW-MKL)
@ Platform

@ Mosek to solve the QCQP

@ Matlab

@ PC with Intel Core 2 Duo 2.13GHz CPU and 3GB memory.

@ Objectives

@ Select important features in a group manner: two toy examples
@ Test efficiency: eight UCI datasets

@ Solve the proteins subcellular localization problem: three datasets @

ey
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(\VETIIMESNIGISI  Sparse Generalized Multiple Kernel Learning

Datasets
Dataset [[ # Classes | # Training (N) [ # Test [ # Dim [ # Kernel (Q) |
Toyl 2 150 150 20 273
Toy2 2 150 150 20 273
Breast 2 341 342 10 143
Heart 2 135 135 13 182
lonosphere 2 175 176 33 442
Liver 2 172 173 6 91
Pima 2 384 384 8 117
Sonar 2 104 104 60 793
Wdbc 2 284 285 30 403
Wpbc 2 99 99 33 442
Plant 4 470 470 69
Psort+ 4 270 271 69
Psort- 5 722 722 69
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Experimental Setup

@ Preprocessing
o Construct base kernels
o Normalize base kernels
@ Stopping criteria
e # iterations < 500, max|6; — 01| < 0.001
e L;-MKL: duality gap < 0.01
o GMKL, L,-MKL: 7 =0.90 to 0.99 when A*/V* < 0.01

llllll
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Sparse Generalized Multiple Kernel Learning
Toy Data Description

@ Generation scheme
¢ Toyl ¢ Toy?2

Yf:sigr(jizl ﬂ(xmef) v,=sign ( b3S B0 AL+ 2 fa(x,-j)+e,->

fi(a)=—2sin(2a)+1—cos(2), h(a)=a’— 1,
fi(a)=a—1, fi(a)=e "+e"!-1

@ Remarks
o The outputs (labels) are dominated by only some features
e Each mapping acts on three features equally, implicitly incorporating
grouping effect
e Each mapping is with zero mean on the corresponding feature, which
yields zero mean on the output
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(\VETIIMESNIGISI  Sparse Generalized Multiple Kernel Learning

Toy Data Results

Dataset Method Accuracy | # Kernel | Time (s)
GMKL 70.4+£3.3 | 36.845.0 | 2.9+0.2
Toy 1 L;-MKL 69.2+4.5 | 22.1+£5.2 4.4+1.2
L>-MKL 68.2£3.0 273 2.91+0.4

UW-MKL 66.31+5.3 273 -
GMKL 72.9+3.2 | 43.447.1 2.84+0.1
Toy 2 L;-MKL 72.3£3.1 | 30.2+£8.1 | 4.9+1.3
L>-MKL 71.9£3.6 273 2.9£0.1

UW-MKL 71.6£4.0 273 -

@ GMKL obtains significant improvement on the accuracy

@ The non-sparse MKL models are prone to the noise

@ GMKL selects more kernels, about 1.5 times of that selected by the
L1-MKL; while the L,-MKL selects all kernels

@ GMKL and L,-MKL cost similar same, and cost less time than L-MKL

Haiqin Yang (CUHK)

Machine Learning
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Sparse Generalized Multiple Kernel Learning
Selected Kernels on Toy Data

GMKL on Toy 1

Lt

(] E) W om0 w0z aw

L1-MKL on Toy 2

Haiqin Yang (CUHK)

GMKL on Toy 2

Machine Learning

L»,-MKL on Toy 2

92 / 134

June 10, 2012



(\ETLMES IS Sparse Generalized Multiple Kernel Learning

Effect of v on Toy Data

Accuracy vs. v # kernels vs. v
76 300
v
\
74 250 \
. 3
9 PR abE i A ol 200} 1
Sl -7 v Al O
a72wr ¥ § B
IS £150r 2
g o.. ° 5} s
gro o T T % % &
< 0 O 0. 100 o
68 & % -
50 P N
R R L
66
0 0.10203040506070809 1
v

0 0102 03040506070809 1
v
Accuracy vs. v

No. of selected kernels vs. v

o v=0: [,-MKL

e v=1: [-MKL

@ The best accuracy is achieved when v is about 0.5

@ The number of selected kernels decreases as v increases
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(\VEILM IS IS Sparse Generalized Multiple Kernel Learning

