
Hierarchical Classification of Documents with
Error Control

Chun-hung Cheng1, Jian Tang2, Ada Wai-chee Fu1, and Irwin King1

1 Department of Computer Science and Engineering
The Chinese University of Hong Kong, Shatin, Hong Kong

{chcheng,adafu,king}@cse.cuhk.edu.hk
2 Department of Computer Science

Memorial University of Newfoundland, St. John’s, NF, A1B 3X5 Canada
jian@cs.mun.ca

Abstract. Classification is a function that matches a new object with
one of the predefined classes. Document classification is characterized
by the large number of attributes involved in the objects (documents).
The traditional method of building a single classifier to do all the
classification work would incur a high overhead. Hierarchical classifi-
cation is a more efficient method — instead of a single classifier, we
use a set of classifiers distributed over a class taxonomy, one for each
internal node. However, once a misclassification occurs at a high level
class, it may result in a class that is far apart from the correct one.
An existing approach to coping with this problem requires terms also
to be arranged hierarchically. In this paper, instead of overhauling the
classifier itself, we propose mechanisms to detect misclassification and
take appropriate actions. We then discuss an alternative that masks
the misclassification based on a well known software fault tolerance
technique. Our experiments show our algorithms represent a good
trade-off between speed and accuracy in most applications.

Keywords: Hierarchical document classification, naive Bayesian classi-
fier, error control, class taxonomy, parallel algorithm

1 Introduction

Classification is a function that matches a new object with one of the predefi-
ned classes. A special kind of classification, document classification, has recently
caught researchers’ attention [4,12,20]. A document classifier categorizes the do-
cuments into the classes based on their content. This problem is characterized
by the large number of attributes involved in the objects (documents). While
a few hundred attributes are considered as very big for a traditional classifier,
documents often contain thousands or even tens of thousands of terms. The
traditional method of building a single classifier for all the classification work,
known as flat classification, would incur a high overhead.

Koller and Sahami [12] propose the use of hierarchical classification in this
context. Instead of a single classifier, a set of classifiers distributed over a class

D. Cheung, G.J. Williams, and Q. Li (Eds.): PAKDD 2001, LNAI 2035, pp. 433–443, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

434 C.-h. Cheng et al.

taxonomy are used, one for each node. A document is classified in a top-down
fashion from the root to the leaf. For each current node (i.e. class), the child of
maximum likelihood is selected. Thus, by decomposing a job into smaller jobs like
this and some other techniques (e.g. feature selection), the amount of work can
be maintained at a manageable level. This method is called simple hierarchical
classification in this paper. However, once a misclassification occurs at a high
level node, there is little chance to accommodate it at the low levels. The deeper
the classification goes, the further it drifts away from the correct one. A variation
of simple hierarchical classification, known as TAPER, is proposed in [4]. To
avoid misclassification, it attempts to search for a global optimal probability by
assigning the probability to the edge of the taxonomy graph in some ways that
would transform the search into a least-cost path problem.

Weiss and Kulikowski [20] propose a different scheme of which one of the main
goals is to remedy the misclassification problem. They utilize a single classifier
over ‘global’ terms. The classifier is actually a set of special kind of association
rules whose right sides are class labels, but only a portion of the rules are selected
for the classification. A problem with this scheme is that in addition to class
hierarchy, a term hierarchy is also required, which does not always exist. Also it
is not clear if the selection rule can adequately reduce the number of association
rules to make the job by the lone classifier manageable in the general case.

In this paper, we attack this misclassification problem from a different angle.
We adopt hierarchical classification model due to its efficiency, but instead of
trying to reduce the misclassification rate by overhauling the classifier itself,
we develop mechanisms to detect the misclassification as early as possible and
then take appropriate actions. We also discuss an alternative that masks the
misclassification using a well known software fault tolerance technique.

The rest of this paper is organized as follows. In Section 2, we present a
general model for document classification using hierarchical classifiers. In Section
3, the two error control schemes are introduced. We move to the experimental
results in Section 4 and finally, we conclude this paper in Section 5.

