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Abstract. Recently, Support Vector Regression (SVR) has been introduced to
solve regression and prediction problems. In this paper, we apply SV R to financial
predictiontasks. Inparticular, thefinancial dataareusually noisy and theassociated
risk is time-varying. Therefore, our SVR model is an extension of the standard
SVR which incorporates margins adaptation. By varying the margins of the SVR,
we could reflect thechangein vol atility of thefinancial data. Furthermore, we have
analyzed the effect of asymmetrical margins so asto allow for the reduction of the
downside risk. Our experimental results show that the use of standard deviation
to calculate a variable margin gives a good predictive result in the prediction of
Hang Seng Index.

1 Introduction

Support Vector Machine (SVM), based on Statistical Learning Theory, was first devel-
oped by Vapnik [46]. It has become a hot topic of intensive study due to its successful
applicationin classificationtasks[[7/8] and regression tasks[5/3], specially ontimeseries
prediction [[1] and financial related applications [2].

When using SVM in regression tasks, the Support Vector Regressor must use a cost
functionto measurethe empirical risk inorder to minimizetheregression error. Although
there are many choices of thelossfunctionsto cal culate the cost, e.g., least modulusloss
function, quadratic loss function, etc., the e-insensitive loss function is such afunction
that exhibits the sparsity of the solution [4]. Typically, this e-insensitive loss function
contains a fixed and symmetrical margin(FASM)term. When the margin is zero or very
small, one runsinto therisk of overfitting the data with poor generalization while when
themarginislarge, one obtainsabetter generalization at therisk of having higher testing
error. For financial data, due to the embedded noise, one must set a suitable margin in
order to obtain agood prediction. This paper focuses on two ways to set the marginsin
SVR.

When applying SVR to time series prediction, the practitioners usually overlook
the choices of the margin setting. For example, in [2], they simply set the margin to 0.
This amounts to the least modulus loss function. Others have just set the margin to a
very small value [5/9/10]. In [1], they applied additional calculations, e.g., validation
techniques, to determine a suitable margin empirically.
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One of the shortcomings of the above methodsis that the marginis symmetrical and
fixed. Consequently, thistechniqueisinsensitive and non-adaptiveto theinput data. This
may result in less-than-optimal performance in the testing data while it obtains a good
result on the training data.

In this paper, we propose to use an adaptive margin in SVR for financial prediction
to minimize the downside risk, which is an essential part in financia prediction with
volatilefinancia data. More specifically, we present two approaches: one uses the fixed
and asymmetrical margins(FAAM), whereas the other uses non-fixed and symmetrical
margins(NASM).

A key difference between FAAM and FASM is that there exist an up and a down
margin that are asymmetrical. In the case of FAAM when the up margin is greater than
the down margin, the predictive results tend to be smaller than the predictive results
which are produced by using FASM.

InNASM, themarginisadaptiveto theinput data. Thereare many possiblechoicesto
set the margin. For example, one may usethen-th order statisticsto cal culatethe margin.
More specifically, we choose the second order statistics, the standard deviation, as our
method to calculate the adaptive margin. This is because that the standard deviation is
frequently used as a measure of the volatility of stock pricesin financial data. When the
stock priceishighly volatile, it has ahigh standard deviation. In financial time seriesthe
noiseis often very large, and wetry to tolerate our prediction by having alarger margin
when the stock priceishighly volatile. On the other hand, a smaller margin may be more
suitable for less volatile stock activities. Hence, our approach avoids the fixed marginin
order to obtain a better prediction result.

The paper is organized as follows. We introduce a genera type of c-insensitive loss
function and give the inferential result in Section[2l We report experiments and results
in Section[3. Lastly, we conclude the paper with abrief discussion and final remarksin
Section[d

2 Support Vector Regression

Given atraining data set, (z1,v1),- .-, (N, yn), Wherez; € X,y; € R, N isthesize
of training data, and X denotesthe space of theinput samples—for instance, R™. Theaim
isto find a function which can estimate all these datawell. SVR is one of the methods
to perform the above regression task [4]3].