Results on UCI| datasets

Dataset Method || Accuracy | # Kernel | Time (s) Dataset Method Accuracy # Kernel Time (s)
GMKL 97.240.5 61.1+6.5 | 2.8+0.5 GMKL 776.9+1.6 27.14+2.4 3.840.2
Breast [,-MKL || 97.0£0.7 18.6+3.8 [23.0£3.9 Pima L1-MKL 76.5+1.9 18.712.7 248+3.4
L[,-MKL|]| 96.9+0.4 143 51103 L>-MKL 76.0£1.8 117 6.211.0

UW-MKL|| 97.2+0.5 143 — UW-MKL|| 76.2+1.7 117 —
GMKL 83.9+1.9 [38.5+5.4 | 1.440.1 GMKL 80.4+4.1 81.1+6.5 12.440.6
Heart [,-MKL || 83.4£2.6 29.714.6 | 3.5F0.7 Sonar [1-MKL 80.4F£4.2 60.3£7.4 16.7£2.0
Ly-MKL || 82.84+2.5 182 1.74+0.1 Ly-MKL [[ 783.843.7 793 3.9403

UW-MKL]|| 83.9£1.9 182 — UW-MKL|| 81.5£4.3 793 =
GMKL 91.8+1.7 66.5+7.2 | 5.1+0.3 GMKL T96.0+1.1 79.7+7.6 6.64+0.8
lonosphere [,-MKL || 91.5F£2.1 38.415.0 [19.2£33 Wdbc [1-MKL 95.3+1.4 34.9£8.9 37.815.8
[,-MKL|] 92.0£1.8 442 4.01£0.4 [>,-MKL 95.9+0.7 403 78116

UW-MKL|| 89.9+1.8 442 — UW-MKL|| 93.9+1.0 403 —
GMKL 67.6+1.8 19.5+1.7 | 1.040.0 GMKL 76.7+3.3 275.4+96.9 | 1.3+1.0
Liver [,-MKL|] 64.3£2.8 9.2£3.0 1.7+£0.4 Wpbc [1-MKL 76.61£2.8 40.4£10.2 4.8F+1.0
L,-MKL || 769.7£2.2 91 1.440.0 Lr-MKL 76.3+3.7 442 1.640.2

UW-MKL|| 67.2+4.6 91 — UW-MKL|[ 76.6£2.9 442 -

@ GMKL achieves highest accuracy on five datasets, while L,-MKL obtains the
highest accuracy for the rest three datasets

@ GMKL selects more kernels, but achieves better results than L{-MKL

@ GMKL and L>,-MKL cost less time than L;-MKL
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Sparse Generalized Multiple Kernel Learning
Results on Protein Subcellular Localization Data

Accuracy on protein datasets

fos]
a

Accuracy (%)

Plant

I uw-VKL

Psort+ Psort-

Dataset

Accuracy

Significant test:

# kernels for protein datasets

o Fhemels o
o o o

=
o

Pso;+ Pso;—

Dataset

No. of selected kernels

Dataset||GMKL vs. L;-MKL|GMKL vs. L,-MKL|GMKL vs. UW-MKL
Plant 0.109 0.109 0.002
Psort+ 0.754 0.022 0.002
Psort- 0.022 0.002 0.002

Haiqin Yang (CUHK)

Machine Learning

June 10, 2012
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Sparse Generalized Multiple Kernel Learning
Kernel Weights on Protein Data

u " l!:l L

L1-MKL on Plant

L1-MKL on Psort+

L1-MKL on Psort-

Haiqin Yang (CUHK)

GMKL on Psort-

Machine Learning

L>-MKL on Psort-
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(\VETIIMESNIGISI  Sparse Generalized Multiple Kernel Learning

@ A generalized multiple kernel learning (GMKL) model by imposing
Li-norm and Ly-norm regularization on the kernel weights

@ Properties of sparsity and grouping effect are analyzed theoretically

@ The model is solved by the level method and the convergence rate is
provided

@ Experiments on both synthetic and real-world datasets are conducted
to demonstrate the effectiveness and efficiency of the model

v

@ Apply GMKL in other applications, e.g., regression, multiclass
classifications

@ Apply techniques, e.g., warm start, to speed up GMKL

@ Extend GMKL to include the uniformly-weighted MKL as a special
case

v
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Ui Cless Suppai: Vesior Meshiies
Outline

e Main Techniques

@ Tri-Class Support Vector Machines
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Ui Cless Suppai: Vesior Meshiies
Tri-Class Support Vector Machine

Regularization

Sparse in featu

= g g
MCPM ol
(sc-svm ) C GMK:)( MTOC )

@ H. Yang, S. Zhu, I. King, and M. R. Lyu. Can irrelevant data help semi-supervised
learning, why and how? In CIKM, pages 937-946, 2011.

