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Introduction

Community Question Answering

Knowledge dissemination,
information seeking

Natural language questions

Explicit, self-contained answers
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Introduction

Advantages of Community Question Answering

Could solve information needs that are personal, heterogeneous,
specific, open-ended, and cannot be expressed as a short query

No single Web page will directly answer these complex and
heterogeneous needs, CQA users should understand and answer better
than a machine

Have accumulated rich knowledge

More than one billion posted answers in Yahoo! Answers
http://yanswersblog.com/index.php/archives/2010/05/03/1-billion-
answers-served/
More than 190 million resolved questions in Baidu Zhidao
In China, 25% of Google’s top-search-results page contain at least one
link to some Q&A site, Si et al., VLDB, 2010
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Question Retrieval Motivation

Ask a Question
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Question Retrieval Motivation

Problem and Opportunity

Problem

Askers need to wait some time to get an answer, time lag
15% of the questions do not receive any answer in Yahoo! Answers,
which is one of the first CQA sites on the Web

Opportunity

25% questions in certain categories are recurrent, Anna, Gideon and
Yoelle, WWW, 2012

Answer new questions by reusing past resolved questions

Question Retrieval: find semantically similar past questions for a new
question
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Question Retrieval Motivation

Question Retrieval Example
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Question Retrieval Motivation

Benefit of Question Retrieval

Provide an alternative to automatic question answering

Help askers get an answer in a timely manner

Guide answerers to answer unique questions, better utilize users’
answering passion
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Question Retrieval Motivation

Notations

Symbol Description

Q A new question
D A candidate question
∣ ⋅ ∣ Length of the text
C Background collection
w A term in the new question
t A term in a candidate question
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Question Retrieval Lexical-based Approach

Lexical-based Approach: Language Model

In language modeling, similarity between a query and a document is
given by the probability of generating the query from the document
language model

Unigram language model, i.i.d. sampling

P(Q∣D) =
∏
w∈Q

P(w ∣D)

In question retrieval syntax, query is the new question, document is a
candidate question
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Question Retrieval Lexical-based Approach

Lexical-based Approach: Language Model

To avoid zero probabilities and estimate more accurate language
models, documents are smoothed using a background collection

P(w ∣D) = (1− �)Pml(w ∣D) + �Pml(w ∣C )

� is a smoothing parameter, 0 ≤ � ≤ 1

Pml(w ∣D) =
termfrequency(w ,D)∑

w ′∈D
termfrequency(w ′,D)

Maximum likelihood estimator to calculate Pml(⋅)
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Question Retrieval Lexical-based Approach

Lexical-based Approach: Translation Model

LM

Advantage Simple

Disadvantage Lexical Gap

Lexical Gap, two questions that have the same meaning use very
different wording

Is downloading movies illegal?
Can I share a copy of a DVD online?

Jiwoon Jeon, W. Bruce Croft and Joon Ho Lee, Finding Similar
Questions in Large Question and Answer Archives, CIKM, 2005
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Question Retrieval Lexical-based Approach

Lexical-based Approach: Translation Model

Language Model
P(w ∣D) = (1− �)Pml(w ∣D) + �Pml(w ∣C )

Translation Model
P(w ∣D) = (1− �)

∑
t∈D

(T (w ∣t)Pml(t∣D)) + �Pml(w ∣C )

T (w ∣t) is the probability that word w is the translation of word t,
denotes semantic similarities between words
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Question Retrieval Lexical-based Approach

Lexical-based Approach: Translation Model

Table: Questions share few common words, but may have high semantic
relatedness according to translation model

Id like to insert music into PowerPoint.
How can I link sounds in PowerPoint?

How can I shut down my system in Dos-mode.
How to turn off computers in Dos-mode.

Photo transfer from cell phones to computers.
How to move photos taken by cell phones.

Which application can run bin files?
I download a game. How can I execute bin files?
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Question Retrieval Lexical-based Approach

Figure: The first row shows the source words and each column shows top 10
words that are most semantically similar to the source word. A higher rank means
a larger T (w ∣t) value

I.King, T.C.Zhou, B.Li (CUHK) Community Question Answering 1/16/2012 18 / 62



Question Retrieval Lexical-based Approach

Lexical-based Approach: Translation Model

How to learn T (w ∣t)?

