
Site-To-Site (S2S) Searching with Query Routing
Using Distributed Registrars

Wan Yeung Wong
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, Hong Kong

wywong@cse.cuhk.edu.hk

Irwin King
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, Hong Kong

king@cse.cuhk.edu.hk

ABSTRACT
Site-To-Site (S2S) searching is a novel Web information retrieval
method which uses peer-to-peer framework with CGI as protocol.
It helps site owners to turn their websites into autonomous search
engines without extra hardware and software costs. Thus, it
improves some shortcomings of Conventional Search Engines
(CSE) such as centralized and outdated indexing by distributing
search engines over websites which maintain their updated local
contents. However, it has query flooding problem. In this work,
we extend S2S searching and propose our query routing algorithm
to solve the query flooding problem by using distributed registrars
for storing content summaries of adjacent sites. We also address
some shortcomings of CSE and introduce S2S searching with
some related work and comparisons. Moreover, we describe the
system architecture and query routing algorithm. Finally, we
summarize the experimental results and show that S2S searching
works well in a large scaled S2S network.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval models,
Search process. H.3.4 [Systems and Software]: Distributed
systems.

General Terms
Algorithms, Performance

Keywords
Search Engine, Web Information Retrieval, Site-To-Site (S2S),
Peer-To-Peer (P2P), Query Routing, Distributed System

1. INTRODUCTION
Information retrieval on the Web is significant. Conventional
Search Engines (CSE) like Google and Yahoo have three
shortcomings. They are (1) centralization of resources used, (2)
outdated search results and (3) no control over information shared
by content owners.

1. Centralization of Resources Used: CSE are centralized which
require powerful servers to handle search requests. They also
need large storage space to store crawled contents and indexes.
Hardware cost is expensive for achieving high performance.
Moreover, CSE have single point of failure.

2. Outdated Search Results: CSE preprocess the search by
crawling Web contents and building corresponding indexes.
Usually, the crawled contents and indexes are outdated as Web
pages are being updated from time to time. So we may have some
dead or outdated links in search results.

3. No Control over Information Shared: CSE crawl published
contents on the Web and make them become searchable without

their owners’ permissions. The owners may only want their
contents to be accessed by their authorized people. Although they
could make their contents escape from crawlers by setting
passwords or removing links in their Web pages, it is inflexible
and requires technical knowledge. In addition, the owners are
unable to alter their ranking strategy for their prioritized contents.
Although they could use meta-tags and different headings in their
contents, it is inflexible and does not guarantee how their contents
are ranked eventually.

1.1 Site-To-Site Searching
We previously proposed a novel Web information retrieval
method called Site-To-Site (S2S) searching [7] which uses Peer-
To-Peer (P2P) framework with CGI as protocol. It helps those site
owners to turn their sites into autonomous search engines without
extra hardware and software costs. It improves the three
aforementioned shortcomings of CSE by providing (1)
decentralized searching, (2) updated search results and (3) full
control over information shared by content owners. In this work,
we extend S2S searching and propose our query routing algorithm
to solve the existing query flooding problem.

1. Decentralized Searching: S2S search engines are
decentralized so they need less powerful machines to handle
search requests and less storage space to store the local index. We
could use a search form in any one of the sites which joins S2S
network to start searching Web contents. The query initiated site
propagates the query request to its adjacent sites. Each site
propagates the request, searches its own Web contents and gathers
search results. Finally, all the search results are propagated back
to the query initiated site which are ranked and displayed to the
users. In addition, there is no single point of failure. If some sites
are down, we could still use other search forms in other sites.

2. Updated Search Results: S2S search engines always provide
most updated search results because each site maintains its own
local index which is always up-to-date. When a local content in a
site is updated, the corresponding index is recalculated. So we do
not have any dead and outdated link in search results.

3. Full Control over Information Shared: S2S search engines
allow site owners to fully control their information shared as they
become administrators of their own search engines. They could
selectively disable their published contents to be searchable for
achieving the privacy. They could also prioritize their own
contents and alter their ranking strategy of their own search
engines for advertising and ranking their contents in a more
customized way. However, adjusting the priorities of their
contents in other sites’ search results is not allowed in order to
prevent cheating.

