Branching Competitive Learning for Clustering

Irwin King

Department of Computer Science and Engineering
The Chinese University of Hong Kong
Shatin, New Territories, Hong Kong
Email: king@cse.cuhk.edu.hk

Abstract

This paper presents a novel modification to the
classical Competitive Learning (CL) by adding a
Branching and Merging Criteria so that the esti-
mated number of cluster centers can increase over
time until it reaches a good approrimation of the
number of data clusters. This technique shows a
faster convergence to the approrimate cluster cen-
ters, and more importantly, shows the ability to
estimate the number of clusters in the input data
distribution. We illustrate the formulation of the
branching criteria and demonstrate the efficiency
of our Branching Competitive Learning (BCL) for
data clustering through a set of experiments.

1 Introduction

Competitive Learning (CL) for data clustering,
as an adaptive version of the classical K-mean clus-
tering, has many applications in the fields such as
clustering analysis, pattern recognition [1], and im-
age coding based on vector quantization [5]. Re-
cently, CL and its modification RPCL (Rival Pe-
nalized Competitive Leaning) [7, 6] were used by
some researchers [3, 4] in the applications of image
database indexing to speed up image information
retrieval.

One of the key problems in most clustering algo-
rithms whether it is CL and K-mean is that the
number of clusters must be appropriately prese-
lected; otherwise, these clustering algorithms may
have poor performance. For example, one may
over- or under-estimate the number of clusters and
this can result in unfavorable outputs. By now,
how to correctly and efficiently estimate the num-
ber of clusters in a data distribution is still an open
problem, although this can be tackled in a sense by
some heuristic techniques, e.g., ISODATA [2], or by
RPCL [7].

In RPCL, a “push-pull” mechanism is adopted
to drive the correct number of moving centers (or
synaptic weight vectors of neural units) towards the
relevant cluster centers. The “pull” mechanism is
similar to the mechanism found in CL which draws
the winner moving to a randomly selected input

Huilin Xiong

Department of Mathematics
Huazhong University of Science and Technology
Wuhan, Hubei, China
Email: hlxiong@cse.cuhk.edu.hk

data point. On the other hand, the “push” mech-
anism repels the second winner (or the rival) away
from the randomly selected input data point. This
procedure can be expressed by:

D4+1) = Boll) + el - Telt)

for ¢ = argminj'yjﬂ? —w|)?
Do+1) = Do) +an(® — B (0)

for r = argminj#'yjﬂ? — 4|
wit+1) = @)

for j #e¢,r (1)

where @ is a randomly selected input data point, ¢
represents the current step of competitive learning,
a. and «a, are the learning rates for the push and
pull factor respectively (usually o, > «,), and ~;
is the frequency that ﬁj wins the competition up
to now.

Many experiments have shown that RPCL can
work well provided that the parameters are prop-
erly tuned beforehand. Experimentally, the param-
eter tuning in RPCL depends on the data distri-
bution and the algorithm is sensitive to the prese-
lected number of clusters and the initialization of
the weight vectors.

In this paper, we present a novel modification
to the classical Competitive Learning by adding
a branching mechanism where a new center (or
weight vector) can be spawned off from a previous
center. Our clustering scheme starts from one cen-
ter (seed), and then this seed will split to form other
new centers during the process of competitive learn-
ing. In this way, the number of branching centers
can be increased to approximate the actual number
of clusters in input data to give a good clustering
result. FExperimentally, this Branching Competi-
tive Learning (BCL) scheme shows a faster conver-
gence of weight vectors to the approximate cluster
centers, and more importantly, it demonstrates the
ability to estimate the number of clusters in the
input data distribution. We will illustrate the for-
mulation of the branching criteria and demonstrate
the novel ability of BCL through a set of experi-
ments.

Figure 1: An illustration of the procedure of the
BCL algorithm when the inital seed is branched
into three centers to accommodate the three clus-
ters.

In the next section, we will detail the branching
criteria. The experiments can be found in Section 3.
We will then make some final remarks in the con-
clusion section.

