
Peer Clustering and Firework Query Model

Cheuk Hang Ng , Ka Cheung Sia
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, N.T., Hong Kong SAR
{chng,kcsia}@cse.cuhk.edu.hk

ABSTRACT

In this paper, we present a new strategy for information retrieval over the peer-to-peer (P2P) network. To avoid query
messages flooding and saving resources in handling irrelevant queries in the P2P network, we propose a method for clustering
peers that share similar properties together, thus, data inside the P2P network will be organized in a fashion similar to a Yellow
Pages. In order to make use of our clustered P2P network efficiently, we also propose a new intelligent query routing strategy,
the Firework Query Model. In contrast to broadcasting query message, our query message will first walk around the network
from peer to peer randomly, once it reaches the target cluster, the query message explodes and is broadcasted by peers inside
the cluster. We present our algorithm, give analysis and experimental results to demonstrate our method.

Keywords

Peer-to-Peer, Information Retrieval, Peer Clustering, Intelligent Query Routing

1 Introduction

The appearance of P2P applications such as Gnutella [1] and Napster [2] has demonstrated the significance of distributed
information sharing systems. Users can access the information distributed among peers around the world. These models offer
advantage of decentralization by distributing the storage, information and computation cost among the peers. However, since
there is no centralized server to keep track of what data are being stored in what peer, we do not know which peer contains the
information we want. Therefore, when a peer wants to search for a file, he needs to broadcast query to all his peers. Likewise,
his peers propagate the query to their peers and so on.

There are two problems associated with current strategies. Since every query is broadcasted to every peer in the network,
each peer has to waste resources in handling irrelevant query. Moreover, broadcasting query messages across the network also
increases network traffic. Portmann et. al. [3] investigated the problem of scalability in P2P network due to network traffic cost.
Rowstron et. al. [5] and Stoica et. al. [6] proposed their algorithm targeting at reducing network traffic in P2P network. They
guarantee location of content if it exists, within a bounded number of hops. Achieving these properties by tightly controlling
the data placement and topology within the network. Ramanathan et. al. [4] proposed a clustering strategy to reduce query
traffic, while increasing the goodness of search result.

In order to solve the problems above, our proposed strategy will cluster peers of similar properties together, just like the
organization in a Yellow Pages, which makes query more systematic. In addition, our intelligent Firework Query Model will
help in reducing network traffic by forwarding query selectively rather than the original Brute-Force-Search (BFS) broadcasting.
Under our query model, irrelevant query subjects to a particular peer will not go into its cluster, once the query arrives at
a matching peer, it is broadcasted inside its cluster. As a result, we avoid unnecessary traffic while fully utilize each query
message.



Figure 1. Attractive Link Selection (a) left and Firework Query Algorithm (b) right

2 Peer Clustering and Firework Query Model

2.1 Peer Clustering

Inside our P2P network, each peer is connected by two types of link, random link and attractive link. Before continuing
on how to manipulate these two types of link, we introduce the following terms:

• Random link - linkrandom(p): The connection which a peer p makes randomly to another peer in the network. It is
chosen by the user.

• Attractive link - linkattractive(p): The connection which a peer p makes explicitly to another peer, which they share
similar data.

• Cat(p),Cat(Q): A signature value representing the characteristic of a peer p, and a queryQ respectively.

• Sim(p, q): The similarity between two peers p, q, which is a distance measure between Cat(p) and Cat(q).

• Sim(p,Q): The similarity between a peer p and a query Q, ,which is a distance measure between Cat(p) and Cat(Q).

• Peer(p, t): The set of peers which a peer p can reach within t hops.

