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Abstract

Efficient and accurate information retrieval is
one of the main issues in multimedia databases.
However, the key for this is how to build an efficient
indexing structure. In this paper, we demonstrate
how to use a fuzzy clustering algorithm, Sequential
Fuzzy Competitive Clustering (SFCC), to get the
natural clusters information from the data. Then
use the information to build an efficient indexing
structure, SFCC-binary tree (SFCC-b-tree). We
will show in the experimental results that SFCC-
b-tree performs better that VP-tree in most of the
cases.

1 introduction
Efficient and accurate information retrieval is one
of the main issues in multimedia databases. The
content-based retrieval lets users to specify queries
by features (or contents) such as color, texture,
sketch and shape to retrieve database objects with
features similar to the queries.

Many content-based retrieval multimedia database
systems have been developed in the past few years.
For example, Montage [1] is an image database
for managing and retrieving that supports content-
based retrieval by color histogram, sketch, texture,
and shape. Query by Image Content (QBIC) [2] al-
lows queries on databases based on color, texture,
and shape of database objects.

1.1 Nearest-neighbor Searching
By using feature vectors, the content-based
retrieval multimedia databases support similar
searching. Applying a suitable distance function to
the feature vectors as the similarity measurement,
the database objects will be ranked according to a
query. The top ranked objects are then retrieved
as the result for similar retrieval. Nearest-neighbor
search is a typical kind of similar searching. In the
feature vector space or the real space, a query can
be seen as a multi-dimensional point (or vector).
Thus, the retrieved objects of this query are the

nearest points around the query point.

An efficient nearest-neighbor search requires an
indexing structure, which generates partitions for
the feature vector space. Based on this indexing
structure, only the objects in one or a few of
partitions instead of in the whole feature vector
space need to be visited during a nearest-neighbor
search. Thus, the key issue of an indexing method
is how to partition the feature space [3].

1.2 Boundary Problem
Typically, data form natural clusters. Also, the
results of nearest-neighbor search and the query
point lies in the same natural cluster. However,
most of the indexing methods for content-based re-
trieval in databases such as R*-tree [4], SR-tree [5],
k-d tree [6], VP-tree [7], MVP-tree [8] does not
consider the natural clusters in the feature space
and often divide the objects in the same natural
cluster into several different nodes. As a result,
these existing indexing methods usually confront
the problem of performance degradation when the
queries lie near the generated partition boundaries.

We build an indexing structure which partitions
feature vector space based on the natural clusters
to decrease the influence of the boundary problem.
In this indexing structure, the partitioning bound-
aries approximately are the natural clustering
boundaries. The nearest-neighbor search on this
indexing structure will become more efficient.

In the next section, we will introduce a noise resis-
tance clustering algorithm, Sequential Fuzzy Com-
petitive Clustering (SFCC). In Section 3, we will
describe about how to build an efficient indexing
structure, SFCC Binary Tree (FCC-b-tree) by us-
ing SFCC. In the same section, we will demonstrate
how to make use of Minimum Boundary Rectan-
gle (MBR), which is the smallest rectangle contain-
ing all the data objects for the node, to perform
nearest-neighbor search efficiently. In Section 4,



some experimental results will be shown. Then we
will come to our discussion and conclusion part in
Section 5 and Section 6 respectively.

2 Fuzzy Clustering Methods for In-
dexing

In this section, We will introduce an efficient fuzzy
clustering algorithm for content based indexing in
order to lessen the boundary problems mentioned
in the previous section.
2.1 Sequential Fuzzy Competitive

Clustering (SFCC)
The sequential is an online clustering algorithm.
Which means that we do not need to get the
whole training data set before clustering. On the
other hand, as the number of data objects exist
in database become larger and larger, it becomes
impossible to use off-line clustering algorithms for
such a database.

The algorithm of SFCC is outlined as follows.

(Step 0) Initialization: Every cluster in SFCC is
describe by a fuzzy prototype. In the initialization,
we randomly pick k points as the k initial cluster
prototype centers and every prototype have the
same variance in each dimension as the initial
variance of the cluster prototypes.

(Step 1) Competition: Randomly pick a data
instance from the training data set, and calculate
its fuzzy membership value for this instance to each
cluster prototype. The membership value of an in-
stance to a cluster is calculated by:

uik = λi × (
a∏

j=1

ujik)1/a , (1)

where a is the the number of attribute and ujik is
the membership value of data instance xk to cluster
i in jth dimension. λi is a value used to prevent
starvation. It is defined as:

λi = 1− (
number of winning by clusteri

number of total loops
) (2)

ujik can be any fuzzy membership function. In
our experiment, we use crisp function as the fuzzy
membership function and it is defined as:

ujik =
σji + 1

σji + dj(i, k) + 1
, (3)

where σji is the variance of ith cluster prototype
in jth dimension. dj(i, k) is the distance between
instance xk and the ith cluster center in jth

dimension.