2. RELATED WORK
1. Gnutella [1]: It is a file sharing protocol which applies pure
P2P paradigm without any centralized component. Its model is
very similar to S2S searching but Gnutella is designed for
searching files in personal computers instead of websites. We
extend this model for information retrieval on the Web. Moreover,
Gnutella has the query flooding problem which generates a lot of
network traffic and wastes the resources of all irrelevant peers. On
the other hand, S2S searching solves this problem by applying the
proposed query routing algorithm.

2. YouSearch [4]: It is a Web search engine which is designed
for searching contents in the network of personal Web servers,
while S2S search engine targets on more general Web servers.
YouSearch applies hybrid P2P paradigm which depends on a
centralized registrar to summarize contents of each peer. Each
peer creates its own content summary and pushes the summary to
the registrar. When we search for contents by a peer, it queries the
registrar to obtain a list of relevant peers. Although this model
solves the query flooding problem, using centralized registrar is
not scalable and it introduces registrar flooding problem. On the
other hand, S2S searching solves these problems by applying
distributed registrars.

3. CAN [5] and Chord [2]: Distributed infrastructures of both
CAN and Chord use Distributed Hash Table (DHT) to map a
filename to a key. Each peer is responsible for storing a certain
range of key-value pairs. When a peer searches for a file, it hashes
the filename to a key and asks the peers responsible for this key
for the actual storage location of that file. For S2S searching, each
site stores content summaries of its adjacent sites. When a site
searches for contents, it matches the keywords with content
summaries and calculates scores of adjacent sites. Query is only
routed to the sites with high scores.

Query Starter
(web interfaces)

Searcher
(CGI program)

request
ID

peers
info

local
index

rank
info

Peer Threads
Producer

Ranker

Keywords
Matcher

peers’ searching CGI

local searching CGI

black
list

peers’
joining CGI

Figure 1. System Architecture

3. ARCHITECTURE AND ALGORITHMS
3.1 System Architecture
S2S searching includes a search engine core together with some
CGIs for sites to communicate with each other. It also includes
administration pages for site owners to administrate their search
engines, and Web interfaces for search engine users to search for
Web contents and then display results. We focus on the core
module which has five components (rectangular boxes) as shown
in Figure 1.

1. Query Starter: It provides Web interfaces for search engine
users to search the target information. When it receives a query
request from the search form, it first generates a unique request ID.
Then the ID is passed to the local searching CGI together with the
keywords and other parameters in the search form. The local
searching CGI program searches the target information in the

local site and also forwards the query request to adjacent sites.
Two sites are adjacent if and only if they know the addresses
(starting URLs) of each other. It returns a list of results to the
query starter together with the starting URLs of the sites that
contain any document which similarity is greater than the
configurable quality threshold. The query starter joins those high
quality sites by calling their joining CGIs. Finally, it forwards the
results to the ranker and outputs the ranked results.

2. Searcher: It is the entry point of the local searching CGI.
When it receives a query request, it first checks whether the
requester is in the black list which is a list of banned IP addresses.
After passing the black list test, the searcher checks whether the
request ID exists in the file in order to ignore repetitive requests.
If it passes the request ID test, the searcher adds the current
request ID to the file and checks whether Time-To-Live (TTL)
value from the CGI parameters is greater than zero. If it is, then
the searcher asks the peer threads producer to route the query
request to adjacent sites. At the same time, it asks the keywords
matcher to search local contents by giving the keywords. The
peer threads producer and keywords matcher work in parallel.
After some time, both of them return results which include
documents’ and sites’ information. The searcher then gathers
these results and returns to the requester.
3. Peer Threads Producer: It is responsible for spawning threads
to route a query request to adjacent sites. When it is called by the
searcher, it spawns a requested number of threads. After
spawning the threads, each one calls a unique site’s searching
CGI and waits for its return. The starting URLs of the sites are
stored in the peers information file. Since the waiting time for
other sites to return their results is dominant, the peer threads
producer is always idle after sending the query request to all
adjacent sites. So the keywords matcher gets full CPU resource to
search local contents at that time. Finally, the peer threads
producer finishes waiting all threads to join and returns the
gathered results to the searcher.
4. Keywords Matcher: It is responsible for searching local
contents by giving keywords. When it is called by the searcher, it
extracts the keywords and tries to match with the local index
stored in the file. Once it matches, the similarity is calculated. To
index a document, we extract its words and calculate the
corresponding term frequencies by