@ Toolbox: http://appsrv.cse.cuhk.edu.hk/~hqyang/doku.php?id=3CSVM

Sparse in sample

9

=
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Ui Cless Suppar; Vesir Mesines
A Motivated Example—Classifying Horse and Donkey

9

== 2t =)
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Ui Cless Suppar; Vesir Mesines
A Motivated Example—Classifying Horse and Donkey

Donkey

How to learn the decision function utilizing the labeled
and (mixed) unlabeled data

9

== 2t =)

Haiqin Yang (CUHK) Machine Learning June 10, 2012 99 / 134



Ui Cless Suppar; Vesir Mesines
Why Semi-Supervised / Transductive Learning?

———

Labeled: Horse Labeled: Donkey

2,

@ Labeling data are precious, costly and time consuming to obtain
@ Many unlabeled data are easy to collect and may provide useful information

@ Close to natural human learning
o Children master the acoustic-to-phonetic mapping of a language with
few feedback
o People recognize objects by small samples w
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Assumptions on Semi-Supervised /Transductive Learning

Case |: Following the same distribution

Labeled Data Daia

Case II: On a Riemannian manifold

T ;'“W'“\u
©)
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Ui Cless Suppar; Vesir Mesines
Problem—Learning from Labeled and Mixed Unlabeled Data

Irrelevant unlabeled
e

Haiqin Yang (CUHK)

Machine Learning

Al Data

15 +  +1Class
0 -1Class
. U, Daa
N L
* U, Data
05 * .
. * o
. H o
Ty *
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-05
-1
-15
-2 15 1 05 0 05 1 15 2
X
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\ETMES ST Tri-Class Support Vector Machines

Problem—Learning from Labeled and Mixed Unlabeled Data

Labeled: qugi

Labeled: Donkey

¥ A
> - S
‘ All Data
15 + +1Class
o Do
T 0 omn
o * unDaAa
05 * Lo
* a0 .
* e
W « %y
3 -05
Irrelevant unlabeled 4
==
-2 15 1 -05 0 05 1 15 2

How to utilize all labeled, relevant unlabeled, and irrelevant unlabeled data

to improve performance in SSL?

Haiqin Yang (CUHK) Machine Learning June 10, 2012
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Tri-Class Support Vector Machines
Setup of Tri-Class SVM (3C-SVM)

15 + +1Class
0O  -1Class
. U Data
1k L
* U, Data
*
05} * % o
WP, s
~ ol . * L
< A . * N ke
S *
-0.5
—1b
-15
i i i i i i i
-2 -15 -1 -0.5 0 05 1 15

Haiqin Yang (CUHK) Machine Learning

L= {(xi, y1)}ie
xi € X CRY, y, € {-1,0,1}
U=U Uy = {X,‘}qul

Objective: Seek
fo(x) = w'¢(x) + b, 9 = (w, b)
to separate the binary class

data correctly with the help
of (mixed) unlabeled data

llllll
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Model

@ Objective function:

mﬂin Swl2+ X nl(fe(xi), yi)+ X ritu(fe(xi))

x; €L x; €U
. Empirical Risk Empirical Risk
Margin Labeled Data Unlabeled Data

e Facts: if fy(x;) > 0, more confident on +1-class
if f9(x;) < 0, more confident on —1-class
@ Principle: rely more on labeled data and relevant data
ignore irrelevant data

3C-SVM lllustration

% E) E) o 2 0 g
x B

=
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Model

@ Objective function:
Loss on labeled data

min %HWH2+ > riHi(yife(xi) + Y rik(fa(xi)

X €L41 x;i€Lo
Loss on unlabeled data
£ 3 rmin{H(Ifo (). L(Ifo (<)} -
x; €U
Hi(u) = max{0, 1 — u}, [(u) = max{0, |u| — ¢}
@ lllustration:

3C-SVM lllustration
3,

", [==Hinge loss = Min l0SS
25 N, Symmetrical hinge loss 25
. e-insensitive loss (e=0.1)
2 ~ 2
. “ .
“ , *
- L)
15 o, “ ; 15

