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General Optimization Problem

* Problem
min f(x)
xX€ESSCR"
A common solution: Gradient Descent (GD)

Xi+1 = X — NV f (xk)
n > 0is a learning rate
Vf(x;) is the gradient at x;

Assumption: Existence of gradient



Theoretical Guarantee of GD

e Stationary point (critical point)
Vf(x*) =0,vx* €S &

Saddle point

e Guarantee of GD

Vi(xg) < e,withe >0

K < O(poly(€)) is the number of iterations

Nesterov, Yurii. Introductory lectures on convex optimization: A basic course. 2004.



Taxonomy

* Convex optimization: critical point<~>globally optimal

L 1 1
Convex and deterministic K=0 <g> =0 (Eo_s)
Convex and stochastic K=0 lz K=0 llog(l)
€ € €
: 1
Convex and adversarial K=0 (?2) No result

Local minimizer

* Non-convex optimization: critical point{

Convex and deterministic polynomial time

Convex and stochastic No result



Non-convex: Critical Point <& Minimizer?

* Can we escape saddle points via GD? YES

Lee, Jason D., et al. "Gradient descent only converges to minimizers." COLT. 2016.

What is the time complexity of the escaping?
— Can take exponential time (V')
— Can take polynomial time



Definition of Saddle Points

* A strict saddle point x™
— There exists a @ > 0, such that ||\7f(x*)”2 =0
and Apin (V2 (x%)) < —a.

— The minimal eigenvalue of Hessian matrix is
strictly negative

saddle point

NBE N ON B

http://www.offconvex.org/2016/03/22/saddlepoints/



Saddle Pointin f(xq,x,) = x% — x4

* A saddle pointis (0,0)
* Givenn = %, the update rules are

k k
x_l ykt1l — 3%
X1 = 2 T

* Consider initialization in the region as

[—1,1] X [— (g)_exp@ , (3)_exp@], the updating

2
step is exponential.
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Demonstration of Gradient Field
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Another Example
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Exponentially far away



Exponential Time Complexity

* Two examples to show exponential time
complexity with a specific initialization

e How about some random initializations?

Theorem 4.1 (Uniform initialization over a unit cube). Suppose the initialization point is uniformly sampled
from [—1, l]d. There exists a function f defined on R® that is B-bounded, {-gradient Lipschitz and p-Hessian
Lipschitz with parameters B, [, p at most poly(d) such that:

2. for any € > 0, with probability 1 — e~%, perturbed gradient descent (Algorithm 1) will find a point
such that ||z — z*|, < € for some local minimum =* in poly(d, %) iterations.

Jin, Chi, et al. "How to Escape Saddle Points Efficiently." ICML. 2017.



Proof Sketch

Construct a function with 2¢ symmetric minima
The saddle points are of the form
(ic’ e ic} O’ e O)

Then GD will travel across d neighborhoods of
saddle points

Prove the number of iterations to escape each
saddle point should be k" withi € {1,---, d}

Thus the total time complexity is exponential



Discussions of The Paper

e Conclusion

— GD can encounter non-convex functions leading to
exponential steps to escape the saddle points

* Two interesting questions

— What kind of non-convex functions that GD can
take polynomial steps to escape the saddle points?

— Does the stochastic GD have the same property?

(That is, SGD can be exponential in time complexity
to escape the saddle points.)



Why Escaping Saddle Points?

* Convex optimization
— Every local minimizer is global (local-global rule)

* Non-convex optimization
— Generally, it is NP-hard and has no local-global rule

all




Escaping Saddle Points to
Be Globally Optimal

* Tensor decomposition (non-convex)

— Local minimal point is global optimal in the fourth
order tensor decomposition

a saddle point
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Ge, Rong, et al. "Escaping from saddle points—online stochastic gradient for tensor decomposition." COLT. 2015.



Escaping Saddle Points to
Be Globally Optimal

* Non-convex low rank problem
— All local minima are also globally optimal
— No high-order saddle points exist

Ge, Rong, Chi Jin, and Yi Zheng. "No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified
Geometric Analysis." ICML. 2017.

* Deep learning with feedforward neural networks

— For any deep neural network, any local minimum is
global and also escaping the saddle points is
guaranteed to obtain a globally minimum point.

~ Model: YW, 1) =[H x Wy X W] ¥

Kawaguchi, Kenji. "Deep learning without poor local minima." NIPS. 2016.



How To Escape Saddle Points?

 Perturbation

Algorithm 1 Perturbed Gradient Descent (Meta-algorithm)
fort =0,1,...do
if perturbation condition holds then
X — X¢ + &4, & uniformly ~ Bg(r)
Xeq1 — X =V f(xy)
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Jin, Chi, et al. "How to Escape Saddle Points Efficiently." ICML. 2017.
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Final Discussions

e Remarks

— Escaping saddle points is important in non-convex
optimization

— Perturbation gradient descent (PGD) powers the
solution in non-convex optimization

e Questions

— What is the optimal order of PGD in non-convex
optimization?

— What kind of noises helps escaping saddle points?

— Does the adding noise depend on the learning data?

Gonen, Alon, and Shai Shalev-Shwartz. "Fast Rates for Empirical Risk Minimization of Strict
Saddle Problems." COLT. 2017.



