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Abstract

Although the standard formulations of prediction problems involve fully-observed and noise-
less data drawn in an i.i.d. manner, many applications involve noisy and/or missing data,
possibly involving dependencies. We study these issues in the context of high-dimensional
sparse linear regression, and propose novel estimators for the cases of noisy, missing, and/or
dependent data. Many standard approaches to noisy or missing data, such as those using the
EM algorithm, lead to optimization problems that are inherently non-convex, and it is difficult
to establish theoretical guarantees on practical algorithms. While our approach also involves
optimizing non-convex programs, we are able to both analyze the statistical error associated
with any global optimum, and prove that a simple projected gradient descent algorithm will
converge in polynomial time to a small neighborhood of the set of global minimizers. On
the statistical side, we provide non-asymptotic bounds that hold with high probability for the
cases of noisy, missing, and/or dependent data. On the computational side, we prove that
under the same types of conditions required for statistical consistency, the projected gradient
descent algorithm will converge at geometric rates to a near-global minimizer. We illustrate
these theoretical predictions with simulations, showing agreement with the predicted scalings.

1 Introduction

In standard formulations of prediction problems, it is assumed that the covariates are fully-observed and sam-
pled independently from some underlying distribution. However, these assumptions are not realistic for many
applications, in which covariates may be observed only partially, observed with corruption, or exhibit dependen-
cies. Consider the problem of modeling the voting behavior of politicians: in this setting, votes may be missing
due to abstentions, and temporally dependent due to collusion or “tit-for-tat” behavior. Similarly, surveys often
suffer from the missing data problem, since users fail to respond to all questions. Sensor network data also tends
to be both noisy due to measurement error, and partially missing due to failures or drop-outs of sensors.

There are a variety of methods for dealing with noisy and/or missing data, including various heuristic meth-
ods, as well as likelihood-based methods involving the expectation-maximization (EM) algorithm (e.g., see the
book [1] and references therein). A challenge in this context is the possible non-convexity of associated opti-
mization problems. For instance, in applications of EM, problems in which the negative likelihood is a convex
function often become non-convex with missing or noisy data. Consequently, although the EM algorithm will
converge to a local minimum, it is difficult to guarantee that the local optimum is close to a global minimum.

In this paper, we study these issues in the context of high-dimensional sparse linear regression, in the case
when the predictors or covariates are noisy, missing, and/or dependent. Our main contribution is to develop and
study some simple methods for handling these issues, and to prove theoretical results about both the associated
statistical error and the optimization error. Like EM-based approaches, our estimators are based on solving
optimization problems that may be non-convex; however, despite this non-convexity, we are still able to prove
that a simple form of projected gradient descent will produce an output that is “sufficiently close”—meaning as
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small as the statistical error—to any global optimum. As a second result, we bound the size of this statistical
error, showing that it has the same scaling as the minimax rates for the classical cases of perfectly observed and
independently sampled covariates. In this way, we obtain estimators for noisy, missing, and/or dependent data
with guarantees similar to the usual fully-observed and independent case. The resulting estimators allow us to
solve the problem of high-dimensional Gaussian graphical model selection with missing data.

There is a large body of work on the problem of corrupted covariates or errors-in-variables for regression
problems (see the papers and books [2, 3, 4, 5] and references therein). Much of the earlier theoretical work
is classical in nature, where the sample size n diverges with the dimension p held fixed. Most relevant to this
paper is more recent work that has examined issues of corrupted and/or missing data in the context of high-
dimensional sparse linear models, allowing for n � p. Städler and Bühlmann [6] developed an EM-based
method for sparse inverse covariance matrix estimation in the missing data regime, and used this result to
derive an algorithm for sparse linear regression with missing data. As mentioned above, however, it is difficult
to guarantee that EM will converge to a point close to a global optimum of the likelihood, in contrast to the
methods studied here. Rosenbaum and Tsybakov [7] studied the sparse linear model when the covariates are
corrupted by noise, and proposed a modified form of the Dantzig selector, involving a convex program. This
convexity produces a computationally attractive method, but the statistical error bounds that they establish scale
proportionally with the size of the additive perturbation, hence are often weaker than the bounds that can be
proved using our methods.