In general, the estimation function in SVR takes the following form,

f(z) = (w-¢(z)) +0, D

where (-) denotes the inner product in (2, a feature space of possibly different dimen-
sionality suchthat ¢ : X — 2 andb € R.

Now the question isto determine w and b from the training data by minimizing the
regression risk, R..4( f), based on the empirical risk,

Reeslf) = C 32 T(f (@) = i) + 3w w), @
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where C' is a pre-specified value, I'(-) is a cost function that measures the empirical
risk. In general, the e-insensitive loss function is used as the cost function [4]. For this
function, when the data points arein the range of +«¢, they do not contribute to the output
error. The function is defined as,

0, ity — f2)] <
I(f(x) —y) = { ly — f(z)| — e, atherwiss : ©

In this paper, we introduce a genera type of e-insensitive loss function, which is
given as,

0, if — Egloum <Y; — f(l‘l) < &‘pr
I'(f(zs) —yi) = 8 yi — flo) —&/F, iy — flag) > &7 )
f(@s) —ys — edown if fay) —y; > efown

where ;7 and e¢°“™ correspond to the i-th up margin and down margin respectively.
When €7 and v are both equal to a congtant, for al 4,5 = 1,..., N, Eq. (4)
amounts to the e-insensitive loss function in Eq. B) and it is labeled as FASM (Fixed
and Symmetrical Margin). When e;” = ¢, foral i = 1,..., N and efovm = gdown,
foral j = 1,...,N with ¢"? #£ gdown this case is labeled as FAAM (Fixed and
Asymmetrical Margin). In the case of NASM (Non-fixed and Symmetrical Margin), we
use an adaptive margin for which the up margin equals to the down margin. The last
case is with an adaptive and asymmetrical margin. In this paper, we just consider the
first three cases, i.e., FASM, FAAM, and NASM.

Using the L agrange function method to find the sol ution which minimizestheregres-
sion risk of Eq. (@) with the cost function in Eq. (4), we obtain the following Quadratic
Programming (QP) problem:

o,

TR N
arg min B} Z Z(ai —aj)(aj — o) (d(x;) - d(z;)) + ;(5? = Yi)

i=1 j=1

4 (E;joum + yi)af (5)

-
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—
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subject to
N

> (i —a) =0,0;,0; €10,C], (6)
i=1
where « and «* are corresponding Lagrange multipliers used to push and pull f(z;)
towards the outcome of y; respectively.
Solving the above QP problem of Eq. (5) with constraints of Eqg. (6), we determine
N
the Lagrange multipliers o and o* and obtain w = >_ (a; — o )¢(x;). Therefore the

=1
estimation function in Eq. () becomes

flx) = (= af)(¢(@) - $w:)) +b. (7)
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So far, we have not considered the computation of b. In fact, this can be solved by
exploiting the Karush-Kuhn-Tucker(KKT) conditions. These conditions state that at the
optimal solution, the product between the Lagrange multipliers and the constraints has
to equal to zero. In this case, it means that

a;(e up_"_& i + (
@i (el + &y — (w- <f>(afi)> ~b)=0

g
=
=
+
&
!

®

and

(C—=a)&=0
(C - ;)& =0.

where ¢; and £ are slack variables used to measure the error of up side and down side.
Sinceq; - af = 0 and fi(*) =0 for a§*> € (0,C), b can be computed as follows:

Sy — (w-P(xy)) — e, fora; € (0,0)
b= {yz —(w-o(x3)) + ¢ d"w" ,foraf € (0,C)° ©)

N
Using the trick of kernel function, Eq. (@) can be written as, f(z) = Y (o —

i=1
of)K (z,x;) + b, where the kernel function, K (z, x;) = (¢(z) - ¢(z;)), which isa
symmetric function and satisfies the Mercer’s condition. In this paper, we select a com-
mon kernel function, e.g., RBF function, K (z,z;) = exp(—3|z — z;]*), as the kernel
function.

In the next section, we apply our inferential result of SVR based on the general type
of e-insensitive loss function to the regression of financial data, for example, indices
and stock prices. By applying regression to the data, we can build a dynamic system to
model the data and hence use the system for predicting future prices.