2 Branching Competitive Learning
In this section, we present a branching criteria
in competitive learning and detail the algorithm of
our Branching Competitive Learning for clustering.
2.1 Branching Criteria
Given a data distribution which has two clusters,
if the preselected cluster number in the classical CL
algorithm is set to one, it is obvious that the unique
moving center will display an oscillating behavior
when it comes near the two data clusters and the
procedure of competitive learning cannot converge.
Intuitively, if a new center can be spawned off from
the original one somewhere along its trajectory, the
procedure of the competitive learning will converge
faster and a good clustering result can be given by
CL algorithm. The situation for more clusters is
similar to this, which can be illustrated by Fig. 1.
In BCL, there are two conditions for a seed or a
moving center to branch off a new center. The first
is the Angle Criterion which is based on the angle
between its current moving direction and the pre-
vious one of the center. The second is the Distance
Criterion which is based on the distance between
the input data @ and winner &p:
LH{ZH) - W, TH—1)—.)
12) = Foll- I[P (= 1) =]

> $o
> dy (2)

where ¢y and dp are angle and distance criteria
thresholds to control the branching process respec-
tively.

We call the above conditions Branching Criteria.
Usually, the threshold g in the first inequation of
the branching criterion is set to 90°, and therefore,
the first condition of Eq. (2) becomes

() —Fo) - (Bt—1)-T) <0. (3

The second condition of the branching criteria (2)
can be viewed as a stopping criteria for centers
branching, because when a moving center enters the
interior of a cluster, this condition cannot be met
anymore, and therefore, the moving center will just
move toward the center of the cluster and cannot
split again.

2.2 The Algorithm of Branching Com-
petitive Learning

Combining the branching criteria (2) and clas-
sical competitive learning, we formulate the algo-
rithm of our Branching Competitive Learning be-
low:

1. Initialize the “seed” or the first moving center.

2. Randomly select a sample 7 from data set,
find the winner W, of current competition
in the set of moving centers {@;} (j =
1,2,---,n), that is ¢ = argminj'yjﬂ? - ;|3
where v; is the frequency that @; wins the
competition up to now.

3. if &, satisfies the branching criteria (2), a new
moving center jn-l—l is spawn off from @.:

jn+1 = ﬁc + ac(? - jc)
otherwise, update @. by @, + a.(?@ — @.).

In BCL, because there is only one moving center
at the start, the so called dead unit problem in clas-
sical CL will not appear. Moreover, as there is no
other rivals at first, the moving center approaches
the data set faster than CL and RPCL, and when
it comes near data cluster after some splittings 1t
will moves slowly to approximate the center of data
cluster. In the next section, we will demonstrate
this through a sets of experiments.

3 Experiments

To test the efficiency of our Branching Competi-
tive Learning for the task of estimating cluster num-
ber and clustering data, we conducted three sets
of experiments. The first set of experiments will
examine the ability of our BCL to detect cluster
number. The second set of experiments will show a
natural way to implement a hierarchical or a mul-
tiresolution clustering in BCL scheme. The third
set. of experiments will compare the performances
of BCL and RPCL in terms of accuracy and speed
for data clustering.

Our experimental environment consists of a Pen-
tium IT PC with 128 Meg of internal memory run-
ning on the Windows98 operating system. We im-
plemented the BCL and other related algorithms
for our experiments in Visual C++ 6.0.

3.1 Cluster Number Detection by BCL

In the first set of experiments, we use three 2-
dimensional data sets to test the validity of the
branching criteria for the task of cluster number
detection. Fach data set has 1,000 samples. We fix
the learning rate at a. = 0.05.

Date set 1, as shown in Fig. 2, contains four
clusters of Gaussian distribution with ¢ = 0.5
and centered at (=3, 0), (3, 0), (0, —3), and (0, 3)
respectively. The original moving center (or the
seed) is initialized by random numbers in the in-
terval [5.8,6.0] (Fig. 2(a)), or by random num-
bers in the interval [—6.0, —5.8] (Fig. 2(b)), or by
the point (0,0) (Fig. 2(c)). The threshold of angle
and distance in branching criteria (2) are set with
wo = 90°, dy = 6.0, and convergence tolerance is set
with ¢ = 0.05. Fig. 2 shows the traces of moving
centers and their branching status.

Date set 2, as shown in Fig. 3, is similar to
data set 1, but the centers of the four clusters of
Gaussian distribution are located at (=2, 0), (2, 0),
(0, —2), and (0, 2) respectively. Obviously, the
clusters in data set 2 are closer to each other than
in data set 1. The original moving center is initial-
ized by random numbers in the interval [3.8, 4.0]
(Fig. 3(a)), or by random numbers in the inter-
val [-4.0, —3.8] (Fig. 3(b)), or by the point (0,0)
(Fig. 3(c)). The threshold of angle and distance
in branching criteria (2) are set with ¢y = 90°,
dy = 4.0, and convergence tolerance is set to 0.04.
Fig. 3 shows the traces of moving centers and their
branching status.