The remainder of this paper is organized as follows. We begin in Section 2 with background and a precise
description of the problem. We then introduce the class of estimators we will consider and the form of the
projected gradient descent algorithm. Section 3 is devoted to a description of our main results, including a pair
of general theorems on the statistical and optimization error, and then a series of corollaries applying our results
to the cases of noisy, missing, and dependent data. In Section 4, we demonstrate simulations to confirm that our
methods work in practice. For detailed proofs, we refer the reader to the technical report [8].
Notation. For a matrix M , we write ‖M‖max := maxi,j |mij | to be the elementwise `∞-norm of M . Further-
more, |||M |||1 denotes the induced `1-operator norm (maximum absolute column sum) of M , and |||M |||op is the
induced `2-operator norm (spectral norm) of M . We write κ(M) := λmax(M)

λmin(M) , the condition number of M .

2 Background and problem set-up

In this section, we provide a formal description of the problem and motivate the class of estimators studied in
the paper. We then describe a class of projected gradient descent algorithms to be used in the sequel.

2.1 Observation model and high-dimensional framework

Suppose we observe a response variable yi ∈ R that is linked to a covariate vector xi ∈ Rp via the linear model

yi = 〈xi, β∗〉+ εi, for i = 1, 2, . . . , n. (1)

Here, the regression vector β∗ ∈ Rp is unknown, and εi ∈ R is observation noise, independent of xi. Rather than
directly observing each xi ∈ Rp, we observe a vector zi ∈ Rp linked to xi via some conditional distribution:

zi ∼ Q(· | xi), for i = 1, 2, . . . , n. (2)

This setup allows us to model various types of disturbances to the covariates, including

(a) Additive noise: We observe zi = xi + wi, where wi ∈ Rp is a random vector independent of xi, say
zero-mean with known covariance matrix Σw.

(b) Missing data: For a fraction ρ ∈ [0, 1), we observe a random vector zi ∈ Rp such that independently
for each component j, we observe zij = xij with probability 1 − ρ, and zij = ∗ with probability ρ.
This model can also be generalized to allow for different missing probabilities for each covariate.

Our first set of results is deterministic, depending on specific instantiations of the observed variables
{(yi, zi)}n

i=1. However, we are also interested in proving results that hold with high probability when the
xi’s and zi’s are drawn at random from some distribution. We develop results for both the i.i.d. setting and the
case of dependent covariates, where the xi’s are generated according to a stationary vector autoregressive (VAR)
process. Furthermore, we work within a high-dimensional framework where n � p, and assume β∗ has at most
k non-zero parameters, where the sparsity k is also allowed to increase to infinity with the sample size n. We
assume the scaling ‖β∗‖2 = O(1), which is reasonable in order to have a non-diverging signal-to-noise ratio.
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2.2 M -estimators for noisy and missing covariates

We begin by examining a simple deterministic problem. Let Cov(X) = Σx � 0, and consider the program

β̂ ∈ arg min
‖β‖1≤R

{1
2
βT Σxβ − 〈Σxβ∗, β〉

}
. (3)

As long as the constraint radius R is at least ‖β∗‖1, the unique solution to this convex program is β̂ = β∗. This
idealization suggests various estimators based on the plug-in principle. We form unbiased estimates of Σx and
Σxβ∗, denoted by Γ̂ and γ̂, respectively, and consider the modified program and its regularized version:

β̂ ∈ arg min
‖β‖1≤R

{1
2
βT Γ̂β − 〈γ̂, β〉

}
, (4)

β̂ ∈ arg min
β∈Rp

{1
2
βT Γ̂β − 〈γ̂, β〉+ λn‖β‖1

}
, (5)

where λn > 0 is the regularization parameter. The Lasso [9, 10] is a special case of these programs, where

Γ̂Las :=
1
n

XT X and γ̂Las :=
1
n

XT y, (6)

and we have introduced the shorthand y = (y1, . . . , yn)T ∈ Rn, and X ∈ Rn×p, with xT
i as its ith row. In

this paper, we focus on more general instantiations of the programs (4) and (5), involving different choices of
the pair (Γ̂, γ̂) that are adapted to the cases of noisy and/or missing data. Note that the matrix Γ̂Las is positive
semidefinite, so the Lasso program is convex. In sharp contrast, for the cases of noisy or missing data, the most
natural choice of the matrix Γ̂ is not positive semidefinite, hence the loss functions appearing in the problems (4)
and (5) are non-convex. It is generally impossible to provide a polynomial-time algorithm that converges to a
(near) global optimum of a non-convex problem. Remarkably, we prove that a simple projected gradient descent
algorithm still converges with high probability to a vector close to any global optimum in our setting.