2 Document Classification

Informally, a document is a pattern which consists of a number of terms and
is attached with a class value (topic). Each term can occur multiple times in
a document. The dependencies between the class values and the terms follow
certain probabilistic distribution.

More specifically, we adopt a naive Bayesian model from [4]. Each class c is
associated with a multinomial term-variable Vc. Vc can take values i, 1 ≤ i ≤ nc,
with probability pi,c where each i denotes a term and nc is the total number of
different terms. A document in a class is then modeled as a collection of values
(duplicates allowed) that the associated variable Vc generates successively. Let d
be a given document in class c, hd be its length, zi,d be the number of occurrences
of value i in d, and zc =

∑
d∈c,j=1,2,···,nc

zj,d. Let P (d | c) be the probability that
a randomly chosen document is d given that it is in c. Then we have

Hierarchical Classification of Documents with Error Control 435

P (d | c) =
hd!

z1,d!z2,d! · · · znc,d!
Πnc

j=1p
zj,d

j,c . (1)

where the value of pi,c can be estimated as
(
∑

d∈c
zi,d)+1

zc+nc
. It is not the more

intuitive value
∑

d∈c
zi,d

zc
. See [18] for a justification.

Let T be the class taxonomy, c be an internal node and ci where 1 ≤ i ≤ q
be the ith child of c. Given a document d, the classifier at node c classifies it
into one of c1, · · · , cq by choosing ci that maximizes P (ci | c, d), the probability
of d belonging to c given it belongs to c′.

P (ci | c, d) =
P (ci, d)
P (c, d)

=
P (ci)P (d | ci)

Σq
j=1P (cj)P (d | cj)

(2)

where P (ci, d) is the probability that we are given a document d and d belongs
to ci; P (d | cj) is estimated as stated above and P (ck) can be estimated as the
fraction of the number of the documents that belongs to class ck.

Since documents can contain a large number of terms, we must perform
feature selection to reduce the cost. In addition, it can separate unindicative
terms, or noise, from feature terms and increase accuracy of the classifier, since
too many features may cause overfitting and loss of generality. As described in
[12], features are context sensitive, meaning that we have different features at
different splits in the taxonomy. Thus feature selection should be carried out at
each split in the taxonomy.

One way to do feature selection is to use Fisher Index [4]. Let tk be the kth
term, w(tk, d) be the relative frequency of term tk in document d, and aw(tk, c)
= 1
|c|Σd∈cw(tk, d). Thus, the Fisher Index of tk for class c is:

Fisher(tk, c) =
Σ`

i=1 | ci | (aw(tk, ci) − aw(tk, c))2

Σ`
i=1(

1
|ci|Σd∈ci(w(tk, d) − aw(tk, ci))2)

(3)

The idea is that a smaller value for the denominator implies a closer distance
along dimension tk among the points within each class, and a larger value for
the numerator signifies a larger distance between any class and c. Thus a larger
Fisher Index indicates a larger discriminative power of a term for a class. Let
L be the list of terms in the descending order of their Fisher Indexes for c. We
pick up a prefix F of L, and use F for the classification for c. Since F leaves out
most noise terms, it reduces misclassification. The number of terms in F , known
as the feature length, is a choice by users.

3 Error Control Schemes

Since simple hierarchical classification is problematic when a misclassification
occurs at an early level, our approach is to incorporate error control mechanisms
into the algorithm. We propose two schemes, namely recovery oriented error
handling and error masking. The latter is a parallel algorithm and should run
on a multi-processor machine.

436 C.-h. Cheng et al.

3.1 Recovery Oriented Error Handling

The recovery oriented error handling approach is inspired by the way a transac-
tional database is recovered upon failure. When a failure occurs in a transactional
database, a previous consistent state is reconstructed, and an appropriate reco-
very action is taken based on that state. To bring the idea of database recovery
to document classification, a consistent state here means an ancestor class node
to which a document is classified with high confidence. We call it a High Con-
fidence Ancestor (HCA). When a document is misclassified into a wrong path
in the class taxonomy, we can restart from the HCA and then select another
path. However, from our empirical studies rollback and reclassification are very
time consuming. To simulate the effects of recovery, we try to identify the wrong
paths first and avoid them during the classification.