After calculated the membership value, we find the
winner cluster. The winner cluster is the cluster

with the highest membership value.

(Step 2) Updates: After we found the winner and
rival clusters, we update these cluster prototypes
by:

m
′
w = mw + α × uiw × (xk − mw) , (4)

σ
′
iw = σiw + α × uiw × (dj(i, k)− σiw) , (5)

where mw is the cluster centers of the winner
cluster. σiw is the variance of the winner cluster in
ith dimension. α is the learning rate.

Steps 1 and 2 are iterated until the iteration con-
verges or the number of iterations reaches a pre-
specified value. The final cluster prototypes are the
results of the SFCC.

3 SFCC-b-tree
3.1 Generating Top-Down Indexing

Structure
After the SFCC clustering is finished, the next step
is to build an indexing structure. We realize the
indexing structure using a top-down hierarchical
clustering approach, which clusters the next level
of feature vectors only based on the subset of data
points partitioned in the previous level. Thus,
the hierarchical clustering approach transforms
a feature vector space into a sequence of nested
partitions.

In this approach, the clusters at the same level
do not overlap each other. Therefore, we can use
a tree to describe the relationships between the
different clustering levels. Especially, if we set a
restriction that each set of data points in a level
can only be partitioned into at most two subsets
in the next clustering level, this tree becomes a
binary tree. After clustering, all the feature vectors
are in one cluster at the root level, level 0, and
there are at most 2i subtrees (clusters) at level i.

We can use the binary tree as indexing structure
for nearest-neighbor search. The basic idea is
that, at the root node of the binary tree, a query
vector 
q is compared to the fuzzy prototypes of
the clusters in the immediate lower level. The
child node corresponding to the cluster with 
q
having the highest membership value is selected.
The elements in the selected cluster will be the
result of the query if they satisfy the criteria of
the nearest-neighbor search. Otherwise, the search
will proceed to the lower levels.

Next, we outline the procedure of building a binary
indexing tree using SFCC clustering. We name the
tree SFCC-b-tree, SFCC Binary Tree.



3.2 Building SFCC-b-tree
Given a set of data, we perform top-down SFCC
clustering and build a SFCC-b-tree based on the
clusters. The basic idea is that we apply SFCC
to cluster the data set into two sub-clusters each
time and then continue to do SFCC clustering
hierarchically to each of the sub-clusters until
each of the final sub-clusters contains less than
a pre-specified number of data points. With
these SFCC clusters, we can build a binary tree
structure. There are two kinds of nodes in the
tree: leaf node and non-leaf node.

All nodes contain all the information for the cluster
represented by that node. It includes:

1. Total number of instances in that subtree.

2. Cluster prototype of that cluster node.

3. Minimum boundary rectangle table (MBR),
table for that node.

However, for a non-leaf node, it also contains two
pointers pointing to its the child nodes. While for
a leaf node, it also contains a cluster of at most M
data points calculated by SFCC clustering. M is
the maximum number of data in a leaf node.

The algorithm for building the hierarchical binary
tree by using SFCC clustering is shown belows:

Algorithm 1 BuildTree(D, P , M)
� Input: A set of data objects D, a SFCC-b-tree node P

(P is empty at the first time), and the maximum node

size M

� Output: A SFCC-b-tree
1 if D’s size is greater than M then do
2 create a non-leaf node Q
3 add Q as a child node of P if any
4 use SFCC to cluster D into two sub-sets D1 and

D2

5 BuildTree(D1, Q, M)
6 BuildTree(D2, Q, M)
7 return Q
8 else
9 create a leaf node L for D
10 add L as a child node of P if any
11 return L
12 end if
13 calculate the node information of D and store it in

the corresponding entry of P

3.3 Update of SFCC-b-tree
Considering the update of SFCC-b-tree, we next de-
sign two operations which insert or delete a single
feature vector to or from the SFCC-b-tree without
re-clustering. Next, we show the two update oper-
ations.

3.3.1 Insertion

The basic idea for updating the SFCC-b-tree is
first find out where should the instance located.
Then either add or delete it from the tree. Then
update the information or the node if it is needed.

