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Abstract
In many clustering problems, we have access to multiple views of the data each
of which could be individually used for clustering. Exploiting information from
multiple views, one can hope to find a clustering that is more accurate than the
ones obtained using the individual views. Often these different views admit same
underlying clustering of the data, so we can approach this problem by looking for
clusterings that are consistent across the views, i.e., corresponding data points in
each view should have same cluster membership. We propose a spectral cluster-
ing framework that achieves this goal by co-regularizing the clustering hypothe-
ses, and propose two co-regularization schemes to accomplish this. Experimental
comparisons with a number of baselines on two synthetic and three real-world
datasets establish the efficacy of our proposed approaches.

1 Introduction
Many real-world datasets have representations in the form of multiple views [1, 2]. For example,
webpages usually consist of both the page-text and hyperlink information; images on the web have
captions associated with them; in multi-lingual information retrieval, the same document has mul-
tiple representations in different languages, and so on. Although these individualviewsmight be
sufficient on their own for a given learning task, they can often provide complementary information
to each other which can lead to improved performance on the learning task at hand.

In the context of data clustering, we seek a partition of the data based on some similarity measure
between the examples. Our of the numerous clustering algorithms, Spectral Clustering has gained
considerable attention in the recent past due to its strong performance on arbitrary shaped clusters,
and due to its well-defined mathematical framework [3]. Spectral clustering is accomplished by
constructing a graph from the data points with edges betweenthem representing the similarities,
and solving a relaxation of the normalized min-cut problem on this graph [4]. For the multi-view
clustering problem, we work with the assumption that the true underlying clustering would assign
corresponding points in each view to the same cluster. Giventhis assumption, we can approach the
multi-view clustering problem by limiting our search to clusterings that are compatible across the
graphs defined over each of the views: corresponding nodes ineach graph should have the same
cluster membership.

In this paper, we propose two spectral clustering algorithms that achieve this goal byco-regularizing
the clustering hypotheses across views. Co-regularization is a well-known technique in semi-
supervised literature; however, not much is known on using it for unsupervised learning problems.
We propose novel spectral clustering objective functions that implicitly combine graphs from multi-
ple views of the data to achieve a better clustering. Our proposed methods give us a way to combine
multiple kernels (or similarity matrices) for the clustering problem. Moreover, we would like to
note here that although multiple kernel learning has met with considerable success on supervised
learning problems, similar investigations for unsupervised learning have been found lacking so far,
which is one of the motivations behind this work.
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2 Co-regularized Spectral Clustering
We assume that we are given data having multiple representations (i.e., views). LetX =

{x
(v)
1 ,x

(v)
2 , . . . ,x

(v)
n } denote the examples in viewv and K

(v) denote the similarity or kernel
matrix of X in this view. We write the normalized graph Laplacian for this view as: L(v) =

D
(v)−1/2

K
(v)

D
(v)−1/2

. The single viewspectral clustering algorithm of [5] solves the following
optimization problem for the normalized graph LaplacianL

(v):

max
U(v)∈Rn×k

tr
(

U
(v)T

L(v)
U

(v)
)

, s.t. U
(v)T

U
(v) = I (1)

wheretr denotes the matrix trace. The rows of matrixU
(v) are the embeddings of the data points that

can be given to thek-means algorithm to obtain cluster memberships. For a detailed introduction
to both theoretical and practical aspects of spectral clustering, the reader is referred to [3]. Our
multi-view spectral clustering framework builds on the standard spectral clustering with a single
view, by appealing to the co-regularization framework typically used in the semi-supervised learning
literature [1].

Co-regularization in semi-supervised learning essentially works by making the hypotheses learned
from different views of the data agree with each other on unlabeled data [6]. The framework employs
two main assumptions for its success: (a) the true target functions in each view should agree on the
labels for the unlabeled data(compatibility), and (b) the views are independent given the class label
(conditional independence). Thecompatibilityassumption allows us to shrink the space of possible
target hypotheses by searching only over the compatible functions. Standard PAC-style analysis [1]
shows that this also leads to reductions in the number of examples needed to learn the target function,
since this number depends on the size of the hypothesis class. Theindependenceassumption makes
it unlikely for compatible classifiers to agree on wrong labels. In the case of clustering, this would
mean that a data point in both views would be assigned to the correct cluster with high probability.