)(max

)()(
1 k

N
k

i
i

wf
wfwTF

=
= , (1)

where f(w) is the frequency of the word w and N is the number of
different words in the document. To match the keywords, we
calculate the similarity of the document by

 ∑
=

=
n

i
is

n
sim

1

1 where , (2)
⎪⎩

⎪
⎨
⎧ =∃

=
otherwise 0

 if)(ijwj
i

kwwTF
s j

n is the number of different keywords and k is a given keyword.
Finally, the keywords matcher returns the results to the searcher.
5. Ranker: It is responsible for ranking search results based on
priorities and similarities of documents which are real numbers
between zero and one. Priorities are stored locally. Therefore,
only local documents take effect of their priority values because
site owners should have right to advertise their documents in their
own search engines. Other site owners are not allowed to rank
their documents higher in other sites by setting higher priorities.
This avoids cheating. If a document does not belong to a site, it is
always set to the normal priority. The final ranking value is

calculated by rank = p × priority + s × sim where p + s = 1. The
ranking parameters p and s are real numbers between zero and
one which are configurable by site owners according to their
preferences. Finally, the ranker sorts the search results in
descending order by the ranking value. The ranked results are
returned to the query starter.

3.2 Query Routing Algorithm
P2P search engine like YouSearch routes a query by looking up a
centralized registrar which summarizes the contents of each peer.
However, it has two problems. (1) It depends on the centralized
registrar which is not scalable. The centralized registrar also
needs to store many data of all peers. (2) It has registrar flooding
problem because all peers query the centralized registrar from
time to time. Moreover, when peers update their local contents,
they also push their content summaries to the centralized registrar.
In order to solve the query flooding problem in S2S searching, we
improve the method of YouSearch and propose our own query
routing algorithm which is fast and scalable. The idea is to
distribute registrars over sites. Each site manages its own registrar
which contains content summaries of all adjacent sites. This
model solves the aforementioned scalability problem of
YouSearch.
Content Summary Generation: The registrar is a file which
contains starting URLs as IDs of adjacent sites and their
corresponding content summaries. The content summary of a site
is a fixed size hash table which stores the scores of different
words of all documents in a site. We define the content summary
as S = {si | si ∈ ℜ ∧ 0 ≤ si ≤ 1 ∧ 1 ≤ i ≤ n} where n is the number
of blocks in the hash table. In order to obtain an even distribution,
n should be a prime number. In our S2S system, n is 2,047. Given
a lower-cased alpha-numerical word w, the hash function of S is
defined as

 , (3))(mod 96)-(27)(
1

1 ncwH
l

i
i

i
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∑

=

−

where l is the length of w. In our S2S system, the maximum value
of l is fixed to thirteen to prevent integer overflow. If the ith
character is a number, then ci is fixed to 96. Otherwise, ci is the
ASCII code of the alphabet. To build a content summary, we
traverse index files and get the information about the words and
frequencies. Let N be the total number of different words in a site.
We define the word set as W = {wi | 1 ≤ i ≤ N}. For each word wi
in W, its total frequency f(wi) of all documents is calculated. We
define the word importance of the ith word relative to the whole
site as

)(max

)(
)(

1 k
N
k

i
i

wf
wf

wI
=

= . (4)

We also define the hash set of all words which has the same hash
code i as HSi = {wj | wj ∈ W ∧ H(wj) = i}. Then the ith element of
the content summary is calculated by

⎪
⎪
⎩

⎪⎪
⎨

⎧ >
=

∑
∈

otherwise 0

0 if)(i
HSw

j
i

i

i

HSwI
HS
CL

s
ij

 where 1−= ii HSCL . (5)

Actually si not only stores the average word importance for all wj
in HSi, but also stores the confidence level CLi which is inversely
proportional to the number of collisions in si. So the above
equation already handles all collisions. When we compare si in
different sites, the larger value of si has, the more important and
confident the word wj appears in that site.