The performance of the indexing tree for searching
may be reduced after some individual data point
insertions. The more the insertions, the worse the
performance. The reason is that the insertion al-
gorithm dose not fully consider the overall distri-
bution of the inserted data point and the original
data so that it cannot guarantee to keep the nat-
ural clusters. The searching performance will then
be worse. As a result, we may have to rebuild the
indexing structure after a certain amount of data
points have been inserted.

3.3.2 Deletion

Apart from insertion, we can also delete an indi-
vidual feature vector from a SFCC-b-tree.

The deletion algorithm makes the searching per-
formance worse. When the number of deletions
increases, the searching performance will decrease
because node merging will change the original
indexing structure. Sometimes, the resultant
indexing tree will give better searching results es-
pecially when the number of deletions is relatively
small. It is because only a few points are removed
from the indexing tree and it does not affect the
natural clusters and the indexing structure any
more.

Next, we show how to realize retrieval using nearest
nearest-neighbor search based on the SFCC-b-tree
indexing structure.
3.4 Similar Searching in SFCC-b-tree
In SFCC-b-tree, we use a depth first search
algorithm with node pruning to perform similar
search. In the information tag of each node, we
have a minimum boundary rectangle table, which
is the smallest rectangle containing all the data
objects for the node. Also, for each query point,
we use a boundary square to represent the query.
In similar search, datum can be a possible result
of a query only if the distance between the datum
and query point is smaller then a boundary. In
similar range search, it is a pre-defined value while
it is the kth smallest distance in k-nearest neighbor
search, where k is the number of result data points
needed.

As a result, query results will exist in a tree node
P if and only if there exist overlapping between the
query boundary square and the minimum bound-
ary rectangle. Two d-dimensional hyper-cube exist



overlapping, if and only if the following holds:

Rule 3.1 (General Overlapping Rule) Given
two n-dimensional hyper-cube P and Q exist over-
lapping, if and only if P and Q have overlapping
on all the n dimension.

With Rule 3.1, we are able to preform similar
search easily. Here is the searching algorithm for
SFCC-b-tree:

Algorithm 2 SFCC-knnSearch(Q, P , b)
� Input: A query point Q, a SFCC-b-tree node P (P

is the rootnode at the first time), the query boundary

square b (b has infinite length at the first time)

� Output: The set of results for knn similar search R

1 if P and b do not have overlapping then do
2 return R
3 end if
4 if P is a non-leaf node then do
5 Calculate the membership value for Q towards

child node D1 and D2 of P
6 if D1 has higher membership value then

do
7 SFCC-knnSearch(Q, D1, b)
8 SFCC-knnSearch(Q, D2, b)
9 else
10 SFCC-knnSearch(Q, D2, b)
11 SFCC-knnSearch(Q, D1, b)

end if
12 else
13 Perform linear knn search within the leaf node
14 Update R and b
15 return R and b
16 end if

With the knn similar search algorithm, it is very
easy to chage it into range similar search algorithm
by make b be a hyper-square with constant length.

4 Experimental Results
In this section, we are going to define the efficiency
for the SFCC-b-tree indexing method and demon-
strate it through a set of experiments.

Definition 4.1 (Efficiency Measurement)
Let, x is the number of instances reached for
the checked method, y is the number of instances
reached in linear search, and z is the size of data.

efficiency = 1− x

y

= 1− x

z
. (6)

We test our indexing method and compares it with
VP-tree in the following experiments:

1. Data in different dimensions.

2. Different number of total data.

3. Different leaf node size.

4.1 Experiment 1: Data in different di-
mensions

In this section, we will compare the performance
of SFCC-b-tree and VP-tree data in different
dimension. Data set used in this experiment have
a total size of 10,000 data points and 10 clusters
with different number of data points in Gaussian
distribution.

Both the SFCC-b-tree and VP-tree have a leaf node
size of 200. After indexing structure are generated,
we performs 100 queries of knn search to them with
k equal to 100.

4.1.1 Experiments Results

After a series of data retrieval, we calculate their
retrieval performance and found the following:

Table 1: Building time comparison between SFCC-
b-tree and VP-tree in different dimension. (in sec-
ond)

Dimension SFCC-b-tree VP-tree
2 77.62 210.63
5 157.04 287.50
10 261.30 422.05
20 468.29 659.43

Table 2: Running time comparison between SFCC-
b-tree and VP-tree with k equal to 100 in knn
search and different dimension. (in second)

Dimension SFCC-b-tree VP-tree
2 0.03 0.55
5 0.06 1.02
10 0.10 1.75
20 0.14 3.23

Table 3: Efficiency comparison between SFCC-b-
tree and VP-tree with k equal to 100 in knn search
and different dimension.