In date set 3, as shown in Fig. 4, the centers
of the four clusters of Gaussian distribution are lo-
cated at (—1.5,0), (1.5, 0), (0, —1.5), and (0, 1.5)
respectively. Clearly, there are some overlapping
between clusters of data set 3. The original mov-
ing center is initialized by random numbers in the
interval [2.8, 3.0] (Fig. 4(a)), or by random num-
bers in the interval [—3.0, —2.8] (Fig. 4(b)), or by
the point (0,0) (Fig. 4(c)). The threshold of angle
and distance in branching criteria (2) are set with
wo = 90°, dy = 3.3 ~ 3.5, and convergence toler-
ance is set as data set 2.

From the traces of the moving centers, we can
see that BCL can automatically and correctly de-
tect the number of clusters in data distribution even
for the situation that there are some overlapping
between clusters (Fig. (4)). In the experiments, we
also found that when the clusters have some over-
lapping between them, the parameters dy and the
convergence tolerance £ should be finely tuned to
obtain a good result.

3.2 Multiresolution clustering

The threshold parameter dy plays a key role in
controling the branching process. A large value set-
ting would result in an under estimation of cluster
number. From a viewpoint of multiresolution or hi-

erarchy, this phenomena is natural, because when
we observe the data distributions in a view of large
scale, an aggregation of many different clusters in
small scales could be view as just one cluster. So, in
a sense, the threshold dy acts as a resolution control
on how we view the data distribution. By using it,
we can conveniently implement a multiresolution or
hierachical data clustering.

Here we use a 2-dimension data set, shown in
Fig. 5, to illustrate a multiscale BCL for cluster-
ing. The data set consists of 16 Gaussian distribu-
tions with standard variance (o) 0.8. Each cluster
has 200 samples, and the total number of sample is
3200. Obviously, in a view of relative large scale,
there are just four clusters in the data set. How-
ever, if we view the data set in a smaller scale, we
can find 16 clusters in it.

In this experiment, we conduct a 2-level mul-
tiresolution clustering by BCL scheme. In level 1,
we set the distance threshold of Branching Criteria
2 to be d; = 10.0, which corresponds to the reso-
lution of level 1. In leve 2, the distance threshold
is set to be da = 2.8. The learning rate is fixed at
a = 0.02.

The experimental results are given in Fig. 5,
Fig. 5 (a) shows the original data set. Fig. 5 (b)
shows the learning traces of moving centers in level
1. From it, we can see that in the resolution level 1,
data points are dived into four clusters and the con-
vergent moving centers are correctly located at the
centers of each data clusters. Fig. 5 (c) shows the
learning traces of the further branched moving cen-
ters in resolution level 2, and it can be seen that the
finally detected cluster number is right the correct
number of clusters. Fig. 5 (d) gives the positions of
the cluster centers and the final estimated centers.
It can be seen that the deviations between them are
very small.

3.3 Comparison of BCL and RPCL

We now compare the performance of CL and
RPCL algorithms for data clustering. There are
two metrics we used for comparing them. One is
the accuracy of clustering, which is measured by
the average percentage of correct classification of
data, and the other is the speed or the running
time of the algorithms.

The data used in this set of experiments are 5-
dimensional points. There are four data sets, and
each data set has ten clusters of samples which
come from Gaussian distributions with standard
variance 0.5 or from uniform distributions in 5-
dimension cubes. The total number of samples in
each data set is 2,000, and each cluster contains 200
samples. These data sets are listed below:

e Data set 4: this data set has 2,000 samples
from 5-dimensional uniform distributions. The
centers of the ten clusters are located at (£1.5,

0, 0,0, 0), (0, £1.5, 0, 0, 0), (0, 0, £1.5, 0,

Figure 2: Data set 1 and the branching traces of moving centers.

Figure 3: Data set 2 and the branching traces of moving centers.

Figure 4: Data set 3 and the branching traces of moving centers.

ave. correct | speed (s)
data set 4 94.00 % 97.29
data set b 94.74 % 68.65
data set 6 94.88 % 82.89
data set 7 97.92 % 71.91

Table 1: The average percentage of correct classifi-
cation and speed of RPCL.