Here, we propose two co-regularization based approaches tomake the clustering hypotheses on
different graphs (i.e., views) agree with each other. The effectiveness of spectral clustering hinges
crucially on the construction of the graph Laplacian and theresulting eigenvectors that reflect the
cluster structure in the data. Therefore, we construct an objective function that consists of the graph
Laplacians from all the views of the data and regularize on the eigenvectors of the Laplacians such
that the cluster structures resulting from each Laplacian look consistent across all the views.

Our first co-regularization scheme (Section 2.1) enforces that the eigenvectorsU(v) andU
(w)of

a view pair(v, w) should have high pairwise similarity (using a pair-wise co-regularization crite-
ria we will define in Section 2.1). Our second co-regularization scheme (Section 2.3) enforces the
view-specific eigenvectors to look similar by regularizingthem towards a commonconsensus(cen-
troid based co-regularization). The idea is different frompreviously proposed consensus clustering
approaches [7] that commit to individual clusterings in thefirst step and then combine them to a
consensus in the second step. We optimize for individual clusterings as well as the consensus using
a joint cost function.

2.1 Pairwise Co-regularization

In standard spectral clustering, the eigenvector matrixU
(v) is the data representation for subsequent

k-means clustering step (withi’th row mapping to the originali’th sample). In our proposed objec-
tive function, we encourage the pairwise similarities of examples under the new representation (in
terms of rows ofU(·)’s) to be similar across all the views. This amounts to enforcing the spectral
clustering hypotheses (which are based on theU

(·)’s) to be the same across all the views.

We will work with two-view case for the ease of exposition. This will later be extended to more
than two views. We propose the following cost function as a measure of disagreement between
clusterings of two views:

D(U(v),U(w)) =

∥

∥

∥

∥

KU(v)

||KU(v) ||2F
−

KU(w)

||KU(w) ||2F

∥

∥

∥

∥

2

F

. (2)

KU(v) is the similarity matrix forU(v), and || · ||F denotes the Frobenius norm of the matrix.
The similarity matrices are normalized by their Frobenius norms to make them comparable across
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views. We choose linear kernel, i.e.,k(xi,xj) = x
T
i xj as our similarity measure in Equation 2.

This implies that we haveKU(v) = U
(v)

U
(v)T

. The reason for choosing linear kernel to measure
similarity of U

(·) is twofold. First, the similarity measure (or kernel) used in the Laplacian for
spectral clustering has already taken care of the non-linearities present in the data (if any), and the
embeddingU(·) being real-valued cluster indicators, can be considered toobey linear similarities.
Secondly, we get a nice optimization problem by using linearkernel forU(·). We also note that
||KU(v) ||2F = k, wherek is the number of clusters. Substituting this in Equation 2 and ignoring the
constant additive and scaling terms that depend on the number of clusters, we get

D(U(v),U(w)) = −tr
(

U
(v)

U
(v)T

U
(w)

U
(w)T

)

We want to minimize the above disagreement between the clusterings of viewsv andw. Com-
bining this with the spectral clustering objectives of individual views, we get the following joint
maximizationproblem for two graphs:

max
U

(v)∈Rn×k

U
(w)∈Rn×k

tr
(

U
(v)T

L(v)
U

(v)
)

+ tr
(

U
(w)T

L(w)
U

(w)
)

+ λ tr
(

U
(v)

U
(v)T

U
(w)

U
(w)T

)

s.t. U
(v)T

U
(v) = I, U

(w)T

U
(w) = I

(3)

The hyperparameterλ trades-off the spectral clustering objectives and the spectral embedding
(dis)agreement term. The joint optimization problem givenby Equation 3 can be solved using al-
ternating maximization w.r.t.U(v) andU

(w). For a givenU(w), we get the following optimization
problem inU(v):

max
U(v)∈Rn×k

tr
{

U
(v)T

(

L(v) + λU
(w)