Prepare a monolingual parallel corpus of pairs of text, each pair should
be semantically similar
Employ machine translation model IBM model 1 on the parallel corpus
to learn T (w ∣t)

How this paper prepares monolingual parallel corpus

Each pair contains two questions whose answers are very similar
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Question Retrieval Lexical-based Approach

Lexical-based Approach: Translation Model

Delphine Bernhard and Iryna Gurevych, Combining Lexical Semantic
Resources with Question & Answer Archives for Translation-Based
Answer Finding, ACL, 2009

Propose and several methods to prepare parallel monolingual corpora

Question answer pairs: question ↔ answer
Question reformulation pairs: question ↔ question reformulation by
user

I.King, T.C.Zhou, B.Li (CUHK) Community Question Answering 1/16/2012 20 / 62



Question Retrieval Lexical-based Approach

Lexical-based Approach: Translation Model
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Question Retrieval Lexical-based Approach

Lexical-based Approach: Translation Model

Lexical Semantic Resources: glosses and definitions for the same
lexeme in different lexical semantic and encyclopedic resources can be
considered as near-paraphrases, since they define the same terms and
hence have the same meaning

moon

Wordnet: the natural satellite of the Earth
English Wiktionary: the Moon, the satellite of planet Earth
English Wikipedia: the Moon (Latin: Luna) is Earth’s only natural
satellite and the fifth largest natural satellite in the Solar System
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Question Retrieval Lexical-based Approach

Lexical-based Approach: Translation-based Language
Model

TM

Advantage Tackle lexical gap to some extent

Disadvantage T (w ∣w) = 1 for all w while maintaining other word
translation probabilities unchanged, produce inconsistent
probability estimates and make the model unstable

Xiaobing Xue, Jiwoon Jeon and W. Bruce Croft, Retrieval Models for
Question and Answer Archives, SiGIR, 2008

Translation-based Language Model
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Question Retrieval Lexical-based Approach

Lexical-based Approach: Translation-based Language
Model

Translation Model
P(w ∣D) = (1− �)

∑
t∈D

(T (w ∣t)Pml(t∣D)) + �Pml(w ∣C )

Translation-based Language Model

P(w ∣D) = ∣D∣
∣D∣+�Pmx(w ∣D) + �

∣D∣+�Pml(w ∣C )

Pmx(w ∣D) = (1− �)Pml(w ∣D) + �
∑
t∈D

T (w ∣t)Pml(t∣D)

Linear combination of language model and translation model

Answer part should provide additional evidence about relevance,
incorporating the answer part

Pmx(w ∣(D,A)) = �Pml(w ∣D) + �
∑
t∈D

T (w ∣t)Pml(t∣D) + 
Pml(w ∣A)

� + � + 
 = 1
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Question Retrieval Syntactic-based Approach

Syntactic-based Approach: Syntactic Tree Matching

Some similar questions neither share many common words, nor follow
identical syntactic structure

How can I lose weight in a few months?
Are there any ways of losing pound in a short period?

Kai Wang, Zhaoyan Ming and Tat-Seng Chua, A Syntactic Tree
Matching Approach to Finding Similar Questions in Community-based
QA Services, SIGIR, 2009

Syntactic tree matching
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Question Retrieval Syntactic-based Approach

Figure: (a) The Syntactic Tree of the Question ”How to lose weight?”. (b) Tree
Fragments of the Sub-tree covering ”lose weight”.
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Question Retrieval Syntactic-based Approach

Syntactic-based Approach: Syntactic Tree Matching

Tree kernel: utilize structural or syntactic information to capture
higher order dependencies between grammar rules

k(T1,T2) =
∑
n1∈N1

∑
n2∈N2

C (n1, n2)

N1, N2 are sets of nodes in two syntactic trees T1 and T2, and
C (n1, n2) equals to the number of common fragments rooted in n1
and n2
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Question Retrieval Syntactic-based Approach

Syntactic-based Approach: Syntactic Tree Matching

Limitation of tree kernel

Tree kernel function merely replies on the intuition of counting the
common number of sub-trees, whereas the number might not be a
good indicator of the similarity between two questions
Two evaluated sub-trees have to be identical to allow further parent
matching, for which semantic representations cannot fit in well

Syntactic tree matching

A new weighting scheme for tree fragments that are robust against
some grammatical errors
Incorporate semantic features
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Question Recommendation Motivation
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Question Recommendation Motivation

Motivation

Question Recommendation

Retrieve and rank other questions according to their likelihood of being
good recommendations of the queried question
A good recommendation provides alternative aspects around users’
interest
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Question Recommendation Motivation

Example
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Question Recommendation MDL-based Tree Cut Model
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Question Recommendation MDL-based Tree Cut Model

