
Midterm Summary

CSCI2100A Data Structures

April 11st, 2016

Written Midterm

• Participant: 122

• Make-up: 2

• Absent: 0

Summary of results

• Mean: 81.3

• Standard deviation: 13.7

• Highest: 100 (5 students)

• You can check your paper at SHB 1024 during
office hours (don’t take it away).

Programming Midterm

• Participant: 124

• Absent: 0

• Afternoon session: 7

• Evening session: 117

• Total attempt/solved: 808/305

• Average solved: 2.5

Summary of results

Problem Solved Number of Students

7 1

6 3

5 7

4 12

3 39

2 29

1 22

0 11

Summary of results (cont.)

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7

N
u

m
b

e
r

o
f

St
u

d
e

n
ts

Problems Solved

Summary of results (cont.)

Problem ID Number of Students

A 104

B 91

C 68

D 17

E 12

F 12

G 1

Summary of results (cont.)

0

20

40

60

80

100

120

A B C D E F G

N
u

m
b

e
r

o
f

St
u

d
e

n
ts

Problem ID

A – Word Game

• Difficulty: Easy

• String manipulation

• One for-loop

B – Number Pyramid

• Difficulty: Easy

• Array

– 2 one-dimension arrays are enough. Why?

• Nested for-loops

C – Valid Parentheses

• Difficulty: Easy

• Stack

– push(x)

– pop()

– isEmpty()

D – Lone Survivor

• Difficulty: Medium

• 𝑛 ≤ 1000 => 𝑂(𝑛3) algorithm is acceptable
– Linked list (deletion)

– Array
• person[]: 1 to n

• deleted[]: 0 or 1

• Josephus problem
– Best time complexity 𝑂(𝑛2) with DP

E – Colors of Balloons

• Difficulty: Medium

• String hashing: time complexity 𝑂(𝑛)

• One example of hash function

– Given string 𝑠

– 𝑓 𝑠 = (𝑖𝑛𝑡 𝑠 𝑖 ∗ 𝑖 + 1𝑖) 𝑚𝑜𝑑 𝑃

F – Binary Tree Level Order Traveral

• Difficulty: Medium

• Tree traversal: given pre-order and in-order,
you need to reconstruct the tree structure

• Queue

– insert root into queue, cur_pos = 0

– insert left node and right node of queue[cur_pos]
into queue (if any)

– cur_pos += 1

G – Find Median from Data Stream

• Difficulty: Hard

• The key idea is to use two heaps to store the
small half and big half

• Always keep small.size()=large.size() or
small.size()=large.size()+1

• How to perform addNum(x) and findMedian()?