To detect the wrong paths, we associate each document with a value called
closeness indicator (CI) to indicate how close the document is to a given topic.
Once a document is misclassified, the more it descends along the selected path,
the further it would drift away from the distribution represented by the nodes
in the path. When CI drops below a certain threshold, we may conclude that
we are on the wrong path. For example, consider the class taxonomy depicted
in Fig. 1. Assume a document is about ‘folk dance’, but has been misclassified
into ‘Business’. While this may seem not entirely unacceptable, it would be
less acceptable to classify it into either ‘Financial’ or ‘Insurance’. Suppose it is
classified into ‘Financial’ by the classifier at ‘Business’ node. Then it faces the
choices of ‘Investment in stock market’ and ‘Portfolio arrangement of mutual
funds’. Neither of these is remotely related to ‘folk dance’, so CI would fall to a
small value and the path would be rejected.

Clearly, CI should be calculated without referring to the probabilities we
used in the classification. Therefore, instead of the one-step probability, the
probability of d belongs to c given the HCA is used as CI. Let c be the class that
document d has been classified into. Let c′ be the HCA of c for d. The CI of d
with respect to c under c′ is computed as:

CI(d, c | c′) = P (c | d, c′) =
P (c, d | c′)
P (d | c′)

=
P (c | c′)P (d | c)

Σi∈c′P (i | c′)P (d | i)
. (4)

A simple way to determine the threshold is to use 1/N , where N is the total
number of classes at the same level as c and leaf classes at some level above c1,
in the subtree rooted at c′.

We maintain a moving window of l levels where l is a user parameter. The
top and the bottom of the window correspond respectively to the levels of the
current HCA and the class into which the document is being classified. Initially,
the HCA is the root. The window moves downwards one level when the class
at the bottom edge passes the test by CI, resulting in a new HCA at one level
lower than it was prior to the move of the window.
1 The class taxonomy can be an unbalanced tree.

Hierarchical Classification of Documents with Error Control 437

Recreation

Sports Dancing

Business

Insurance Financial

Base
Ball

Foot
Ball

Folk
Dance

Rock
Roll

Invet
in S.M

Portf. arr.
of M.F

Service

Fig. 1. A class taxonomy

Algorithm hc recovery oriented(T, d, l)
// T : class taxonomy
// d: document to be classified
// l: difference of the level of HCA and that of the current node
1. HCA ← root(T)
2. Loop
3. CI list ← find CI list(HCA, l)
4. If no of element(CI list) = 1 then
5. result class ← only element of CI list
6. Else
7. result class ← arg maxc∈CI list {local prob(HCA, c) }
8. Endif
9. If result class is leaf Then return result class
10. HCA ← child of HCA who is an ancestor of result class
11. Until forever

Fig. 2. Pseudo code for recovery oriented error control

Fig. 2 shows the pseudo code of the recovery oriented scheme. Before we do
the real classification, the CI of nodes l levels ahead are calculated so the list of
classes that pass the CI test is known. The algorithm will select the optimal path
with maximum local prob(HCA, c) (defined below) among all such classes. If
there is only one class passing the CI test, we jump to that class directly without
further calculations. The functions used are listed below:

find CI list(c, l) Suppose the level of c is i. Return a list of classes at level l+ i that
passes CI test and any leaf classes between level i + 1 and level
i + l − 1 that passes CI test.

local prob(r0, rn) Suppose r0 is an ancestor of rn and the path along r0 to rn is r0

→ r1 → · · · → rn. Return p(r1|r0) p(r2|r1) · · · p(rn|rn−1). In plain
words, we are multiplying the one-step probabilities along r0 to rn

together to get p(rn|r0).

