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Matrix Completion Problem
 Problem: given a partially-observed noisy matrix M, we 

would like to approximately complete it.

 Application: recommendation systems
 Mu,i is rating of item i by user u.
 Naturally sparse: most are unknown.
 We want to estimate unrated items.
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Low-rank Assumption
 Common practice: low-rank assumption.

 Incomplete SVD: 

Observed Unobserved

≈
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Ordering Problem
 Motivation: we usually care about relative order of 

preference, not exact score.
 Order items according to the (partial) preferences of 

a given user.
 Example: for the following user who rated 4 ratings,

5 3 3 4
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Talk Agenda & Contribution
 Paired loss functions

 How to solve ordering problem?

 Local Low-Rank Assumption
 Why and how to tackle diminishing returns?

 Algorithm
 Should be scalable for big data.

 Experimental analysis
 Two frameworks.
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Ordering Function
 Learn an ordering function f , such that f(u, i) > f(u, j)

if Mu,i > Mu,j.
 Not necessarily f(u, i) ≈ Mu,i.

 Pair-wise Loss function L(ΔM, Δf)

 ΔM = Mu,i－Mu,j : difference of observed ratings.
 Δf = fu,i－fu,j: difference of estimated ratings.



7

Pair-wise Loss L(ΔM, Δf)
 Zero-one loss

 Assigns (same) positive loss when ΔM Δf < 0.
 Not differentiable.

 Multiplicative Additive

Log-loss ΔM log(1 + e－Δf) log(1 + eΔM－Δf)

Exp-loss ΔM exp{－Δf} exp{ΔM－Δf}
Hinge-loss ΔM [－Δf]+ [ΔM－Δf]+
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Global Approximation
 With f(u, i) = [UVT]u,i, solve matrix factorization 

problem with respect to a paired loss L.

 We model using form,

so as to minimize a pair-wise loss. 



9

Diminishing Returns
 Small improvement as capacity increases.



10

Why diminishing returns?
 Hypotheses

 H1: M has low rank; it reflects best possible prediction.
 H2: M has high rank; diminishing returns due to over-fitting, 

or convergence to a poor local optimum.

 In recommendation systems,
 H2 is a realistic assumption.
 H1 is unrealistic globally, but it’s realistic locally.

 The rating matrix is only locally low-rank.
 Low-rank only with subset of similar users and items.



11

Local Low-rank Matrix Approx.

Users

Items

+

+

+ +

[Lee et al, 2013 ICML]
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Learning Algorithm
 Repeat:

 Step 1:
 Step 2:
 Step 3:

U

V

Select an anchor point.
Calculate user/item weight using kernel smoothing.
Solve a weighted matrix factorization problem.
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 Run in Parallel:
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Evaluation
 Goal: Recommend most preferable items based on 

precise estimation of order of preference.

 Criteria
 Zero-One Error: the ratio of correctly ordered test pairs.
 Average Precision: the ratio of preferred items in the list.
 NDCG@k: optimality of the order of recommendation list.

 Dataset: MovieLens, EachMovie, Yelp
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Data Split
 Fixed ratio

 For each user, 50% of ratings are used for training, rest of 
them are for testing.

 More realistic: take cold/cool-start users into account.
 Used to see effects of parameters.

 Fixed number
 Users with more than 20 ratings are considered. 10 ratings are 

used for training, and rest of them are for testing.
 More stable: consider users with sufficient ratings only.
 Widely used in literature with N=10.
 Used to compare with existing methods.
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Effect of Capacity
Zero-one: With higher 
dimension, converges 
slowly.

AvgP, NDCG: With 
higher dimension, it 
less overfits.

All: With higher 
dimension, ultimate 
performance is better.
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Effect of Number of Local Models
Zero-one: With more 
local models, 
converges slowly.

AvgP, NDCG: With 
more local models, it 
less overfits.

All: With more local 
models, ultimate 
performance is better.
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Effect of Loss Functions

Zero-one: Hinge[A], 
Log[A] performs best.

AvgP, NDCG: Log[M], 
Exp[M] performs best.

All: Convergence and 
overfitting depends on
loss function.
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Comparison with other methods

Method Average 
Precision NDCG@10

M
ov

ie
Le

ns CofiRank 0.6632 0.6502

GCR (SVD with ranked loss) 0.7209 0.6990

LCR 0.7406 0.7152

Ea
ch

M
ov

ie CofiRank 0.7491 0.6635

GCR (SVD with ranked loss) 0.7088 0.6998

LCR 0.7307 0.7166

Ye
lp

CofiRank 0.7246 0.6997

GCR (SVD with ranked loss) 0.7754 0.7465

LCR 0.7903 0.7575
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Take-home Messages
 In recommendation systems, the rating matrix is low-

rank only locally.

 Local low-rank assumption is realistic for ordering 
problem as well as rating prediction.

 LCR (Local Collaborative Ranking) algorithm is highly 
parallelizable and scalable.
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Source code available soon!
 PREA toolkit: http://prea.gatech.edu
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