Score Calculation: When a site needs to route a query, it first
looks up its own registrar. For each content summary S in the
registrar, it calculates the score of an adjacent site with the given
lower-cased alpha-numerical keywords. Let m be the number of
different keywords. We define the keyword set as K = {ki | 1 ≤ i ≤
m}. The total score of a site, which is normalized between zero
and one, is defined as

 ∑
=

=
m

i
kH i

s
m

score
1

)(
1 . (6)

After calculating scores of d adjacent sites, a list of relevant sites
with some false positives is obtained. It routes the query to x sites,
which have the highest scores, such that x = ⎡f ⋅ d⎤ where the
traffic reduction factor f is a real number between zero and one
for reducing the network traffic. For example, if f is 0.2 and the
current site has ten adjacent sites, then the query message is
routed to the two sites which have the highest scores.
Infrequent Query Flooding: The proposed algorithm greatly
solves the query flooding problem. However, it has two
shortcomings. (1) The search is incomplete because not all sites in
the same S2S network within a specific TTL receive the query
request. So they are unable to search their local contents and
return their results to the requester. (2) The results obtained are
local optimal because the proposed algorithm performs a greedy
search. Not all sites search their local contents and return their
results. So the requester is unable to obtain global optimal results.
We understand there is no free lunch in this world. So we make a
balance between query routing and flooding. We enable
infrequent query flooding in a site with a small probability p. So
when it receives a query request, it has the probabilities p and 1-p
to use the query flooding and query routing algorithms
respectively. With infrequent query flooding, the proposed
algorithm improves the search to be semi-complete and semi-
global optimal.
Registrar Maintenance: In order to maintain most updated
content summaries, we propose our registrar maintenance
algorithm. Recall that every site stores its adjacent sites’ content
summaries in its own registrar. It is necessary for adjacent sites to
send their updated content summaries if their contents are updated.
So when a site updates its local contents, it recalculates its local
index and also content summary. If the updated content summary
is different from the old one, then it broadcasts its updated content
summary to all adjacent sites by calling their updating CGIs. This
model does not introduce the aforementioned registrar flooding
problem of YouSearch because usually update is infrequent and it
only disturbs adjacent sites in one level.

4. EXPERIMENTS AND DISCUSSIONS
There are three experiments. (1) We measure the indexing and
searching time in a local site. (2) We also measure the S2S
searching time in one thousand sites. (3) Finally, we measure the
quality of the hash function (see Equation 3) in the query routing
algorithm. We run the experiments on several computers of Sun
Blade 1000 with Solaris 8, Java 1.4.2 and Jakarta Tomcat 3.3.1 as
Web server. They have fast network speed (100Mbps) to simulate
those Web servers which are placed in data centers. On the other
hand, they have slow file I/O speed as they only use Network File
System (NFS) instead of local raid-disks. Their overall
performances are less than those dedicated Web servers.

1. Local Indexing and Searching Time: To conduct this
experiment, we randomly select thirty-one HTML posters in the

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 50 100 150 200 250 300 350 400 450
Document Size (KB)

Ti
m

e
(s

ec
on

ds
)

Index Search

Figure 2. Local Indexing & Searching Time

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

0 200 400 600 800 1000
Number of Sites

Ti
m

e
(s

ec
on

ds
)

Figure 3. S2S Searching Time

379

521

437

312

141

64
27 16 3 1

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9
Number of Collisions

Fr
eq

ue
nc

y

Figure 4. Quality of Hash Function

5. CONCLUSIONS AND FUTURE WORK twelfth International World Wide Web Conference (WWW2003)
[6]. The total document size of the text data to be indexed and
searched is 441KB. We incrementally add the document size from
11KB to 441KB and measure the corresponding indexing and
searching time with some random keywords (see Figure 2).
Indexing and searching both take linear time. From the
experimental results, we know that the indexing algorithm is
acceptable in time and the searching algorithm is very fast.
Actually the bottleneck is in the file I/O as we store the
documents and index in NFS.

