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Matrix Completion Problem

= Problem: given a partially-observed noisy matrix M, we
would like to approximately complete it.

= Application: recommendation systems

M,; is rating of item i by user u. ltems

Naturally sparse: most are unknown. 3
We want to estimate unrated items. 2 .
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Low-rank Assumption

= Common practice: low-rank assumption.
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Ordering Problem

= Motivation: we usually care about relative order of
preference, not exact score.

= Order items according to the (partial) preferences of
a given user.
= Example: for the following user who rated 4 ratings,
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Talk Agenda & Contribution

Paired loss functions
How to solve ordering problem?

Local Low-Rank Assumption
Why and how to tackle diminishing returns?

Algorithm
Should be scalable for big data.

Experimental analysis
Two frameworks.
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Ordering Function

= Learn an ordering function f, such that f(u, 1) > f(u, j)
if My; >M,;.
Not necessarily f(u, i) = M.

= Pair-wise Loss function L(4M, Af)
E(f)=Y Y L(M,i— M, f(ui)— f(u,j))

w  (i,7)EM,

AM =M, ;—M,;: difference of observed ratings.
Af = 1,; —f,;: difference of estimated ratings.
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Pair-wise Loss L(4M, Af)

= Zero-one loss

Assigns (same) positive loss when AM Af'< 0.
Not differentiable.

Multiplicative Additive

Log-loss AM log(1 + e~ %) log(1 + e4M ~4/)

Exp-loss AM exp{ — 41} exp{4aM —Af} \
Hinge-los AM [ —Af], [AM —Af],
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Global Approximation

= With f(u, i) = [UV'],;, solve matrix factorization
problem with respect to a paired loss L.

miny Y L(Myi — My, [UVT ]y — [UVT )

T e
2 (i,7)€ M,

= Wemodel ::::::000000 using form,

so as to minimize a pair-wise loss.
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Diminishing Returns

= Small improvement as capacity increases.

SVD performance on Netflix data (480K x 18K matrix)
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Why diminishing returns?

= Hypotheses
H1: M has low rank; it reflects best possible prediction.

H2: M has high rank; diminishing returns due to over-fitting,
or convergence to a poor local optimum.

= In recommendation systems,
H2 is a realistic assumption.
H1 is unrealistic globally, but it's realistic locally.

= The rating matrix is only locally low-rank.
Low-rank only with subset of similar users and items.

|| Georgialne  (Goc 8[(_ amazon

10



Local Low-rank Matrix Approx.

ltems

Users
o o

[Lee et al, 2013 ICML]
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Learning Algorithm

= Run in Parallel:
Step 1: Select an anchor point.
Step 2: Calculate user/item weight using kernel smoothing.
Step 3: Solve a weighted matrix factorization problem.

Item Weight
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Evaluation

= Goal: Recommend most preferable items based on
precise estimation of order of preference.

= Criteria
Zero-One Error: the ratio of correctly ordered test pairs. ‘
Average Precision: the ratio of preferred items in the list. "‘
NDCG@k: optimality of the order of recommendation list. f

= Dataset: MovielLens, EachMovie, Yelp
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Data Split

s Fixed ratio

For each user, 50% of ratings are used for training, rest of
them are for testing.

More realistic: take cold/cool-start users into account.
- Used to see effects of parameters.

s Fixed number

Users with more than 20 ratings are considered. 10 ratings are
used for training, and rest of them are for testing.

More stable: consider users with sufficient ratings only.
Widely used in literature with N=10.
- Used to compare with existing methods.
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Comparison with other methods

Method AVEEEE NDCG@10
Precision
2 CofiRank 0.6632 0.6502
.FS'J GCR (SVD with ranked loss) 0.7209 0.6990
S LCR 0.7406 0.7152
2 CofiRank 0.7491 0.6635
(®)
= GCR (SVD with ranked loss) 0.7088 0.6998
(&
S LCR 0.7307 0.7166
CofiRank 0.7246 0.6997
o
E) GCR (SVD with ranked loss) 0.7754 0.7465
LCR 0.7903 0.7575
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Take-home Messages

= In recommendation systems, the rating matrix is low-
rank only locally.

= Local low-rank assumption is realistic for ordering
problem as well as rating prediction.

= LCR (Local Collaborative Ranking) algorithm is highly
parallelizable and scalable.
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Source code avallable soon!

= PREA toolkit: http://prea.gatech.edu
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Overview  Features Download Tutoral Documentation API  Authors Last updated 2013-06-13

PREA: Personalized Recommendation Algorithms Toolkit

News and Events

06/13/2013  Version 1.2 updated! LLORMA is avaiable now! New:
05/18/2012 A comparative study paper updated on arXiv.
04/20/2012  Version 1.1 updated!

07/06/2011  Mew zlgorithm added: Non-linear Matrix Factorization

06/01/2011  The webste opened!
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