Let us illustrate these ideas with some examples:
Example 1 (Additive noise). Suppose we observe the n × p matrix Z = X + W , where W is a random
matrix independent of X , with rows wi drawn i.i.d. from a zero-mean distribution with known covariance Σw.
Consider the pair

Γ̂add :=
1
n

ZT Z − Σw and γ̂add :=
1
n

ZT y, (7)

which correspond to unbiased estimators of Σx and Σxβ∗, respectively. Note that when Σw = 0 (corresponding
to the noiseless case), the estimators reduce to the standard Lasso. However, when Σw 6= 0, the matrix Γ̂add is
not positive semidefinite in the high-dimensional regime (n � p) of interest. Indeed, since the matrix 1

nZT Z

has rank at most n, the subtracted matrix Σw may cause Γ̂add to have a large number of negative eigenvalues.
Example 2 (Missing data). Suppose each entry of X is missing independently with probability ρ ∈ [0, 1), and
we observe the matrix Z ∈ Rn×p with entries

Zij =
{

Xij with probability 1− ρ,
0 otherwise.

Given the observed matrix Z ∈ Rn×p, consider an estimator of the general form (4), based on the choices

Γ̂mis :=
Z̃T Z̃

n
− ρ diag

( Z̃T Z̃

n

)
and γ̂mis :=

1
n

Z̃T y, (8)

where Z̃ij = Zij/(1−ρ). It is easy to see that the pair (Γ̂mis, γ̂mis) reduces to the pair (Γ̂Las, γ̂Las) for the standard
Lasso when ρ = 0, corresponding to no missing data. In the more interesting case when ρ ∈ (0, 1), the matrixeZT eZ

n in equation (8) has rank at most n, so the subtracted diagonal matrix may cause the matrix Γ̂mis to have a
large number of negative eigenvalues when n � p, and the associated quadratic function is not convex.

2.3 Restricted eigenvalue conditions

Given an estimate β̂, there are various ways to assess its closeness to β∗. We focus on the `2-norm ‖β̂−β∗‖2, as
well as the closely related `1-norm ‖β̂−β∗‖1. When the covariate matrix X is fully observed (so that the Lasso
can be applied), it is well understood that a sufficient condition for `2-recovery is that the matrix Γ̂Las = 1

nXT X
satisfy a restricted eigenvalue (RE) condition (e.g., [11, 12, 13]). In this paper, we use the following condition:
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Definition 1 (Lower-RE condition). The matrix Γ̂ satisfies a lower restricted eigenvalue condition with curva-
ture α` > 0 and tolerance τ`(n, p) > 0 if

θT Γ̂θ ≥ α` ‖θ‖2
2 − τ`(n, p)‖θ‖2

1 for all θ ∈ Rp. (9)

It can be shown that when the Lasso matrix Γ̂Las = 1
nXT X satisfies this RE condition (9), the Lasso estimate

has low `2-error for any vector β∗ supported on any subset of size at most k . 1
τ`(n,p) . Moreover, it is known

that for various random choices of the design matrix X , the Lasso matrix Γ̂Las will satisfy such an RE condition
with high probability (e.g., [14]). We also make use of the analogous upper restricted eigenvalue condition:

Definition 2 (Upper-RE condition). The matrix Γ̂ satisfies an upper restricted eigenvalue condition with
smoothness αu > 0 and tolerance τu(n, p) > 0 if

θT Γ̂θ ≤ αu‖θ‖2
2 + τu(n, p)‖θ‖2

1 for all θ ∈ Rp. (10)

In recent work on high-dimensional projected gradient descent, Agarwal et al. [15] use a more general form of
bounds (9) and (10), called the restricted strong convexity (RSC) and restricted smoothness (RSM) conditions.