3.2 Error Masking

The error masking scheme is based on the idea behind software fault tolerance.
Instead of detecting error and then performing recovery, we use multiple pro-
grams employing different designs. Among the outputs generated by these pro-

438 C.-h. Cheng et al.

Algorithm hc error mask(T ,d,l,f ,f ′)
// T : class taxonomy
// d: document to be classified
// l: difference of the level of HCA and that of the current node
// f, f ′: two feature lengths for use with two O-classifiers
1. n ← root(T) //level zero
2. level ← l + 1
3. (c1, c2, c3) ← (n, n, n)
4. While c1 is not leaf do
5. Start three threads:
6. (i) c1 ← O-classifier(c1, T , d, level, f)
7. (ii) c2 ← N-classifier(n, T , d, level)
8. (iii) c3 ← O-classifier(c1, T , d, level, f ′)
9. Wait the finish of all threads
10. If not (c1 = c2 = c3) Then
11. c1 ← majority of c1, c2 and c3 (take a predefined action, e.g. using c2, if no majority)
12. level ← level + 1
13. n ← child of n who is an ancestor of c1
14. Else
15. level ← level + l
16. n ← c1
17. Endif
18. Endwhile
19. Return c1

Fig. 3. Pseudo code for error masking scheme

grams, the one generated by a majority is considered correct. More programs
will generate more reliable results, but consume more resource.

We adopt a moderate approach. We run three classification methods in paral-
lel. The first and third classifications are hierarchical classifications of traditional
sense. The second classification is performed by dynamically skipping some le-
vels in the class taxonomy. For example, to classify a document based on the
taxonomy in Fig. 1, we can perform an additional classification by first skipping
level 1 (i.e. {Recreation, Business}). Say the three classifications end up with
class ‘Dancing’. We then classify it at node ‘Recreation’. But this time we skip
the left part of level 2, i.e., {Sports, Dancing}. In the following discussion, we
use the terms ‘N-classifier’ and ‘O-classifier’ respectively to refer to the classi-
fiers with and without skipping the levels. The third classification is to employ
O-classifier again but with a different feature length. A majority voting scheme
is used to decide the overall output.

Skipping some levels has the effect of (partially) globalizing the information
for the classification, and therefore can possibly reducing the misclassification
rate. The more levels skipped, the more likely it is to reduce misclassification
rate. In the extreme, if all but the leaf and root levels are skipped, we have
a flat classifier. However, skipping a large number of levels beats one of the
main motivations for using a hierarchical classifier, i.e., handling the complexity
involved in the document classification. Thus a trade-off must be made. How to
make such a trade-off is application dependent and is determined by users. In
general, more levels can be skipped if the taxonomy has a large height but a
small width than the other way around.

Hierarchical Classification of Documents with Error Control 439

Fig. 3 shows the pseudo code for the error masking scheme. At line 11, if
there is no majority formed by the classifiers, a user-defined action should be
taken. For our experiments, this action is to use c2, because usually, this is the
most accurate (and slowest) classifier. Line 15-16 are some optimization codes.
If c1, c2 and c3 all match, we are confident that it is on the right track and so we
can make a bold move — Instead of advancing one level, our algorithm moves l
levels ahead. Some functions used are defined below:

O-classifier(c, T , d, k, f) To classify the document d using O-classifier in the taxo-
nomy T from class c to reach a class in level k or a leaf
class at a level higher than k. The feature length to use in
classification is f .

N-classifier(c, T , d, k) To classify the document d using N-classifier in the taxo-
nomy T from class c to reach a class in level k or a leaf
class at a level higher than k.

4 Performance Evaluation

In this section, we study the performance of the algorithms. We implemented
five document classification algorithms in C++. Our algorithms, namely the re-
covery oriented and the error masking schemes, are compared against simple
hierarchical classification, flat classification and TAPER [4]. We run the experi-
ments on a Sun Enterprise E4500 machine with 12 processors. Response time,
rather than total CPU time, is measured so the error masking scheme can take
advantage of parallelism.