U
(w)T

)

U
(v)
}

, s.t. U
(v)T

U
(v) = I. (4)

This is a standard spectral clustering objective on viewv with graph LaplacianL(v) +λU
(w)

U
(w)T

.
This can be seen as a way of combining kernels or Laplacians. The difference from standard kernel
combination (kernel addition, for example) is that the combination is adaptive sinceU(w) keeps
getting updated at each step, as guided by the clustering algorithm. The solutionU(v) is given by
the top-k eigenvectors of this modified Laplacian. Since the alternating maximization can make the
algorithm stuck in a local maximum [8], it is important to have a sensible initialization. If there is
no prior information on which view is moreinformativeabout the clustering, we can start with any
of the views. However, if we have some a priori knowledge on this, we can start with the graph
LaplacianL(w) of the more informative view and initializeU(w). The alternating maximization
is carried out after this until convergence. Note that one possibility could be to regularize directly
on the eigenvectorsU(v)’s and make them close to each other (e.g., in the sense of the Frobenious
norm of the difference betweenU(v) andU

(w)). However, this type of regularization could be too
restrictive and could end up shrinking the hypothesis spaceof feasible clusterings too much, thus
ruling out many valid clusterings.

For fixedλ andn, the joint objective of Eq. 3 can be shown to be bounded from above by a constant.
Since the objective is non-decreasing with the iterations,the algorithm is guaranteed to converge.
In practice, we monitor the convergence by the difference inthe value of the objective between
consecutive iterations, and stop when the difference fallsbelow a minimum threshold ofǫ = 10−4.
In all our experiments, we converge within less than 10 iterations. Note that we can use eitherU

(v)

or U(w) in the finalk-means step of the spectral clustering algorithm. In our experiments, we note a
marginal difference in the clustering performance depending on whichU(·) is used in the final step
of k-means clustering.

2.2 Extension to Multiple Views

We can extend the co-regularized spectral clustering proposed in the previous section for more than
two views. This can be done by employing pair-wise co-regularizers in the objective function of
Eq. 3. Form number of views, we have

max
U(1),U(2),...,U(m)∈Rn×k

m
∑

v=1

tr
(

U
(v)T

L(v)
U

(v)
)

+ λ
∑

1≤v,w≤m
v 6=w

tr
(

U
(v)

U
(v)T

U
(w)

U
(w)T

)

,

s.t. U
(v)T

U
(v) = I, ∀ 1 ≤ v ≤ V

(5)
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We use a commonλ for all pair-wise co-regularizers for simplicity of exposition, however different
λ’s can be used for different pairs of views. Similar to the two-view case, we can optimize it by
alternating maximization cycling over the views. With all but oneU(v) fixed, we have the following
optimization problem:

max
U(v)

tr
{

U
(v)T

(

L(v) + λ
∑

1≤w≤m,
w 6=v

U
(w)

U
(w)T

)

U
(v)
}

, s.t. U
(v)T

U
(v) = I

(6)

We initialize allU(v), 2 ≤ v ≤ m by solving the spectral clustering problem for single views. We
solve the objective of Eq. 6 forU(1) given all otherU(v), 2 ≤ v ≤ m. The optimization is then
cycled over all views while keeping the previously obtainedU

(·)’s fixed.

2.3 Centroid-Based Co-regularization

In this section, we present an alternative regularization scheme that regularizes each view-specific
set of eigenvectorsU(v) towards a common centroidU∗ (akin to aconsensusset of eigenvectors) .
In contrast with the pairwise regularization approach which has

(

m

2

)

pairwise regularization terms,
wherem is the number of views, the centroid based regularization scheme hasm pairwise regular-
ization terms. The objective function can be written as:

max
U(1),U(2),...,U(m),U∗∈Rn×k

m
∑

v=1

tr
(

U
(v)T

L(v)
U

(v)
)

+
∑

v

λvtr
(

U
(v)

U
(v)T

U
∗
U

∗
T
)

,

s.t. U
(v)T

U
(v) = I, ∀ 1 ≤ v ≤ V, U

∗
T

U
∗ = I

(7)

This objective tries to balance a trade-off between the individual spectral clustering objectives and
the agreement of each of the view-specific eigenvectorsU

(v) with the consensus eigenvectorsU
∗.