1 N 4 1

05| N 05

92 -1 0 1 2 92 -1 0 1 2 LHrrE
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\VETNMESNICI  Tri-Class Support Vector Machines

Model Generalization

o lllustration: Lpin(u) = min{max{0,1 — |u|}, max{0, |u| —e}}

e=0 e=0.1 e=09
0.5 0.5 0.5
0.4 0.4 0.4
&9,3 mp.s m¢p.3
%2 b2 b2
0.1 0.1 0.1
0 -1 -0.5 0 0.5 1 0 -1 -0.5 0 0.5 1 0 *1\ -0.5 0 0.5 Il
Signed output Signed output Signed output
o Model relationship:
3C-SVM SVM
L] -1 0 1 L | -1 1
ujl-1 0 1 U
S3VM U-SVM
L] -1 1 L] -1 0 1
uil -1 I 1 U | e— @

Haiqin Yang (CUHK)
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\VETNMESNICI  Tri-Class Support Vector Machines

Theorem: How unlabeled irrelevant data help?

; A
min EHWH2+ Z riHy (yifo(xi)) + Z ril-(fo(x;))

X;i€L41 xi€Lo

+ Z rimin{H1(|fo(xi)]), L (Ifo(xi)|)} -

x; €U

3C-SVM with r; = oo for unlabeled data and e =0

Unlabeled data x; satisfies

(a) |ngZ>(xj) + b| > 1 = data lie on or out of the margin gap,
or

(b) ngZ)(xj) +b=0 :>wT(¢(xj) — ¢(x0)) =0, xj,%9 € Up

llllll
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\VETNMESNICI  Tri-Class Support Vector Machines

Removing Min-Terms and Absolute Values

min %HWHz-F > riHi(yifa(xi) + Y ril(fe(xi))

X, €ELy1 x;€ELg
min{ Hy (|fs (xi)]). /= (Ifo (xi))}

+ D s | Ha(lfo(xi) + D(1 = di)) + k(Ifa(xi)| — Dd)
XL EU Q Q

d.=0= Q1=0
dk =1= Qz =0
@ Hi(|u| + a): Introducing non-convexity, solved by ramploss
Hi—a(u) — He(u) + Hi—a(—u) — He(—u)
o L(Jul —a) = H_c—a(—u) + H-c—a(uv)
@ Absolute terms are removed by introducing auxiliary labels L)
Machine Learning June 10, 2012 1087’134
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Concave-Convex Procedure

@ Objective function: Q~(9,d)=Q%, (9,d)+Q%, ()

@ Each step
K t
941 = arg mﬂin(ocz_xw,d%w%ﬁ”ﬂ):

max —%||w(a,a*)||2+g(a,a*)
a,a*

Dual } s.t. Acla;a* =T Yy,

QP Alo;a*]<0,

0<a,a*<r

o= )1 asg G=mfa(xir))),
“ 0 otherwise " & =I(|fs(xks1)l), k=1,...,U.

@ Solution: w is linear combined by o and «*
b is attained by KKT condition

llllll
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(\VET SIS Tri-Class Support Vector Machines

3CSVM Demo

@ Download codes from
http://appsrv.cse.cuhk.edu.hk/~hqyang/doku.php?id=3csvm

@ Note: Required toolbox, Mosek from http://www.mosek.com

@ In Matlab, type "demo_3CSVM"

@ See “readme.txt” if needed

) MATLAB 7.8.0 (R2009a)

ol Desktop Window £+

© | 2 2| | curentorectony: DDrosbeiNFO250 Dats Mnngachine Lesg DKHZ 12

Haiqin Yang (CUHK)

+

+1 Class
-1 Class

U, Data

* U, Daia

- o

Video
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(\VET SIS Tri-Class Support Vector Machines

3CSVM Result

15

0.5F

Demo for 3C-SVM

+
[m]

(€]

+1 Class
-1 Class
Unlabeled
3C-SVM
0 Class

Haiqin Yang (CUHK)
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Experimental Setup

o Datasets

o Two toy datasets

e Two real-world digit recognition datasets
o Comparing algorithms

e SVMs
o S3VMs
e U-SVMs
e 3C-SVMs

o Platform

e Matlab 7.3
e MOSEK 5.0

Haiqin Yang (CUHK) Machine Learning

June 10, 2012
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Data Generation