We are interested in data sets with reasonably large class taxonomies, because
the advantages of skipping levels can only be fully exploited in such data sets. We
have chosen the data set of US patents2 because they are organized in a large
taxonomy. Three sets of data are collected from the US patent database. For
convenience, we name them Data 388, Data TAPER and Data Four. Data 388 is
the top-level class numbered 388 (motor control system) on the patent database.
The class taxonomy is formed by all the 98 subclasses under the class 388.
In each subclass, we download at most 20 patents, resulting in 901 patents.
Data TAPER highly resembles a data set used in [4]. The taxonomy of this data
set is shown at Fig. 4(a). There are 12 leaf classes, each of which is a top-level
class in the patent database. There are 500 training patents and 300 validation
patents picked randomly from each leaf. However, since Data TAPER is a three
level data set, it is insufficient to demonstrate all the features of our algorithms
while Data 388 only consists of a small number of patents. In Data Four, we
expand Data TAPER by introducing more classes from the US patent database
and grow the taxonomy by one level. The resulting class taxonomy is shown at
Fig. 4(b).

Fig. 5, 6 and 7 show the accuracy and performance of the different algorithms
on the three data sets. First of all, we achieve 65-70% accuracy in Data TAPER,
2 Available at several places on Internet, e.g. Delphion Intellectual Property Network

(http://www.delphion.com/).

440 C.-h. Cheng et al.

Patent: Communication: 329 Demodulator
332 Modulator
343 Antenna
379 Telephony

Electricity: 307 Transmission
318 Motive
323 Regulator
219 Heating

Electronics: 330 Amplifier
331 Oscillator
338 Resistor
361 System

.

Patent:

Communication: 329 Demodulator
332 Modulator
343 Antenna
379 Telephony

Electricity: 307 Transmission
318 Motive
323 Regulator
219 Heating

Electronics: 330 Amplifier
331 Oscillator
338 Resistor
361 System

Physics and
Chemistry:

Engineering:

Physics: 131 Fluid handling
261 Contact apparatus
096 Gas separation appratus
095 Gas separation process

Chemistry: 422 Chemistry apparatus etc
423 Inorganic compounds
071 Fertilizers
585 Hydrocarbon compounds

(a) Class taxonomy for Data TAPER (b) Class taxonomy for Data Four

Fig. 4. Class taxonomies for some data sets used in the experiments

which is similar to the result in [4]. Among all the experiments, simple hierarchi-
cal classification is always the fastest algorithm and therefore it is the baseline of
our comparison. Generally speaking, it is not justified to use a more complicated
classification scheme unless it is more accurate than the fastest algorithm.

As simple hierarchical classification classifies the document in a greedy man-
ner but TAPER searches the whole tree for the maximum overall probability,
TAPER guarantees at least as good accuracy as simple hierarchical classifica-
tion, although more time is required for the extra search. From the experiments,
however, TAPER gives almost the same accuracy as the simple hierarchical
classification. This result suggests the greedy approach of the simple hierarchi-
cal algorithm is close to optimal. Exhaustive search does not help to boost the
accuracy. If we are to increase the accuracy, there must be a different approach
to classify the documents. This is another reason to skip levels.

Flat classification gives the best accuracy in most cases3. However, from our
experiments, it is clear that this is also the most time consuming algorithm
except in the smallest taxonomy (Data TAPER). Our algorithms stand on a
middle ground between speed and accuracy. Our algorithms consistently beat
TAPER and simple hierarchical algorithms in terms of accuracy. The recovery
oriented scheme even slightly suppresses the flat classification in accuracy on
Data TAPER. However, it does not run fast since the recovery oriented scheme
is essentially doing both a simple hierarchical and flat classification in a three
level data set. In a bigger taxonomy (Data 388 and Data Four), the recovery
oriented scheme is clearly faster than flat classification, and at the same time
more accurate than TAPER and simple hierarchical classification.