2.4 Projected gradient descent

In addition to proving results about the global minima of programs (4) and (5), we are also interested in
polynomial-time procedures for approximating such optima. We show that the simple projected gradient descent
algorithm can be used to solve the program (4). The algorithm generates a sequence of iterates βt according to

βt+1 = Π
(
βt − 1

η
(Γ̂βt − γ̂)

)
, (11)

where η > 0 is a stepsize parameter, and Π denotes the `2-projection onto the `1-ball of radius R. This
projection can be computed rapidly in O(p) time, for instance using a procedure due to Duchi et al. [16]. Our
analysis shows that under a reasonable set of conditions, the iterates for the family of programs (4) converges to
a point extremely close to any global optimum in both `1-norm and `2-norm, even for the non-convex program.

3 Main results and consequences

We provide theoretical guarantees for both the constrained estimator (4) and the regularized variant

β̂ ∈ arg min
‖β‖1≤b0

√
k

{1
2
βT Γ̂β − 〈γ̂, β〉+ λn‖β‖1

}
, (12)

for a constant b0 ≥ ‖β∗‖2, which is a hybrid between the constrained (4) and regularized (5) programs.

3.1 Statistical error

In controlling the statistical error, we assume that the matrix Γ̂ satisfies a lower-RE condition with curvature
α` and tolerance τ`(n, p), as previously defined (9). In addition, recall that the matrix Γ̂ and vector γ̂ serve
as surrogates to the deterministic quantities Σx ∈ Rp×p and Σxβ∗ ∈ Rp, respectively. We assume there is a
function ϕ(Q, σε), depending on the standard deviation σε of the observation noise vector ε from equation (1)
and the conditional distribution Q from equation (2), such that the following deviation conditions are satisfied:

‖γ̂ − Σxβ∗‖∞ ≤ ϕ(Q, σε)

√
log p

n
and ‖(Γ̂− Σx)β∗‖∞ ≤ ϕ(Q, σε)

√
log p

n
. (13)

The following result applies to any global optimum β̂ of the program (12) with λn ≥ 4 ϕ(Q, σε)
√

log p
n :

Theorem 1 (Statistical error). Suppose the surrogates (Γ̂, γ̂) satisfy the deviation bounds (13), and the matrix
Γ̂ satisfies the lower-RE condition (9) with parameters (α`, τ`) such that

√
k τ`(n, p) ≤ min

{ α`

128
√

k
,

ϕ(Q, σε)
2 b0

√
log p

n

}
. (14)
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Then for any vector β∗ with sparsity at most k, there is a universal positive constant c0 such that any global
optimum β̂ satisfies the bounds

‖β̂ − β∗‖2 ≤ c0

√
k

α`
max

{
ϕ(Q, σε)

√
log p

n
, λn

}
, and (15a)

‖β̂ − β∗‖1 ≤ 8 c0 k

α`
max

{
ϕ(Q, σε)

√
log p

n
, λn

}
. (15b)

The same bounds (without λn) also apply to the constrained program (4) with radius choice R = ‖β∗‖1.

Remarks: Note that for the standard Lasso pair (Γ̂Las, γ̂Las), bounds of the form (15) for sub-Gaussian noise
are well-known from past work (e.g., [12, 17, 18, 19]). The novelty of Theorem 1 is in allowing for general
pairs of such surrogates, which can lead to non-convexity in the underlying M -estimator.

3.2 Optimization error

Although Theorem 1 provides guarantees that hold uniformly for any choice of global minimizer, it does not
provide any guidance on how to approximate such a global minimizer using a polynomial-time algorithm.
Nonetheless, we are able to show that for the family of programs (4), under reasonable conditions on Γ̂ sat-
isfied in various settings, a simple projected gradient method will converge geometrically fast to a very good
approximation of any global optimum.
Theorem 2 (Optimization error). Consider the program (4) with any choice of radius R for which the constraint
is active. Suppose that the surrogate matrix Γ̂ satisfies the lower-RE (9) and upper-RE (10) conditions with
τu, τl � log p

n , and that we apply projected gradient descent (11) with constant stepsize η = 2αu. Then as
long as n % k log p, there is a contraction coefficient γ ∈ (0, 1) independent of (n, p, k) and universal positive
constants (c1, c2) such that for any global optimum β̂, the gradient descent iterates {βt}∞t=0 satisfy the bound