Based on the above definition, we introduce an algorithm to choose the attractive link as illustrated in Fig. 1(a). Referring
to Fig. 2(a), we illustrate how our peer clustering strategy works. In the beginning, let us assume every peer can be represented
by a value Cat(p) based on the characteristic of that peer p respectively. In the mean time, we consider this value to be
geographical location. When a peer joins the network, it will connect to another peer randomly. Through ping-pong messages
[1], it learns the set of peers within a certain number of hops away from it (Peer(p, t)). Based on the attractive link algorithm,
it will connect to a peer that shares similar properties through attractive links. In Fig. 2 (a), the peer CN4 first connects to UK3

by random link, and by ping-pong messages, it learns the location of other peers belong to category CN , then it makes an
attractive link to CN2 to perform peer clustering. Our algorithm will choose a similar peer with largest hop count to connect, so
CN2 is chosen. As a result, you notice that peers of similar characteristic will connect together to form a cluster, which makes
information retrieval much more systematic.

In the example we used, geographical information is used to determine the similarity between peers. However, our algorithm
is generic in the sense that, as long as we can choose a good descriptor to describe a peer, for example, the major file type it
shares, the images’ content information it shares, will also work properly.

2.2 Firework Query Model

To make use of our clustered P2P network, we propose the Firework Query Model. In this model, a query message will first
walk around the network from peer to peer by random link, then once it reaches the target cluster, the query message will be
broadcasted by peers using attractive link insides the cluster as shown in Fig. 2 (b).

To decide which peer a query is being sent to, we introduce an algorithm to determine when and how a query message
explodes in Fig. 1 (b). Referring to Fig. 2 (a) again, we illustrate an example to show how the firework query model works.
Assume the new peer CN4, whose geographical location is China, initiates a search to find an American song. Since the



geographical information of his query is far away from his geographical location, therefore, CN4 will send the query to UK3

through random link. WhenUK3 receives the query, it will forward the query toUS2 through random link again. After walking
around the network randomly, the query message reaches its target cluster and starts to explode. During the explosion, US2

will broadcast the query to US1 through attractive link. Likewise, US1 will broadcast the query to US2, CN1 and so on.

Figure 2. Illustration of peer clustering (a) left and firework query (b) right

Similar to IP packets and Gnutella messages, our query messages also have a Time-To-Live (TTL). This avoids messages
from circling around the network forever. Once the TTL decreases to zero, the message will be dropped and no longer for-
warded. The only difference between our query messages and the gnutella messages is that TTL will not be decreased when the
messages are sent through attractive link. The reason is that, when a query reaches its target cluster, all peers inside the cluster
are highly related, in order to get as more hits as possible, there is no reason to decrease the TTL and prevent further searching
inside the highly related cluster. In this case, the query messages are prevented from looping around by the inherent Gnutella
replicated message checking rules. When a new query appears to a peer, it is checked against a local cache for duplication. If
it is found that the same message has passed through before, the message will not be forwarded.

3 Experiment

We develop a program to simulate the P2P environment and verify the effectiveness of our proposed strategy. We investigate
the effect on query efficiency subjects to increasing number of peers, different values of query message’s TTL. We formulate
five cases to compare the difference in performance subject to different network set-up methods and query strategies, described
in the following.

• Random BFS (BFS): Like pure P2P network (Gnutella) [1], network topology is built randomly and queries are broad-
casted to all connected peers.

• Centralized fuzzy (CF): Peer acquires knowledge of other peers from a centralized server to determine how to make
attractive link. Queries are forwarded to attractive link if Sim(p, q) < ε, otherwise to random link. We consider this to
be fuzzy because queries are considered similar when the similarity measures are still within a range. In our experiments,
for example, category 5 peer will treat category 4 and 6 queries as matching queries and forward them through attractive
link.

• Learning fuzzy (LF): Peer acquires knowledge of others through ping-pong messages to learn a partial picture of the
network, and establishes attractive link based on this information. Queries are forwarded in the same way as Centralized
fuzzy.

• Centralized discrete (CD): Network setting-up method is the same as Centralized fuzzy. Queries are forwarded to attrac-
tive link if Sim(p, q) = 0, otherwise to random link.



• Learning discrete (LD): Network setting-up method is the same as Learning fuzzy. Queries are forwarded in the same
way as Centralized discrete.