@ Following scheme from Sinz et al., 2008

o Ll-class: ¢;" =403, i=1,...,50, 07, =0.08, 0% 5, =10

@ Two Gaussians with the Bayes risk being approximately 5%

o First Up: zero mean, 052 =0.1, U%,...,so =10

@ Second Up: variance values are the same as +1-class data, mean is
t-ct, t=05
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\VETNMESNICI  Tri-Class Support Vector Machines

Test Procedure

L = 20, 50,200,500
U=500=(rU,(1—-7)U), =0.1,0.5,0.9
Labeled + Unlabeled /500 Test, ten-run average
Hyperparameters

o Linear kernel
o Regularized parameters, forward tuning

C, G ¢ kK

SVM v/ X X X
Uu-svm - v v x
VM - - x Y

llllll
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Accuracy

Mean Error (%)

Mean Error (%)

Haiqin Yang (CUHK)

62=0.1, 1=0.1
50
o L4 SUM
0%e, - +-sm
20 =4= U-SVM
—+—3C-SWM
o
0 100 200 300 400 500
# of Labeled Data
0.5, t=0.1
50
. Lok SUM
“o0f%e, - +-sm
20 =4= U-SVM
—+— 3C-SWM
20
10

0
0

100 200 300 400 500
# of Labeled Data

Mean Error (%)

Mean Error (%)

6°=0.1, 1=0.5
50
o L4 SUM
A0Pe -+ -sdvm
30 4= U-SVM
—+—3C-SWM

n
=]

=
)

[9)
0

100 200 300 400 500
# of Labeled Data

1205, 1=0.5
50

N S SUM
0w, -+ = S

w
S

N
=]

i
o

0
0

100 200 300 400 500
# of Labeled Data

Machine Learning

Mean Error (%)

Mean Error (%)

6°=0.1, 1=0.9
50
o S SWM
0% -+ =s%m
0% == U-SUM
—+—3C-SVM

N
=]

—_

10
0

0 100 200 300 400 500

# of Labeled Data
t=0.5, 1=0.9

50

" Lk SUM
0% -+ = Sivm
30R (=4=1 U-SVM

—+—3C-SVM

N
=]

i
o

0
0

100 200 300 400 500
# of Labeled Data
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Objective Function Values and Test Errors

20 Labeled Data 200 Labeled Data
100 52 100 50
\ —A&A— Objective Values B —A&A— Objective Values
» 80 B «B - Test Errors (%) |{45 w 90 H B TestErrors (%) |{42
g ‘ o 8 ‘ .
S 60 398 S 80 335
) i} ) =
2 = 2 u
g 40 33§ g 70 259
= ) = =
[¢) )
20 ' 7 60 . 17
0'0.poaa
0 21 50 8
0 2 4 6 8 0 2 4 6 8 10
# of Iterations # of Iterations
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Real-world Datasets

@ Datasets:

e Small size: USPS
o Large size: MNIST
@ Setup
+1-class: Digits “5" and “8"
Up: Other digits
L=20
U=500=(rU,(1-7)U), 7=0.1,0.5,0.9
RBF kernel: K(x,y) = exp(—v||x — y||2), v = ﬁ
Other hyperparameters are set similar to those in the synthetic datasets

llllll
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\VETNMESNICI  Tri-Class Support Vector Machines

Accuracy Results

Dataset  Algorithm

7=0.1 7=0.5 7=0.9

SVM
S3VM
U-SVM
3C-SVM

USPS

7241 159 (0.7) 72.4% 15.9 (9.5) 72.4+ 159 (53.1)

56.6 +5.9 (0.0) 54.5+3.0 (0.0) 52.8+6.9 (0.0)

83.1+25(0.0) 73.4+4.4(0.0) 64.2+3.6(0.0)
87.242.3 80.6+4.8 75.4+7.3

SVM
S3VM
U-SVM
3C-SVM

MNIST

70.0+ 11.4 (0.3) 70.9% 11.4 (0.8) 70.9+ 11.4 (13.6)

58.0+8.7 (0.0) 55348.1(0.0) 53.246.3(0.0)

84.2+22(0.2) 80.0+4.6(0.9) 75.0+3.9 (1.0)
85.3+1.6 82.842.9 77.6+3.9

Haiqin Yang (CUHK)
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\VETNMESNICI  Tri-Class Support Vector Machines