‖βt − β̂‖2
2 ≤ γt‖β0 − β̂‖2

2 + c1
log p

n
‖β̂ − β∗‖2

1 + c2‖β̂ − β∗‖2
2 for all t = 0, 1, 2, . . .. (16)

In addition, we have the `1-bound

‖βt − β̂‖1 ≤ 2
√

k ‖βt − β̂‖2 + 2
√

k ‖β̂ − β∗‖2 + 2 ‖β̂ − β∗‖1 for all t = 0, 1, 2, . . .. (17)

Note that the bound (16) controls the `2-distance between the iterate βt at time t, which is easily computed
in polynomial-time, and any global optimum β̂ of the program (4), which may be difficult to compute. Since
γ ∈ (0, 1), the first term in the bound vanishes as t increases. Together with Theorem 1, equations (16) and (17)

imply that the `2- and `1-optimization error are bounded as O(k log p
n ) and O

(
k
√

log p
n

)
, respectively.

3.3 Some consequences

Both Theorems 1 and 2 are deterministic results; applying them to specific models requires additional work to
establish the stated conditions. We turn to the statements of some consequences of these theorems for different
cases of noisy, missing, and dependent data. A zero-mean random variable Z is sub-Gaussian with parameter
σ > 0 if E(eλZ) ≤ exp(λ2σ2/2) for all λ ∈ R. We say that a random matrix X ∈ Rn×p is sub-Gaussian
with parameters (Σ, σ2) if each row xT

i ∈ Rp is sampled independently from a zero-mean distribution with
covariance Σ, and for any unit vector u ∈ Rp, the random variable uT xi is sub-Gaussian with parameter at
most σ.

We begin with the case of i.i.d. samples with additive noise, as described in Example 1.
Corollary 1. Suppose we observe Z = X + W , where the random matrices X, W ∈ Rn×p are sub-
Gaussian with parameters (Σx, σ2

x) and (Σw, σ2
w), respectively, and the sample size is lower-bounded as

n % max
{( σ2

x+σ2
w

λmin(Σx)

)2
, 1

}
k log p. Then for the M -estimator based on the surrogates (Γ̂add, γ̂add), the results of

Theorems 1 and 2 hold with parameters

α` =
1
2
λmin(Σx) and ϕ(Q, σε) = c0

{
σ2

x + σ2
w + σε

√
σ2

x + σ2
w

}
,

with probability at least 1− c1 exp(−c2 log p).
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For i.i.d. samples with missing data, we have the following:
Corollary 2. Suppose X ∈ Rn×p is a sub-Gaussian matrix with parameters (Σx, σ2

x), and Z is the missing
data matrix with parameter ρ. If n % max

(
1

(1−ρ)4
σ4

x

λ2
min(Σx)

, 1
)
k log p, then Theorems 1 and 2 hold with

probability at least 1− c1 exp(−c2 log p) for α` = 1
2λmin(Σx) and

ϕ(Q, σε) = c0
σx

1− ρ

(
σε +

σx

1− ρ

)
.

Now consider the case where the rows of X are drawn from a vector autoregressive (VAR) process according to

xi+1 = Axi + vi, for i = 1, 2, . . . , n− 1, (18)

where vi ∈ Rp is a zero-mean noise vector with covariance matrix Σv , and A ∈ Rp×p is a driving matrix with
spectral norm |||A|||2 < 1. We assume the rows of X are drawn from a Gaussian distribution with covariance
Σx, such that Σx = AΣxAT + Σv , so the process is stationary. Corollary 3 corresponds to the case of additive
noise for a Gaussian VAR process. A similar result can be derived in the missing data setting.
Corollary 3. Suppose the rows of X are drawn according to a Gaussian VAR process with driving matrix A.
Suppose the additive noise matrix W is i.i.d. with Gaussian rows. If n % max

(
ζ4

λ2
min(Σx)

, 1
)
k log p, with

ζ2 = |||Σw|||op +
2|||Σx|||op

1− |||A|||op
,

then Theorems 1 and 2 hold with probability at least 1− c1 exp(−c2 log p) for α` = 1
2λmin(Σx) and

ϕ(Q, σε) = c0(σεζ + ζ2).