Dimension SFCC-b-tree VP-tree
2 0.906 0.699
5 0.874 0.577
10 0.830 0.464
20 0.558 0.325

The results are summarized in Figure 1.

4.2 Experiment 2: Different number of
total data.

The dimension of the data set is fixed to 10 and
the leaf node size is set to 200 in this experiment.
Data set used in this experiment have a total size
of various from 1000 to 100,000 data points and
10 clusters with different number of data points in
Gaussian distribution. After indexing structure are
generated, we performs 100 queries of knn search to
them with k equal to 100.



4.2.1 Experiments Results

After a series of data retrieval, we calculate their
retrieval performance and found the following:

Table 4: Building time comparison between SFCC-
b-tree and VP-tree in different data set size. (in
second)

Data set size SFCC-b-tree VP-tree
1000 10.42 3.74
10,000 261.30 422.05
20,000 952.23 1679.73
50,000 2050.67 8145.08

Table 5: Running time comparison between SFCC-
b-tree and VP-tree with k equal to 100 in knn
search and different data set size. (in second)

Data set size SFCC-b-tree VP-tree
1000 0.01 0.19
10,000 0.10 1.75
20,000 0.05 3.46
50,000 0.18 8.42

Table 6: Efficiency comparison between SFCC-b-
tree and VP-tree with k equal to 100 in knn search
and different data set size.

Data set size SFCC-b-tree VP-tree
1000 0.679 0.325
10,000 0.830 0.464
20,000 0.844 0.420
50,000 0.851 0.691

The results are summarized in Figure 2.

4.3 Experiment 3: Different leaf node
size

The dimension of the data set is fixed to 10 and the
data set used in this experiment have a total size of
10,000 and 10 clusters with different number of data
points in Gaussian distribution. Both the SFCC-
b-tree and VP-tree have a leaf node size various
from 100 to 2,000 in experiment 3. After indexing
structure are generated, we performs 100 queries of
knn search to them with k equal to 100.

4.3.1 Experiments Results

After a series of data retrieval, we calculate their
retrieval performance and found the following:

Table 7: Building time comparison between SFCC-
b-tree and VP-tree in different dimension leaf node
size. (in second)

Node size SFCC-b-tree VP-tree
100 523.51 422.99
200 261.30 422.05
500 97.76 409.17
1000 43.15 395.08
2000 18.60 384.23

Table 8: Running time comparison between SFCC-
b-tree and VP-tree with k equal to 100 in knn
search and different leaf node size. (in second)

Node size SFCC-b-tree VP-tree
100 0.09 1.65
200 0.10 1.75
500 0.14 1.88
1000 0.15 1.96
2000 0.17 2.21

Table 9: Efficiency comparison between SFCC-b-
tree and VP-tree with k equal to 100 in knn search
and different leaf node size.

Node size SFCC-b-tree VP-tree
100 0.896 0.496
200 0.830 0.464
500 0.830 0.425
1000 0.824 0.394
2000 0.787 0.325

The results are summarized in Figure 3.

5 Discussion
After three experiments, we have the following con-
clusions.

• About Building Time
The building time increase with:

1. Higher the dimension.

2. Larger the data set.

3. Smaller the leaf node size.

• About Searching Time

1. Higher the dimension, lower the efficiency.

2. Larger the data set, higher the efficiency.

3. Smaller the leaf node size, higher the effi-
ciency.

• SFCC-b-tree performs better than VP-
tree in all the test cases.

The results about the building time is very typi-
cally. Higher dimension and larger data set means
higher complexity, so it needs longer time to build
the indexing structure. In the experiments for
searching time, it shows that larger the data set,
higher the performance. It also shows that smaller
the leaf node size, higher the performance. It is



mainly because they increase the data set size /
leaf node size ratio. On the other hand, as VP-
tree does not consider natural cluster information
in building time. The performance is worse than
SFCC-b-tree.

6 Conclusion
In this paper, we have demonstrate how to use
SFCC to build indexing structure and show that
SFCC-b-tree having a better performance than VP-
tree. We use MBR to prune those nodes do not
contain possible results for a query. However, it
is possible to use some other shape to define the
boundary and it may be the future works for this
project.
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Figure 1: Efficiency comparison between SFCC-b-tree
and VP-tree with k equal to 100 in knn search and
different dimension.
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Figure 2: Efficiency comparison between SFCC-b-tree
and VP-tree with k equal to 100 in knn search and
different data set size.
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Figure 3: Efficiency comparison between SFCC-b-tree
and VP-tree with k equal to 100 in knn search and
different leaf node size.