Question Recommendation: MDL-based Tree Cut Model

Yunbo Cao, Huizhong Duan, Chin-Yew Lin, Yong Yu and Hsiao-Wuen
Hon, Recommending Questions Using the MDL-based Tree Cut
Model, WWW, 2008

Step 1: Represent questions as graphs of topic terms

Step 2: Rank recommendations on the basis of the graphs

Formalize both steps as the tree-cutting problems and employ the
MDL (Minimum Description Length) for selecting the best cuts
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Question Recommendation MDL-based Tree Cut Model

Question Recommendation: MDL-based Tree Cut Model

Question

Any cool clubs in Berlin or
Hamburg?

Question topic

Major context/constraint of a
question, characterize users’
interests
Berlin, Hamburg

Question focus

Certain aspect of the question
topic
cool club

Suggest alternative aspects of
the queries question topic
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Question Recommendation MDL-based Tree Cut Model

Question Recommendation: MDL-based Tree Cut Model

Extraction of topic terms: base noun phrase, WH-ngram
Reduction of topic terms: MDL-based tree cut model
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Question Recommendation MDL-based Tree Cut Model

Question Recommendation: MDL-based Tree Cut Model

Topic profile

Probability distribution of categories {p(c ∣t)}c∈C

p(c ∣t) = count(c,t)∑
c∈C count(c,t

count(c , t) is the frequency of the topic term t within the category c

Specificity

Inverse of the entropy of the topic profile
Topic term of high specificity usually specifies question topic
Topic term of low specificity is usually used to represent question focus

Topic chain

Topic chain is a sequence of ordered topic terms sorted from big to
small according to specificity

Question tree

Prefix tree built over topic chains of the question set Q
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Question Recommendation MDL-based Tree Cut Model

Question Recommendation: MDL-based Tree Cut Model

Ranking recommendation candidates
Determine what topic terms (question focus) should be substituted

Collect a set of topic chains Qc = {qc
i }Ni−1 such that at least one topic

term occurs in both qc and qc
i

Construct a question tree from the set of topic chains Qc ∪ qc

Employ MDL to separate topic chains into Head, H and Tail, T

Score recommendation candidates rendered by various substitutions

Specificity: the more similar are H(qc) and H(q̂c), the higher score
Generality: the more similar are T (qc) and T (q̂c), the lower score
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Question Recommendation Topic-enhanced Translation-based Language Model

Question Recommendation: TopicTRLM

Tom Chao Zhou, Chin-Yew Lin, Irwin King, Michael R. Lyu, Young-In
Song and Yunbo Cao, Learning to Suggest Questions in Online
Forums, AAAI, 2011

Suggest semantically related questions in online forums
How is Orange Beach in Alabama?

Is the water pretty clear this time of year on Orange Beach?
Do they have chair and umbrella rentals on Orange Beach?

Topic: travel in Orange Beach

Fuse both lexical and latent semantic information
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Question Recommendation Topic-enhanced Translation-based Language Model

Question Recommendation: TopicTRLM

Document representation
Bag-of-words

Independent
Fine-grained representation
Lexically similar

Topic model

Assign a set of latent topic distributions to each word
Capturing important relationships between words
Coarse-grained representation
Semantically related
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Question Recommendation Topic-enhanced Translation-based Language Model

Question Recommendation: TopicTRLM
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Question Subjectivity Analysis Motivation

Question Subjectivity Analysis

Question Analysis is to analyze characteristics of questions

Understand User Intent

Provide rich information to question search, question
recommendation, answer quality prediction, etc.

Question Subjectivity Analysis is an important aspect of question
analysis
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Question Subjectivity Analysis Motivation

Question Subjectivity Analysis: Definition

Subjective question

Private statements
Personal opinion and experience
What’s the difference between chemotherapy and radiation treatments?