0), (0, 0, 0, £1.5, 0), and (0, 0, 0, 0, £1.5)

respectively.

e Data set 5: this data set has 2,000 samples
from 5-dimensional uniform distributions. The
centers of the ten clusters are located at (2,
0,0,0,0), (0, £2, 0, 0, 0), (0, 0, +2, 0, 0), (0,
0,0, £2, 0), and (0, 0, 0, 0, 2) respectively.

e Data set 6: Data set 4: this data set has 2,000
samples from 5-dimensional Gaussian distribu-
tions. The centers of the Gaussian distribu-
tions are (£1.5, 0, 0, 0, 0), (0, +1.5, 0, 0, 0),
(0, 0, £1.5, 0, 0), (0, 0, 0, +£1.5, 0), and (0, 0,
0, 0, £1.5) respectively.

e Data set 7: Data set 4: this data set also
has 2,000 samples from 5-dimensional Gaus-
sian distributions. The centers of the Gaussian
distributions are (+2, 0, 0, 0, 0), (0, £2, 0, 0,
0), (0, 0, +£2, 0, 0), (0, 0, 0, +£2, 0), and (0, 0,
0, 0, £2) respectively.

We set the convergence tolerance with € = 0.04,
and the learning rate a. to 0.05 for RPCL and BCL.
For RPCL, the rival’s learning rate was set from
0.002 to 0.004. For BCL, the threshold dy was set
from 2.5 to 7.5 for uniform distributions, and from
3.8 to 8.0 for Gaussian distributions respectively.

Table (1) and Table (2) show the average cluster-
ing accuracy and speed of RPCL and BCL on data
sets above. The values in each table were calculated
from ten consecutive runs of the algorithm. It can
be seen that BCL converges faster than RPCL, and,
for uniform distributions, BCL gives more accurate
clustering than RPCL. However, for Gaussian dis-
tributions, two of the experiments show almost the
same clustering accuracy. From our experiments,
we observed that the BCL algorithm has a few good
qualities that can be used in some image indexing
applications. We plan to investigate further how
the algorithm would perform under various data
distributions, initial conditions, and various thresh-
olding techniques to maximize the BCL algorithm.

4 Conclusion

We present a novel modification to the classical
Competitive Learning by adding a Branching Cri-
teria so that the number of moving centers can in-
crease over time until it reaches a good approxima-
tion of the number of data clusters. This technique

ave. correct | speed (s)
data set 4 100 % 31.02
data set b 100 % 40.96
data set 6 96.27 % 62.71
data set 7 97.16 % 50.61

Table 2: The average percentage of correct classifi-
cation and speed of BCL

shows a faster convergence to the approximate clus-
ter centers, and more importantly, it is capable of
detecting cluster number in the input data distri-
bution.

References
[1] P.A. Devijiver and J. Kittler. Pattern Recog-

nition - A Statistical Approach. Pretice-Hall,
1982.

[2] A.K. Jain and R.C. Dubes. Algorithm for clus-
tering Data. Prentice-hall, 1988.

[3] T. King and T.K. Lau. Comparison of several
partitioning methods for information retrieval
in image database. Proceedings of the 1997 In-
ternational Symposium on Multimedia Informa-

tion Processing (ISMIP’97), 1997.
[4] T. King, L. Xu, and L.W. Chan. Using rival

penalized competitive clustering for feature in-
dexing in hong kong’s textile and fashion im-
age database. Proceedings of International Joint
Conference on Neural Networks (IJCNN’98),
pages 237-240, 1998.

[6] N. Nasarabadi and R.A. King. ITmage coding us-
ing vector quantization: A review. IEEFE Trans.

Commun., 36(8):957-971, 1988.

[6] L. Xu. Rival penalized competetive learning,
finite mixture, and multisets clustering. Proc.
International Joint conference on Neural Net-

works, 11:2525-2530, May 5-9 1998.

[7] L. Xu, A. Krzyzak, and E. Oja. Rival penalized
competetive learning for clustering analysis, rbf
net, and curve detection. IEEE Trans. on Neu-

ral Networks, 4(4):636-649, July 1993.

12

10+
gl
6l
4l
2L
ok
2l
4
ryn
—gl
—10f
-12
-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
(a) (b)
12 n 12
10 10+ R
[S4
8 81 g
® q
6 61 i
]
4 4t 4
2 21 o @ g
or <2 ® a Q@ B
2 2 o ® 4
—4 a4t i
@
-6 ryn 4
© @
-8 e 4
& data center o
-10 -101 estimated center + 4
—12 _12
-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
(c) (d)

Figure 5: 2-level multiresoution clustering. (a) original data set, (b) one-level BCL clustering, (c) two-
level BCL clustering, and (d) is the final cluster center (in circle) along with the estimated centers (in
cross) returned by the BCL algorithms.