3.4 Application to graphical model inverse covariance estimation

The problem of inverse covariance estimation for a Gaussian graphical model is closely related to the Lasso.
Meinshausen and Bühlmann [20] prescribed a way to recover the support of the precision matrix Θ when each
column of Θ is k-sparse, via linear regression and the Lasso. More recently, Yuan [21] proposed a method for
estimating Θ using linear regression and the Dantzig selector, and obtained error bounds on |||Θ̂ − Θ|||1 when
the columns of Θ are bounded in `1. Both of these results assume the rows of X are observed noiselessly and
independently.

Suppose we are given a matrix X ∈ Rn×p of samples from a multivariate Gaussian distribution, where each row
is distributed according to N(0,Σ). We assume the rows of X are either i.i.d. or sampled from a Gaussian VAR
process (18). Based on the modified Lasso, we devise a method to estimate Θ based on a corrupted observation
matrix Z. Let Xj denote the jth column of X , and let X−j denote the matrix X with jth column removed. By
standard results on Gaussian graphical models, there exists a vector θj ∈ Rp−1 such that

Xj = X−jθj + εj , (19)

where εj is a vector of i.i.d. Gaussians and εj ⊥⊥ X−j . Defining aj := −(Σjj − Σj,−jθ
j)−1, we have

Θj,−j = ajθ
j . Our algorithm estimates θ̂j and âj for each j and combines the estimates to obtain Θ̂j,−j = âj θ̂

j .

In the additive noise case, we observe Z = X + W . The equations (19) yield Zj = X−jθj + (εj + W j).
Note that δj = εj + W j is a vector of i.i.d. Gaussians, and since X ⊥⊥ W , we have δj ⊥⊥ X−j . Hence, our
results on covariates with additive noise produce an estimate of θj by solving the program (4) or (12) with the
pair (Γ̂(j), γ̂(j)) = (Σ̂−j,−j ,

1
nZ−jT Zj), where Σ̂ = 1

nZT Z − Σw. When Z is a missing-data version of X ,
we similarly estimate the vectors θj with suitable corrections. We arrive at the following algorithm:
Algorithm 3.1. (1) Perform p linear regressions of the variables Zj upon the remaining variables Z−j ,

using the modified Lasso program (4) or (12) with the estimators (Γ̂(j), γ̂(j)), to obtain estimates θ̂j .

(2) Estimate the scalars aj using âj := −(Σ̂jj − Σ̂j,−j θ̂
j)−1. Set Θ̃j,−j = âj θ̂

j and Θ̃jj = −âj .

(3) Construct the matrix Θ̂ = arg min
Θ∈Sp

|||Θ− Θ̃|||1, where Sp is the set of symmetric p× p matrices.

Note that the minimization in step (3) is a linear program, so is easily solved with standard methods. We have:
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Corollary 4. Suppose the columns of the matrix Θ are k-sparse, and suppose the condition number κ(Θ) is
nonzero and finite. Suppose the deviation conditions

‖γ̂(j) − Σ−j,−jθ
j‖∞ ≤ ϕ(Q, σε)

√
log p

n
and ‖(Γ̂(j) − Σ−j,−j)θj‖∞ ≤ ϕ(Q, σε)

√
log p

n
(20)

hold for all j, and suppose we have the following additional deviation condition on Σ̂:

‖Σ̂− Σ‖max ≤ cϕ(Q, σε)

√
log p

n
. (21)

Finally, suppose the lower-RE condition holds uniformly over the matrices Γ̂(j) with the scaling (14). Then
under the estimation procedure of Algorithm 3.1, there exists a universal constant c0 such that

|||Θ̂−Θ|||op ≤
c0κ

2(Σ)
λmin(Σ)

(ϕ(Q, σε)
λmin(Σ)

+
ϕ(Q, σε)

α`

)
k

√
log p

n
.