Like the recovery oriented scheme, the error masking scheme is also faster
than flat classification and more accurate than TAPER and simple hierarchical
classification in a large taxonomy. When comparing between the two error control
schemes, it is found that there are some cases that either scheme is faster than
the other. Due to parallelism, it is easy to understand why the error masking
scheme is faster. However, the optimization adopted in our implementation also

3 There seems to be no theoretical support for this in the general case. For example,
the contrary is claimed in [4].

Hierarchical Classification of Documents with Error Control 441

0.1

0.2

0.3

0.4

0.5

0.6

0.7

200 400 600 800 1000 1200

A
cc

ur
ac

y

No. of Features per Class

Simple hierarchical
TAPER

Flat
Recovery oriented

Error masking

0

1000

2000

3000

4000

5000

6000

7000

8000

200 400 600 800 1000 1200

R
es

po
ns

e
T

im
e/

se
c

No. of Features per Class

Simple hierarchical
TAPER

Flat
Recovery oriented

Error masking

Fig. 5. Experimental result on Data 388

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

300 400 500 600 700 800 900 1000 1100 1200

A
cc

ur
ac

y

No. of Features per Class

Simple hierarchical
TAPER

Flat
Recovery oriented

Error masking

0

1000

2000

3000

4000

5000

6000

300 400 500 600 700 800 900 1000 1100 1200

R
es

po
ns

e
T

im
e/

se
c

No. of Features per Class

Simple hierarchical
TAPER

Flat
Recovery oriented

Error masking

Fig. 6. Experimental result on Data TAPER

0.6

0.62

0.64

0.66

0.68

0.7

300 400 500 600 700 800 900 1000 1100 1200

A
cc

ur
ac

y

No. of Features per Class

Simple hierarchical
TAPER

Flat
Recovery oriented

Error masking

0

2000

4000

6000

8000

10000

12000

300 400 500 600 700 800 900 1000 1100 1200

R
es

po
ns

e
T

im
e/

se
c

No. of Features per Class

Simple hierarchical
TAPER

Flat
Recovery oriented

Error masking

Fig. 7. Experimental result on Data Four

442 C.-h. Cheng et al.

gives the recovery oriented scheme an edge which explains why the recovery
oriented scheme is faster in many cases. In recovery oriented scheme, if only
one class is found to pass the closeness indicator, we will jump to that class
directly. The one-step probability is not calculated. This is a considerable saving
in running time. In contrast, the error masking scheme always classifies the
document by three different classifiers and the slowest one will determine the
response time. As for accuracy, the error masking scheme, while still ahead of
TAPER and simple hierarchical classification, is often less accurate than the
recovery oriented scheme. As the recover oriented scheme does not require a
multi-processor machine, we feel that the recovery oriented scheme is preferable
over the error masking scheme.

In a serious application, we expect a large class taxonomy. From the expe-
riments, the response time difference between flat and simple hierarchical clas-
sification widens as the size of taxonomy grows. While the accuracy of simple
hierarchical classification may not be satisfactory, switching to flat classification
is too radical and computationally expensive. As our algorithms can be faster
than flat classification at a taxonomy of as low as four levels (Data Four), they
represent a good trade-off between speed and accuracy for most applications.

5 Related Work and Conclusion

Classification has been studied extensively in the last decades [2,3,9,13,15,14,
17,21]. However, most of the work on the classification ignores the hierarchi-
cal structure of classes. In [1], the authors explore the hierarchical structure of
attributes to improve the efficiency, but assume only a single level of classes.
The work reported in [4,12] propose hierarchical classification based on the class
taxonomy in the context of document classification. The work in [20] discusses
document classification without using hierarchical classification. Bayesian net-
work as a model for data mining has been studied in [6,5,10,7]. Feature selections
are discussed in some work [11,16]. The general method is to define a measure
first and then search for a subset of features that optimize this measure. Fisher
Index method in [4] also follows this line, it does so however in a ‘localized’
manner, i.e. one term at a time. Although this local method has the weakness
of not considering the fact that sometimes terms may be related, it does reduce
the complexity when the number of features is very large.

In this paper, we have studied document classification using hierarchical clas-
sifiers with error control capability. We demonstrate that some well established
strategies in other areas can also find a way to enhance the performance in our
context. Two methods are proposed, recovery oriented and error masking. Re-
covery oriented method ‘detects’ an error and rejects it, while error masking
method ‘masks’ an outcome under suspicion by adopting a better one. Our ex-
periments show that both methods consistently reduce the misclassification rate
against TAPER and simple hierarchical classification. The cost is extra running
time, but they are faster than flat classification on a large taxonomy. Our algo-
rithms are suitable for classifying documents into a large taxonomy where the
users are willing to spend the extra time to trade for a higher accuracy.