Balance Constraint

L+U L
o Ideally, 4 > fy(x¢) =1 > yi but no improvement from
t=L+1 i=1
experimental results

L+U
. 1
@ A possible better on, ; > fo(x:) =c¢
t=L+1
c: a user-specified constant, but need tuning

llllll
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Summary

@ A novel maxi-margin classifier, 3C-SVM, can distinguish data into
—1, +1, and 0, three categories

The model incorporates standard SVMs, S3VMs, and U/-SVMs as
specific cases

It is solved by the CCCP, very efficient

o Effectiveness and efficiency are demonstrated

Algorithm speedup

Multi-class extension

Theoretical analysis, generalization bound
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Outline

e Perspectives
@ History
@ Perspectives
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SVM and its Variants

e SVM

e In COLT’'92 from VC theory
e Many variants include SVR,
v-SVM, one-class SVM, etc.

o Kernel methods/learning

o Kernel PCA, Kernel ICA, etc.
o Multiple kernel learning:
L1-MKL, L,-MKL, L,-MKL

KPCA
SsVvMm SVR OSVM v-SVM

92 93 94 95 96 97 98 99 00 01 02
QP SMO

Haiqin Yang (CUHK)

03

Machine Learning

~
L
~
L1-MKL 12-MKL Lp-MKL
04 05 06 07 08 09 10
SDP/SOCP siLp Level

= J{«.
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Sparse in Feature Level

@ Lasso

o Introduce in the mid of 90's
e Many variants include Group
Lasso, Elastic Net, etc.

@ Sparse learning

e Sparse coding, dictionary
learning, compressive sensing,

etc.
sc DL Cs Robust
Group Elastic Sparse
I.aisc:(PCA asso et GUR _’G[
SVM SVR OSVM v-SVM L1-MKL L2-MKL Lp-MKL
92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10
ol SMo SDP/SOCP SILP Level
QP/CD LAR Glmnet

Haiqin Yang (CUHK)

The LAR direction w3 st step 2 maes an

9

== wit
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Other Paradigms

@ SSL
e Co-training, Co-EM,
tri-training, etc.
e TSVM, S3VM, etc.
e Graph laplacian, harmonic
function, manifold
regularization, etc.

@ Transfer learning
o Multi-task learning, multi-task
feature learning, mixed norm
feature selection, etc.
e Sample selection bias, domain
adaptation, etc.

~
L
ssB DA
s >
Co- TSVM
Training VM EM GL HF MR
sc DL Cs Robust
Group Elastic Sparse
LassoKPCA Tose et LLR CAP J‘lﬂ_—
svm SVR OSVM 1-SVM L1-MKL L2-MKL Lp-MKL
92 93 94 95 96 97 98
ap sMo SDP/SOCP SILP Level
QP/cD LAR Glmnet
1P cccp @
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Outline

e Perspectives
@ Perspectives

== 2t
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Perspectives

@ Theory
o Knowledge transfer
o Concept drift

e Sparse
o ...

@ Application-driven

o Model interpretation
e Scalability

o Efficiency

o ...

llllll
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@ Conclusions
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Conclusions

Conclusions

@ Conclusions

o Explore two families of sparse models
e Provide promising solutions for large-scale applications in three main
learning areas
@ Online learning framework for group lasso and multi-task feature
selection
o Multiple kernel learning model with sparsity and grouping effect to
provide more accurate data similarity representation
o Semi-supervised learning model to learn from mixture of relevant and
irrelevant data
@ Perpectives

e Developing parsimonious learning models and efficient algorithms
o Real-world applications with the following characteristics
@ Heterogeneous

@ Dynamic
@ Social relation or social information
o ...
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Questions?

https://www.cse.cuhk.edu.hk/irwin.king/confs/
wcci2012-tutorial-machinelearning

Sparse Learning Under
Regularization Framework
Thees

ey aned Bpplicatans

) LEMEERT

{king,lyu,hqyang}@cse.cuhk.edu.hk

== 2t
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Conclusions

Interpretation of Dual Average for Group Lasso

N
Objective: T(w) =min > (w) + Q(w)
W=t

Since £(-) is convex, at T-step, we have

.
T(w) = % ;[é(wk) +ug (W —wi) + Ro(w) ]+ Q(w)
= % O(wi) + 0] (w — wy) + Ra(w) +Q(w)
=1 ~—~

%h(w)
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Interpretation of Dual Average for MTFS