In the experiments, we assume there are ten categories of peers, and assign different Cat(p) values evenly. Also, queries
generated only fall in these ten categories, when a peer receives a query of the same category, it will fire a hit count. We measure
the recall of a particular query as the number of hit counts over total number of peers under that category. We record three
measures, the number of query message, recall, and recall per query message (efficiency of query) against the number of peers
and TTL. Referring to Fig. 3(b), our proposed strategy shows a promising sub-linear increases in number of query messages
with increasing TTL, while BFS increases exponentially. In addition, we show that our strategy has much improvement on
recall per query message than traditional BFS as shown in Fig. 3(b) and 4(b), also, the recall performance is shown in Fig. 4(a),
which indicates our algorithm still outperforms BFS while we use less number of query messages. Detailed data are listed in
Table 1 and 2.

4 Conclusion and Future Work

We empirically examine several aspects of the performance of clustered P2P network. Among the many possible ways to
extend the current work, perhaps the most challenging one is to choose one or more descriptor(s) to describe a particular peer
for use in clustering, where this may be a single value, a vector or even multi-dimension vectors to precisely describe a peer.

Figure 3. Number of query packet (a) left and query efficiency (b) right against TTL

Figure 4. Recall measure (a) left and Query efficiency (b) right against number of peers

5 Acknowledgements

This project is supported in part by grants from the Hong Kong’s Research Grants Council (RGC) under CUHK 4407/99E
and #2050259.



Table 1. Average number of query messages and recall per query message against increasing TTL over 10 simulation runs
number of query messages recall per query message (×10−6)

TTL BFS CF LF CD LD BFS CF LF CD LD

2 272 33986 191 4039 173 1.845 20.382 8.967 49.366 6.896
3 1245 51781 22337 10612 1500 1.508 17.374 12.365 46.984 30.994
4 6053 53635 56235 16593 12632 1.506 16.847 16.281 48.211 32.951
5 28959 53825 62263 17496 14895 1.557 16.733 16.061 45.688 40.219
6 63896 60504 59419 24179 25566 1.877 16.528 16.830 41.358 39.114
7 125749 64548 63070 29476 25162 1.842 15.492 15.855 33.926 39.742

Table 2. Average recall and recall per query message (×10−6) against increasing number of peers over 10 simulation runs
Recall Recall per query message (×10−6)

number of peers BFS CF LF CD LD BFS CF LF CD LD

30000 0.003407 1.000000 0.954259 0.699008 0.163576 6 61 55 158 143
27000 0.005353 0.798179 0.861528 0.797958 0.346832 5 61 66 172 138
24000 0.004764 1.000000 0.741765 0.500960 0.368099 8 71 70 194 160
20000 0.004273 1.000000 0.799729 0.499800 0.349756 9 88 92 244 204
15000 0.008146 0.902563 0.693782 0.501639 0.304515 10 113 113 307 236
10000 0.009970 1.000000 0.833564 0.500250 0.461937 19 162 174 376 340
5000 0.016126 1.000000 0.967871 0.513788 0.395052 33 342 340 905 737
2000 0.052970 1.000000 0.993896 0.899050 0.275470 101 731 729 2076 1198
500 0.134000 1.000000 0.689796 0.699797 0.490239 395 2890 2815 5598 3954

References

[1] The gnutella homepage. In http://www.gnutella.com.
[2] The napster homepage. In http://www.napster.com.
[3] M. Portmann, P. Sookavatana, S. Ardon, and A. Seneviratne. The cost of peer discovery and searching in the gnutella peer-to-peer file

sharing protocol. In Proceedings to the International Conference on Networks, volume 1, 2001.
[4] M. K. Ramanathan, V. Kalogeraki, and J. Pruyne. Finding good peers in peer-to-peer networks. In International Parallel and Distributed

and Computing Symposium, April 2002.
[5] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location and routing for large-scale peer-to-peer systems. In

Proceedings of the 18th IFIP/ACM International Conference on Distributed Systems Platforms, November 2001.
[6] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet

applications. In Proceedings of ACM SIGCOMM, pages 149–160, August 2001.