Hierarchical Classification of Documents with Error Control 443

References

1. H. Almualim, Y. Akiba, S. Kaneda, “An efficient algorithm for finding optimal
gain-ratio multiple-split tests on hierarchical attributes in decision tree learning”,
Proc. of National Conf. on Artificial Intelligence, AAAI 1996, pp 703 - 708.

2. R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer and A. Swami, “An interval classifier
for database mining applications”, Proc. of VLDB, 1992, pp 560 - 573.

3. L. Breiman, J. Friedman, R. Olshen and C. Stone, “Classification and regression
trees”, Wadsworth, Belmont, 1984.

4. S. Chakrabarti, B. Dom, R. Agrawal and P. Raghavan, “Using taxonomy, discrimi-
nants, and signatures for navigating in text databases”, Proc. of the 23rd VLDB,
1997, pp 446 - 455.

5. K. Cios, W. Pedrycz and r. Swiniarski, “Data mining methods for knowledge dis-
covery”, Kluwer Academic Publishers, 1998.

6. P. Cheeseman, J. Kelly, M. Self, “AutoClass: a Bayesian classification system”,
Proc. of 5th Int’l Conf. on Machine Learning, Morgan Kaufman, June 1988.

7. N. Friedman and M. Goldszmidt,“Building classifiers using Bayesian networks”,
Proc. of AAAI, 1996, 1277 - 1284.

8. T. Fukuda, Y. Morimoto and S. Morishita, “Constructing efficient decision trees
by using optimized numeric association rules”, Proc. Of VLDB, 1996, pp 146 - 155.

9. J. Gehrke, R. Ramakrishnan and V. Ganti, “Rainforest - a framework for fast
decision tree construction of large datasets”, Proc. of VLDB, 1998, pp 416 -427.

10. D. Heckerman, “Bayesian networks for data mining”, Data Mining and Knowledge
Discovery, 1, 1997, pp 79 - 119.

11. D. Koller and M. Sahami, “Toward optimal feature selection”, Proc. of Int’l. Conf.
on Machine Learning, Vol. 13, Morgan-Kaufmann, 1996.

12. D. Koller and M. Sahami, “Hierarchically classifying documents using very few
words”, Proc. of the 14th Int’l. Conf. on Machine Learning, 1997, pp 170 - 178.

13. M. Mehta, R. Agrawal and J Rissanen, “SLIQ: a fast scalable classifier for data
mining”, Proc. of fifth Int’l Conf. on EDBT, March 1996

14. J. Quinlan, “Induction of decision trees”, Machine Learning, 1986, pp 81 - 106.
15. J. Quinlan, “C4.5: programs for machine learning”, Morgan Kaufman, 1993.
16. G. Salton, “Automatic text processing, the transformation analysis and retrieval

of information by computer”, Addison - Wesley, 1989.
17. J. Shafer, R. Agrawal and M. Mehta, “Sprint: a scalable parallel classifier for data

mining”, Proc. of the 22nd VLDB, 1996, pp 544 - 555.
18. E. S. Ristad, “A natural law of succession”, Research report CS-TR-495-95, Prin-

ceton University, July 1995.
19. S. Weiss, and C. Kulikowski, “Computer systems that learn: Classification and pre-

diction methods from statistics, neural nets, machine learning and expert systems”,
Morgan Faufman, 1991.

20. K. Wang, S. Zhou and S. C. Liew, “Building hierarchical classifiers using class
proximity”, Proc. of the 25th VLDB, 1999, pp 363 - 374.

21. Y. Morimoto, T. Fukuda, H. Matsuzawa, T. Tokuyama and K. Yoda, “Algorithms
for mining association rules for binary segmentations of huge categorical databa-
ses”, Proc. of VLDB, 1998.

	Introduction
	Document Classification
	Error Control Schemes
	Recovery Oriented Error Handling
	Error Masking

	Performance Evaluation
	Related Work and Conclusion