Objective question

Objective, verifiable information
Often with support from reliable sources
Has anyone got one of those home blood pressure monitors? and if so
what make is it and do you think they are worth getting?
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Question Subjectivity Analysis Motivation

Question Subjectivity Analysis: Motivation

More accurately identify similar questions, improve question search

Better rank or filter the answers based on whether an answer matches
the question orientation

Crucial component of inferring user intent, a long-standing problem in
Web search

Route subjective questions to users for answer, trigger automatic
factual question answering system for objective questions
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Question Subjectivity Analysis Motivation

Question Subjectivity Analysis: Challenge

Ill-formatted, e.g., word capitalization may be incorrect or missing,
consecutive words may be concatenated

Ungrammatical, include common online idioms, e.g., using “u” means
“you”, “2” means “to”
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Question Subjectivity Analysis Supervised Approach

Question Subjectivity Analysis: Supervised Learning

Baoli Li, Yandong Liu, Ashwin Ram, Ernest V. Garcia and Eugene
Agichtein, Exploring Question Subjectivity Prediction in Community
QA, SIGIR, 2008

Support Vector Machine with linear kernel

Features

Character 3-gram
Word
Word + character 3-gram
Word n-gram
Word POS n-gram, mix of word and POS tri-grams

Term weighting schemes: binary, TF, TF*IDF
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Question Subjectivity Analysis Semi-Supervised Approach

Question Subjectivity Analysis: Semi-Supervised Learning

Figure: YahooAnswers Example.

Baoli Li, Yandong Liu and
Eugene Agichtein, CoCQA:
Co-Training Over Questions and
Answers with an Application to
Predicting Question Subjectivity
Orientation, EMNLP, 2008

Incorporate relationships
between questions and
corresponding answers

Co-training, two views of the
data, question and answer
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Question Subjectivity Analysis Semi-Supervised Approach

Figure: Algorithm CoCQA.

At step 1,2, each category has
top Kj most confident examples
chosen as additional “labeled”
data

Terminate when the increments
of both classifiers are less than
threshold X or maximum
number of iterations are
exceeded
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Question Subjectivity Analysis Semi-Supervised Approach

Question Subjectivity Analysis: Semi-Supervised Learning

Obtain two classifiers after CoCQA terminates

Classify a new example with two classifiers based on both of the
feature sets

Multiply the confidence values, choose the class that has the highest
product
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Question Subjectivity Analysis Data-driven Approach

Question Subjectivity Analysis: Data-driven Approach

Tom Chao Zhou, Xiance Si, Edward Y. Chang, Irwin King and
Michael R. Lyu, A Data-Driven Approach to Question Subjectivity
Identification in Community Question Answering, AAAI, 2012

Li et al. 2008 (supervised), Li et al. 2008 (CoCQA, semi-supervised)
based on manual labeling data

Manual labeling data is quite expensive
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Question Subjectivity Analysis Data-driven Approach

Question Subjectivity Analysis: Data-driven Approach

Web-scale learning is to use available large-scale data rather than hoping
for annotated data that isn’t available

- Halevy, Norvig and Pereira
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Question Subjectivity Analysis Data-driven Approach

Question Subjectivity Analysis: Data-driven Approach

Whether we can utilize social signals to collect training data for question
subjectivity identification with NO manual labeling?
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Question Subjectivity Analysis Data-driven Approach

Like Signal: like an answer if
they find the answer useful

Intuition

Subjective: answers are
opinions, different tastes; best
answer receives similar
number of likes with other
answers
Objective: like an answer
which explains universal truth
in most detail; best answer
receives high likes than other
answers
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Question Subjectivity Analysis Data-driven Approach

Vote Signal: users could vote
for best answer

Intuition

Subjective: vote for different
answers, support different
opinions; low percentage of
votes on best answer
Objective: easy to identify
answer contain the most fact;
percentage of votes of best
answer is high
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Source Signal: reference to
authoritative resources

Intuition

Only available for objective
question that has fact answer
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Question Subjectivity Analysis: Data-driven Approach

Poll and Survey signal

User intent is to seek opinions

Very likely to be subjective

What is something you learned
in school that you think is useful
to you today?

If you could be a cartoon
character, who would you want
to be?
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Answer Number signal: the number of posted answers to each
question

Intuition

Subjective: alertpost opinions even they notice there are other answers
Objective: may not post answers to questions that has received other
answers since an expected answer is usually fixed
A large answer number indicate subjectivity
A small answer number may be due to many reasons, such as
objectivity, small page views
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Features

Word: term frequency
Word n-gram: term frequency
Question length: information needs of subjective questions are
complex, users use descriptions to explain, larger question length
Request word: particular words to explicitly indicate their request for
seeking opinions; manual list of 9 words
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Subjectivity clue: external lexicon, over 8000 clues, manually
compiled word list from news to express opinions

Punctuation density: density of punctuation marks

Grammatical modifier: inspired by opinion mining research of using
grammatical modifiers on judging users’ opinions, adjective and
adverb

Entity: objective question expects fact answer, leading to less
relationships among entities, subjective questions contains more
descriptions, may involve relatively complex relations
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