Gradient Descent Can Take Exponential Time to Escape Saddle Points

NIPS 2017 (spotlight) Simon S. Du, Chi Jin, Michael Jordan et al. CMU, UCB & USC

Closely Related Work

- Ge, Rong, et al. "Escaping from saddle points—online stochastic gradient for tensor decomposition." COLT. 2015.
- Lee, Jason D., et al. "Gradient descent only converges to minimizers." COLT. 2016.
- Kawaguchi, Kenji. "Deep learning without poor local minima." NIPS. 2016.
- Ge, Rong, Chi Jin, and Yi Zheng. "No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis." *ICML. 2017.*
- Jin, Chi, et al. "How to Escape Saddle Points Efficiently." ICML. 2017.
- Gonen, Alon, and Shai Shalev-Shwartz. "Fast Rates for Empirical Risk Minimization of Strict Saddle Problems." COLT. 2017.

General Optimization Problem

• Problem

 $\min f(x)$ $x \in S, S \subseteq \mathbb{R}^n$

• A common solution: Gradient Descent (GD)

 $x_{k+1} = x_k - \eta \nabla f(x_k)$ $\eta > 0$ is a learning rate $\nabla f(x_k)$ is the gradient at x_k

Theoretical Guarantee of GD

• Stationary point (critical point)

 $\nabla f(x^*) = 0, \forall x^* \in S$

• Guarantee of GD

$$\nabla f(x_K) \leq \epsilon$$
, with $\epsilon > 0$

$K \leq O(poly(\epsilon))$ is the number of iterations

Nesterov, Yurii. Introductory lectures on convex optimization: A basic course. 2004.

Taxonomy

Convex optimization: critical point⇔globally optimal

Condition	Time complexity	Acceleration
Convex and deterministic	$K = O\left(\frac{1}{\epsilon}\right)$	$K = O\left(\frac{1}{\epsilon^{0.5}}\right)$
Convex and stochastic	$K = O\left(\frac{1}{\epsilon^2}\right)$	$K = O\left(\frac{1}{\epsilon}\log(\frac{1}{\epsilon})\right)$
Convex and adversarial	$K = O\left(\frac{1}{\epsilon^2}\right)$	No result

Non-convex optimization: critical point [

Local minimizer

	no	int
Saddl	DU	

Condition	Time complexity
Convex and deterministic	polynomial time
Convex and stochastic	No result

Non-convex: Critical Point ⇔Minimizer?

• Can we escape saddle points via GD? YES

Lee, Jason D., et al. "Gradient descent only converges to minimizers." COLT. 2016.

- What is the time complexity of the escaping?
 - Can take exponential time (\checkmark)
 - Can take polynomial time

Definition of Saddle Points

- A strict saddle point x^*
 - There exists a $\alpha > 0$, such that $||\nabla f(x^*)||_2 = 0$ and $\lambda_{\min}(\nabla^2 f(x^*)) \le -\alpha$.
 - The minimal eigenvalue of Hessian matrix is strictly negative

http://www.offconvex.org/2016/03/22/saddlepoints/

Saddle Point in
$$f(x_1, x_2) = x_1^2 - x_2^2$$

- A saddle point is (0,0)
- Given $\eta = \frac{1}{4}$, the update rules are

$$x_1^{k+1} = \frac{x_1^k}{2}$$
 $x_2^{k+1} = \frac{3x_2^k}{2}$

• Consider initialization in the region as

$$[-1,1] \times \left[-\left(\frac{3}{2}\right)^{-\exp\left(\frac{1}{\epsilon}\right)}, \left(\frac{3}{2}\right)^{-\exp\left(\frac{1}{\epsilon}\right)}\right]$$
, the updating step is exponential.

Demonstration of Gradient Field

Another Example

Exponential Time Complexity

- Two examples to show exponential time complexity with a specific initialization
- How about some random initializations?

Theorem 4.1 (Uniform initialization over a unit cube). Suppose the initialization point is uniformly sampled from $[-1,1]^d$. There exists a function f defined on \mathbb{R}^d that is B-bounded, ℓ -gradient Lipschitz and ρ -Hessian Lipschitz with parameters B, ℓ, ρ at most poly(d) such that:

1. with probability one, gradient descent with step size $\eta \leq 1/\ell$ will be $\Omega(1)$ distance away from any local minima for any $T \leq e^{\Omega(d)}$.

2. for any $\epsilon > 0$, with probability $1 - e^{-d}$, perturbed gradient descent (Algorithm 1) will find a point x such that $||x - x^*||_2 \le \epsilon$ for some local minimum x^* in $poly(d, \frac{1}{\epsilon})$ iterations.

Jin, Chi, et al. "How to Escape Saddle Points Efficiently." ICML. 2017.

Proof Sketch

- Construct a function with 2^d symmetric minima
- The saddle points are of the form

 $(\pm c, \cdots, \pm c, 0, \cdots, 0)$

- Then GD will travel across *d* neighborhoods of saddle points
- Prove the number of iterations to escape each saddle point should be κ^i with $i \in \{1, \cdots, d\}$
- Thus the total time complexity is exponential

Discussions of The Paper

- Conclusion
 - GD can encounter non-convex functions leading to exponential steps to escape the saddle points
- Two interesting questions
 - What kind of non-convex functions that GD can take polynomial steps to escape the saddle points?
 - Does the stochastic GD have the same property?
 (That is, SGD can be exponential in time complexity to escape the saddle points.)

Why Escaping Saddle Points?

Convex optimization

- Every local minimizer is global (local-global rule)

Non-convex optimization

- Generally, it is NP-hard and has no local-global rule

Escaping Saddle Points to Be Globally Optimal

- Tensor decomposition (non-convex)
 - Local minimal point is global optimal in the fourth order tensor decomposition

Escaping Saddle Points to Be Globally Optimal

- Non-convex low rank problem
 - All local minima are also globally optimal
 - No high-order saddle points exist

Ge, Rong, Chi Jin, and Yi Zheng. "No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis." *ICML. 2017.*

- Deep learning with feedforward neural networks
 - For any deep neural network, any local minimum is global and also escaping the saddle points is guaranteed to obtain a globally minimum point.

- Model:
$$Y(W, X) = W_h \times W_{h-1} \times W_1 \times X$$

Kawaguchi, Kenji. "Deep learning without poor local minima." NIPS. 2016.

How To Escape Saddle Points?

• Perturbation

Algorithm 1 Perturbed Gradient Descent (Meta-algorithm)for t = 0, 1, ... doif perturbation condition holds then $\mathbf{x}_t \leftarrow \mathbf{x}_t + \xi_t, \quad \xi_t$ uniformly $\sim \mathbb{B}_0(r)$ $\mathbf{x}_{t+1} \leftarrow \mathbf{x}_t - \eta \nabla f(\mathbf{x}_t)$

Jin, Chi, et al. "How to Escape Saddle Points Efficiently." ICML. 2017.

Final Discussions

- Remarks
 - Escaping saddle points is important in non-convex optimization
 - Perturbation gradient descent (PGD) powers the solution in non-convex optimization
- Questions
 - What is the optimal order of PGD in non-convex optimization?
 - What kind of noises helps escaping saddle points?
 - Does the adding noise depend on the learning data?

Gonen, Alon, and Shai Shalev-Shwartz. "Fast Rates for Empirical Risk Minimization of Strict Saddle Problems." COLT. 2017.