Each regularization term is weighted by a parameterλv specific to that view, whereλv can be set to
reflect the importance of viewv.

Just like for Equation 6, the objective in Equation 7 can be solved in an alternating fashion optimizing
each of theU(v)’s one at a time, keeping all other variables fixed, followed by optimizing the
consensusU∗, keeping all theU(v)’s fixed.

It is easy to see that with all other view-specific eigenvectors and the consensusU∗ fixed, optimizing
U

(v) for view v amounts to solving the following:

max
U(v)∈Rn×k

tr
(

U
(v)T

L(v)
U

(v)
)

+ λvtr
(

U
(v)

U
(v)T

U
∗
U

∗
T
)

, s.t. U
(v)T

U
(v) = I (8)

which is nothing but equivalent to solving the standard spectral clustering objective forU(v) with a
modified LaplacianL(v) +λvU

∗
U

∗
T

. Solving for the consensusU∗ requires solving the following
objective:

max
U∗∈Rn×k

∑

v

λvtr
(

U
(v)

U
(v)T

U
∗
U

∗
T
)

, s.t. U
∗

T

U
∗ = I (9)

Using the circular property of matrix traces, Equation 9 canbe rewritten as:

max
U∗∈Rn×k

tr

{

U
∗

T

(

∑

v

λv

(

U
(v)

U
(v)T

)

)

U
∗

}

, s.t. U
∗

T

U
∗ = I (10)

which is equivalent to solving the standard spectral clustering objective forU∗ with a modified

Laplacian
∑

v λv

(

U
(v)

U
(v)T

)

. In contrast with the pairwise co-regularization approachof Sec-

tion 2.1 which computes optimal view specific eigenvectorsU
(v)’s, which finally need to be com-

bined (e.g., via column-wise concatenation) before running thek-means step, the centroid-based
co-regularization approach directly finds an optimalU

∗ to be used in thek-means step. One possi-
ble downside of the centroid-based co-regularization approach is that noisy views could potentially
affect the optimalU∗ as it depends on all the views. To deal with this, careful selection of the weigh-
ing parameterλv is required. If it isa priori known that some views are noisy, then it is advisable
to use a small value ofλv for such views, so as to prevent them from adversely affecting U

∗.
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3 Experiments
We compare both of our co-regularization based multi-view spectral clustering approaches with a
number of baselines. In particular, we compare with:

• Single View: Using the most informative view, i.e., one that achieves thebest spectral cluster-
ing performance using a single view of the data.
• Feature Concatenation:Concatenating the features of each view, and then running standard
spectral clustering using the graph Laplacian derived fromthe joint view representation of the
data.
• Kernel Addition: Combining different kernels by adding them, and then running standard
spectral clustering on the corresponding Laplacian. As suggested in earlier findings [9], even this
seemingly simple approach often leads to near optimal results as compared to more sophisticated
approaches for classification. It can be noted that kernel addition reduces to feature concatenation
for the special case of linear kernel. In general, kernel addition is same as concatenation of
features in the Reproducing Kernel Hilbert Space.
• Kernel Product (element-wise):Multiplying the corresponding entries of kernels and apply-
ing standard spectral clustering on the resultant Laplacian. For the special case of Gaussian kernel,
element-wise kernel product would be same as simple featureconcatenation if both kernels use
same width parameterσ. However, in our experiments, we use different width parameters for
different views so the performances of kernel product may not be directly comparable to feature
concatenation.
• CCA based Feature Extraction:Applying CCA for feature fusion from multiple views of the
data [10], and then running spectral clustering using theseextracted features. We apply both stan-
dard CCA and kernel CCA for feature extraction and report theclustering results for whichever
gives the best performance.
• Minimizing-Disagreement Spectral Clustering: Our last baseline is theminimizing-
disagreementapproach to spectral clustering [11], and is perhaps most closely related to our co-
regularization based approach to spectral clustering. This algorithm is discussed more in Sec. 4.

