Deep Learning Basics
Lecture 2: Backpropagation

Princeton University COS 495

Instructor: Yingyu Liang

How to train the dragon?

How to get the expected output

» (x;0)#0

Loss of the system
[(x;0) = 1(fg,%,¥)

How to get the expected output

Find direction d so that:

> l(x;0+d) =0

Loss [(x; 0 + d)

How to get the expected output

How to find d: [(x; 0 + ev) = [(x;0) + VI(x; 8) = ev for small scalar €

> l(x;0+d) =0

Loss [(x; 0 + d)

How to get the expected output

Conclusion: Move 6 along —VI(x; 6) for a small amount

> l(x;0+4d)

Loss [(x; 0 + d)

Neural Networks as real circuits

Pictorial illustration of gradient descent

Gradient

* Gradient of the loss is simple
° E.g., l(fg;x,y) — (fg(X) _y)Z/Z
c 5= e -2

* Key part: gradient of the hypothesis

Open the box: real circuit

Single neuron

@
@

>gf_,

Function: [= x; — x»

Single neuron

Function: [= x; — x»
Gradient: o =1, 9f = -1

axl axZ

TwO neurons

Function: f = x; — x, = x1 — (x5 + x4)

TwO neurons

® - ; |
%—1\ f

d0x3 X,
/ 1
@ -
dx,
6_x4 -

Function: f = x; — x, = x1 — (x5 + x4)
axZ axZ

Gradient: — 1,—= = 1. What about — -

a.X'3 aX4

of

x3

TwO neurons

Function: f = x; — x, = x1 — (x5 + x4)

Gradient: 2 = 2L 9% _ _4

aX3 - axZ aX3

Multiple input

Function: f = x; — xy = x1 — (x5 + x5 + x4)

. 0
Gradlent:ﬁ =1
aXS

Multiple input

Function: f = x; — xy = x1 — (x5 + x5 + x4)

Gradient: 2 = 2L 9% _ _4

0Xs a JXxg 0X3

Weights on the edges

Function: f = x; — xy = x7 — (W3Xx3 + wyx,)

Weights on the edges

Function: f = x; — xy = x1 — (W3x3 + wyx,)

Weights on the edges

Function: f = x; — xy = x7 — (W3Xx3 + wyx,)

. i af . af 6x2
Gradlent.aWB = 9%, ows

:—1XX3:_X3

Activation

Function: f = x; — xy, = x1 — 0(W3x3 + Wyx,)

Activation

Function: f = x; — xy, = x1 — 0(W3x3 + Wyx,)
Let net, = w3x3 + wyx,

Activation

anetz
M@
f q
0x,
= o0 net
dnet,

@ -

Function: f = x; — xy, = x1 — 0(W3x3 + wyx,)
af df 0Jdx, OJdnet,

Gradient:— =
6W3 axZ anetz 6W3

=—1X0'" Xx3=—0"x3

Activation

f —

@ -

Function: f = x; — xy, = x1 — 0(W3x3 + wyx,)

: of d0f O0x, Jdnet, / /
Gradient:— = = —1X0 Xx2=—0'X%
6W3 axZ anetz 6W3 3 3

Multiple paths
@ =

@ -

ne
/ o
@ -

Function: f = x; — xy = (x1+x5) — o(W3x3 + wyx,)

Multiple paths

Function: f = x; — xy = (x1+x5) — o(W3x3 + wyx,)

Multiple paths

Function: f = x; — x5, = (x3+x5) — o(W3x3 + wyx,)

: of d0f O0x, OJdnet, df 0xq ; p
— = = —1Xo X 1X1 =— 1
Gradient ox. ~ ox, anet, ox, + P o' X w3+ o'ws +

Summary

* Forward to compute [
* Backward to compute the gradients

@

f—>

Math form

Gradient descent

 Minimize loss L(8), where the hypothesis is parametrized by 8

e Gradient descent
* Initialize 6
* Ory1 =0, — mVi(Ht)

Stochastic gradient descent (SGD)

e Suppose data points arrive one by one
« L(6) = % 10, xt,y:), but we only know (6, x;, V) at time t

* |dea: simply do what you can based on local information
* Initialize 6,
* Ory1 = 0 — VIO, X, Vi)

Mini-batch

* Instead of one data point, work with a small batch of b points

(xtb+1,ytb+1)/"v (xtb+b,ytb+b)

e Update rule

1
Oiy1 =0 — 1V (E Z l(gt:xtb+i'ytb+i))

1<i<b

e Typical batch size: b = 128