3 Experiments

In this section, we conduct two experimentsto illustrate the effect of FASM, FAAM, and
NASM. Thefirst experiment illustrates the SVM financial prediction with fixed margin,
including FASM and FAAM. The second experiment teststhe SVM financial prediction
with NASM under shift windows.

In our experiment, we use the daily closing price of Hong Kong's Hang Seng Index
(HSI) from January 15, 2001 to June 19, 2001, a total of 104 days' of data points, out
of which 100 data points for training and testing. We set the length of the shift window
to 80. The dynamic system ismodeled as I; = f(I;—4,It—3,1t—2,1;_1), where I, is
the real stock price at time ¢, and 7, is the predictive value at time ¢. Therefore, the first
training data set is from January 15, 2001 to May 22, 2001, a total of 84 days of HSI.
We use them to predict the next day’s HSI. This window is then shifted and an entire
training is performed again to predict the following day’s HSI for the remaining testing
data
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The SVR agorithm used in our experiment is modified from LibSVM [10]. Before
running the algorithm, we need to determine some parameters. They are C, the cost
of error; 3, parameter of kernel function, and the margins. After performing a cross-
validation inthefirst training data, we set C' = 6000, 3 = 2724, Since different margins
will affect the results of prediction, we use different values in our tests. Furthermore
we use the following three error defl nitions to measure the testi ng errors error =
3 Sy (=T errorpes = 1 Zt WA L), errorney = 57 Zt 1,1,<T, (It_

L), where M isthe size of the testing data and error reflects the total risk, erroryos
reflects the upside risk and error,. reflects the downside risk respectively.

The experiments are conducted on a Pentium 4, with 1.4 GHZ, 512M RAM and
Windows2000. With these configurations, the predictive results are obtained within sec-
onds.

In thefirst experiment we use different valuesfor up margin and down margin to test
the effect of FASM and FAAM. We show the setting of the margin in the second and
third columns of Table[dl, and report the corresponding errorsin the last three columns.
In al but the first and the last margin setting, their overall margin widths are the same,
i.e, e 4 gdown — 150, This allows us to have a fair comparison of the four cases.
From the Table[ll we can see that the errorp,s gradualy increases with the increase
of £“P. At the same time, with the increase of <, we alow for more errors above the
predictive values. Thusthe error,., decreases. Interms of the overall error, it increases
and then decreases again. This indicates that neither a narrow margin for the upside nor
the downside would be desirable in terms of the overal error.

In the second experiment, after considering the volatility of thefinancial data, we set
the up margin and down margin both equal to the standard deviation of the input vector
x to perform the prediction. The predictive error of the experiment with the NASM is
reported in the last row of Table[d and the result showsthat thetotal error is significantly
decreased comparing with the fixed ones.

Table 1. Experiment Results

|Case\ gyp \Ed"“’” H error ‘errorpos ‘errorneg ‘

0 0 134.59 | 56.46 78.13
50| 100 || 131.96| 49.44 | 8252
75| 75 | 129.03| 60.47 | 68.56
100| 50 || 129.96| 73.44 56.52
150, 0 || 135.64| 101.28 | 34.36

oc| o |[116.19| 53.29 | 62.90

O 0 | WIN| -

4 Discussion and Conclusion

In this paper, we present ageneral type of e-insensitiveloss function in SVR and outline
the various margins used, i.e., FASM, FAAM and NASM. Using Hong Kong's HSI as
the data set for SV R with different types of margins, we have the following conclusions:
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Oneinteresting observation isthat neither the up margin nor the down margin would
affect the error unilaterally. This can be seen from the results of Case 2 to Case 5
in Table[d

Another interesting observation is that from the point of view of the downsiderisk,
Case5inTable[llisagood result sinceitserrory.4, whichisrelated to the downside
risk, is minimum. In practice, we can reduce the downside risk by increasing the up
margin while decreasing the down margin.

In the NASM case, we find that using standard deviation to calculate the margin,
which can reflect the change in volatility of the financial data, results in the best
prediction in our experiment since this result hasaminimal error.
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