4 Simulations

In this section, we provide simulation results to confirm that the scalings predicted by our theory are sharp.
In Figure 1, we plot the results of simulations under the additive noise model described in Example 1, using
Σx = I and Σw = σ2

wI with σw = 0.2. Panel (a) provides plots of `2-error versus the sample size n, for
p ∈ {128, 256, 512}. For all three choices of dimensions, the error decreases to zero as the sample size n in-
creases, showing consistency of the method. If we plot the `2-error versus the rescaled sample size n/(k log p),
as depicted in panel (b), the curves roughly align for different values of p, agreeing with Theorem 1. Panel (c)
shows analogous curves for VAR data with additive noise, using a driving matrix A with |||A|||op = 0.2.
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Figure 1. Plots of the error ‖bβ − β∗‖2 after running projected gradient descent on the non-convex objective, with
sparsity k ≈ √

p. Plot (a) is an error plot for i.i.d. data with additive noise, and plot (b) shows `2-error versus the
rescaled sample size n

k log p
. Plot (c) depicts a similar (rescaled) plot for VAR data with additive noise. As predicted

by Theorem 1, the curves align for different values of p in the rescaled plot.

We also verified the results of Theorem 2 empirically. Figure 2 shows the results of applying projected gradient
descent to solve the optimization problem (4) in the cases of additive noise and missing data. We first applied
projected gradient to obtain an initial estimate β̂, then reapplied projected gradient descent 10 times, tracking
the optimization error ‖βt − β̂‖2 (in blue) and statistical error ‖βt − β∗‖2 (in red). As predicted by Theorem 2,
the iterates exhibit geometric convergence to roughly the same fixed point, regardless of starting point.

Finally, we simulated the inverse covariance matrix estimation algorithm on three types of graphical models:

(a) Chain-structured graphs. In this case, all nodes of are arranged in a line. The diagonal entries of Θ
equal 1, and entries corresponding to links in the chain equal 0.1. Then Θ is rescaled so |||Θ|||op = 1.

(b) Star-structured graphs. In this case, all nodes are connected to a central node, which has degree
k ≈ 0.1p. All other nodes have degree 1. The diagonal entries of Θ are set equal to 1, and all entries
corresponding to edges in the graph are set equal to 0.1. Then Θ is rescaled so |||Θ|||op = 1.

(c) Erdös-Renyi graphs. As in Rothman et al. [22], we first generate a matrix B with diagonal entries 0,
and all other entries independently equal to 0.5 with probability k/p, and 0 otherwise. Then δ is chosen
so Θ = B + δI has condition number p, and Θ is rescaled so |||Θ|||op = 1.
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Figure 2. Plots of the optimization error log(‖βt − bβ‖2) and statistical error log(‖βt − β∗‖2) versus iteration
number t, generated by running projected gradient descent on the non-convex objective. As predicted by Theorem 2,
the optimization error decreases geometrically.

After generating the matrix X of n i.i.d. samples from the appropriate graphical model, with covariance matrix
Σx = Θ−1, we generated the corrupted matrix Z = X + W with Σw = (0.2)2I . Figure 3 shows the rescaled
`2-error 1√

k
|||Θ̂−Θ|||op plotted against the sample size n for a chain-structured graph, with panel (a) showing the

original plot and panel (b) plotting against the rescaled sample size. We obtained qualitatively similar results
for the star and Erdös-Renyi graphs, in the presence of missing and/or dependent data.
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(a) `2 error plot for chain graph, additive noise (b) rescaled plot

Figure 3. (a) Plots of the rescaled error 1√
k
|||bΘ−Θ|||op after running projected gradient descent for a chain-structured

Gaussian graphical model with additive noise. As predicted by Theorems 1 and 2, all curves align when the rescaled
error is plotted against the ratio n

k log p
, as shown in (b). Each point represents the average over 50 trials.

5 Discussion

In this paper, we formulated an `1-constrained minimization problem for sparse linear regression on corrupted
data. The source of corruption may be additive noise or missing data, and although the resulting objective is
not generally convex, we showed that projected gradient descent is guaranteed to converge to a point within
statistical precision of the optimum. In addition, we established `1- and `2-error bounds that hold with high
probability when the data are drawn i.i.d. from a sub-Gaussian distribution, or drawn from a Gaussian VAR
process. Finally, we used our results on linear regression to perform sparse inverse covariance estimation for a
Gaussian graphical model, based on corrupted data. The bounds we obtain for the spectral norm of the error are
of the same order as existing bounds for inverse covariance matrix estimation with uncorrupted, i.i.d. data.
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