In this paper, we focus on the extended S2S searching and
proposed query routing algorithm. We also address the
shortcomings existed in CSE. Then we introduce some related
work with some comparisons. Moreover, we describe the system
architecture with some algorithms. Finally, we summarize the
experimental results which measure the performance of local
indexing and searching, S2S searching and the quality of the hash
function in the proposed query routing algorithm. From these
results, S2S searching works well in a large scaled S2S network.
Since S2S technology is a new topic, there are some research
could be done in the future. We plan to integrate some security
algorithms because the system does not check if the requests are
from the trusted sites. We may also extend S2S searching to
include multimedia information retrieval like Discovir [2].

2. S2S Searching Time: We conduct this experiment by
simulation. The local searching time of each site is fixed to 0.1
second. The total number of sites to be searched is one thousand
which are evenly distributed in two computers. We incrementally
add the number of sites from one hundred to one thousand and
measure the total searching time (see Figure 3). The time
measured is the worst case that every site has only one degree of
fan-out so that the query request is oscillated between the two
computers through the network. From the experimental results,
we know that S2S searching is efficient in a large scaled S2S
network. Each of the two computers needs to handle five
hundreds requests and they still work well. In the real world, the
sites are usually distributed in different Web servers and a
dedicated Web server could handle a lot of requests within a short
time. The efficiency is due to the fact that the searching process is
highly distributed and is done in parallel. The bottleneck is in the
local searching process which could still be improved by applying
a better local searching algorithm.

6. ACKNOWLEDGMENTS
The work described in this paper was fully supported by grants
from the Research Grants Council of the Hong Kong Special
Administrative Region, China (Project No. CUHK 4351/02E and
CUHK 2050259).

7. REFERENCES
[1] Gnutella website. http://www.gnutella.com
[2] I. King, C. H. Ng, and K. C. Sia. Distributed Content-Based

Visual Information Retrieval System on Peer-to-Peer
Networks. In ACM Transactions on Information Systems
(TOIS), Volume 22, Issue 3, 2004.

[3] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.
Balakrishnan. Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications. In Proceedings of ACM
SIGCOMM, 2001.

3. Quality of Hash Function: To conduct this experiment, we
use those thirty-one HTML posters in WWW2003 again. There
are 2,047 blocks in the hash table. After removing the stop words,
the total number of different words to be hashed is 5,423. For an
even distribution, each block should have about 1.65 collisions.
We measure the actual number of collisions in each block (see
Figure 4). There are 1,901 blocks used. The usage is about 93%.
The average number of collisions is about 1.85 with standard
deviation 1.53. About 70% of blocks have two or less collisions.
From the experimental results, we know that the hash function is
acceptable in quality. The total usage is very high so that it is
efficient. The average number of collisions is only a bit more than
the ideal number of collisions with quite less standard deviation.
So it is quite evenly distributed. Actually, the quality of the hash
function depends on l and n (see Equation 3). If they are larger,
then the quality is higher but the calculation time and memory
requirement are more.

[4] M. Bawa, R. J. Bayardo, S. Rajagopalan, and E. J. Shekita.
Make it Fresh, Make it Quick – Searching a Network of
Personal Webservers. In Proceedings of 12th International
World Wide Web Conference, 2003.

[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker. A Scalable Content-Addressable Network. In
Proceedings of ACM SIGCOMM, 2001.

[6] The 12th International World Wide Web Conference website.
http://www.www2003.org

[7] W. Y. Wong. Site-To-Site (S2S) Searching Using the P2P
Framework with CGI. In Proceedings of 13th International
World Wide Web Conference, 2004.

	INTRODUCTION
	Site-To-Site Searching

	RELATED WORK
	ARCHITECTURE AND ALGORITHMS
	System Architecture
	Query Routing Algorithm

	EXPERIMENTS AND DISCUSSIONS
	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