N
Objective: T(W) = rr\}\iln STUW) + Q(W)
i=1

Since /(-) is convex, at T-step, we have

;
1
TW) = =D W) + Gi (W — W) + Ry(W)] + QW)
k=1 Second order
1 _
= =) YW+ G (W —W,) + Ry(W) +Q(W)
T N——
k=1 2 (W)
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Level Method lllustration

mXin {f(x) = —cos(x) : x e R,R = [-1.2,1.2]}

Level Method lllustration

X;=-1.00
08 \_/
-1

-15

@ Initialization: x = —1,7 = 0.9

f(x)

-25
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Level Method lllustration

mXin {f(x) = —cos(x) : x e R,R = [-1.2,1.2]}

Level Method lllustration

@ Initialization: xg = —1,7=0.9
. » x,==1.00
@ Construct a cutting plane ° \/
Di(x) = h'(x) .
-15
n'eo
-2
(1205239)
-25 L . . .
-1 -0.5 0 0.5 1
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Level Method lllustration

mxin {f(x) = —cos(x) : x e R, R =[-1.2,1.2]}

Level Method lllustration

@ Initialization: xg = —1,7 = 0.9 0

@ Construct a cutting plane I ANt
L]:fO.73
Di(x) = h(x) \/
-1

@ Construct a level set level set £
Li=7x f(Xo) + (1 — 7') X (7239) v
L1 ={x€R:Di(x) < L1} - "o

fx)

@

(1.20,-2.39)
-]
-25

-1 -05 0 05 1

llllll

Haiqin Yang (CUHK) Machine Learning June 10, 2012 133 / 134



Level Method lllustration

mxin {f(x) = —cos(x) : x e R, R =[-1.2,1.2]}

Level Method lllustration

@ Initialization: xg = —1,7 = 0.9 0

@ Construct a cutting plane
Di(x) = h'(x)

@ Construct a level set level set £
Ly =7xf(x)+ (1 —7) x (—2.39) =
L1 ={x€R:Di(x) < L1} .

fx)

@

h'0)

(] Project Xp to ,Cl (20239

-25

-1 -05 0 05 1

x; = argmin{||[x — xo||3 : x € L} x
X

llllll

Haiqin Yang (CUHK) Machine Learning June 10, 2012 133 / 134



Level Method lllustration

mXin {f(x) = —cos(x) : x e R,R = [-1.2,1.2]}

Level Method lllustration

@ Construct a new cutting plane
Dy(x) = min h'(x)
X

f(x)

-15 ()
]
2 (1.20,-2.07)
a
(1.20,-2.39)
a
-25
-1 -0.5 0 0.5 1

9

=

Haiqin Yang (CUHK) Machine Learning June 10, 2012 134 / 134



Level Method lllustration

mxin {f(x) = —cos(x) : x e R, R =[-1.2,1.2]}

Level Method lllustration

@ Construct a new cutting plane
Dy(x) = min h'(x)
X

@ Construct a new level set £,
Ly=7xf(x1)+ (1 —7) x (—2.07)
Lo = {X ER: D2(X) < L2}

f(x)

-15 %)

h'0)
-2 (1.20,-2.07)
a

(1.20,-2.39)
a

-25
-1 -0.5 0 0.5 1

llllll

Haiqin Yang (CUHK) Machine Learning June 10, 2012 134 / 134



Level Method lllustration

mxin {f(x) = —cos(x) : x e R, R =[-1.2,1.2]}

Level Method lllustration

@ Construct a new cutting plane
Dy(x) = min h'(x)
X

@ Construct a new level set £,
Ly=7xf(x1)+ (1 —7) x (—2.07)

f(x)

-15 ()
Lo = {X ER: D2(X) < L2} o
. -2 (1.20,-2.07)
@ Project x; to L5 °
] 5 (20-2.39)
xp = argmin{||x — x1||5 : x € L2} asl— - : . -
X X

llllll

Haiqin Yang (CUHK) Machine Learning June 10, 2012 134 / 134



	Introduction
	Learning Paradigms
	Regularization Framework
	Overview

	Main Techniques
	Online Learning for Group Lasso
	Online Learning for Multi-Task Feature Selection
	Kernel Introduction
	Sparse Generalized Multiple Kernel Learning
	Tri-Class Support Vector Machines

	Perspectives
	History
	Perspectives

	Conclusions