To distinguish between the results of our two co-regularization based approaches, in the tables con-
taining the results, we use symbol “P” to denote thepairwiseco-regularization method and symbol
“C” to denote thecentroidbased co-regularization method. For datasets with more than 2 views, we
have also explicitly mentioned the number of views in parentheses.

We report experimental results on two synthetic and three real-world datasets. We give a brief
description of each dataset here.

• Synthetic data 1:Our first synthetic dataset consists of two views and is generated in a manner
akin to [12] which first chooses the clusterci each sample belongs to, and then generates each
of the viewsx

(1)
i andx

(2)
i from a two-component Gaussian mixture model. These views are

combined to form the sample(x(1)
i , x

(2)
i , ci). We sample1000 points from each view. The cluster

means in view 1 areµ(1)
1 = (1 1) , µ

(1)
2 = (2 2), and in view 2 areµ(2)

1 = (2 2) , µ
(2)
2 = (1 1).

The covariances for the two views are given below.

Σ
(1)
1 =

(

1 0.5
0.5 1.5

)

,Σ
(2)
1 =

(

0.3 0
0 0.6

)

,Σ
(1)
2 =

(

0.3 0
0 0.6

)

,Σ
(2)
2 =

(

1 0.5
0.5 1.5

)

• Synthetic data 2:Our second synthetic dataset consists of three views. Moreover, the features
are correlated. Each view still has two clusters. Each view is generated by a two component
Gaussian mixture model. The cluster means in view 1 areµ

(1)
1 = (1 1) , µ

(1)
2 = (3 4); in view 2

areµ
(2)
1 = (1 2) , µ

(2)
2 = (2 2); and in view 3 areµ(3)

1 = (1 1) , µ
(3)
2 = (3 3). The covariances

for the three views are given below. The notationΣ
(v)
c denotes the parameter forc’th cluster in

v’th view.

Σ
(1)
1 =

(

1 0.5
0.5 1.5

)

, Σ
(2)
1 =

(

1 −0.2
−0.2 1

)

, Σ
(3)
1 =

(

1.2 0.2
0.2 1

)

Σ
(1)
2 =

(

0.3 0.2
0.2 0.6

)

, Σ
(2)
2 =

(

0.6 0.1
0.1 0.5

)

, Σ
(3)
2 =

(

1 0.4
0.4 0.7

)
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• Reuters Multilingual data: The test collection contains feature characteristics of documents
originally written in five different languages (English, French, German, Spanish and Italian), and
their translations, over a common set of 6 categories [13]. This corpus is built by sampling parts
of the Reuters RCV1 and RCV2 collections [14, 15]. We use documents originally in English
as the first view and their French translations as the second view. We randomly sample1200
documents from this collection in a balanced manner, with each of the6 clusters having200
documents. The documents are in bag-of-words representation which implies that the features are
extremely sparse and high-dimensional. The standard similarity measures (like Gaussian kernel)
in very high dimensions are often unreliable. Since spectral clustering essentially works with
similarities of the data, we first project the data using Latent Semantic Analysis (LSA) [16] to a
100-dimensional space and compute similarities in this lower dimensional space. This is akin to
a computing topic based similarity of documents [17].
• UCI Handwritten digits data: Our second real-world dataset is taken from the handwritten
digits (0-9) data from the UCI repository. The dataset consists of 2000 examples, with view-1
being the 76 Fourier coefficients, and view-2 being the 216 profile correlations of each example
image.
• Caltech-101 data: Our third real-world dataset is a subset of the Caltech-101 data from the
Multiple Kernel Learning repository from which we chose 450examples having 30 underlying
clusters. We experiment with 4 kernels from this dataset. Inparticular, we chose the “pixel
features”, the “Pyramid Histogram Of Gradients”, bio-inspired “Sparse Localized Features”, and
SIFT descriptors as our four views. We report results on our co-regularized spectral clustering for
two, three and four views cases.

We use normalized mutual information (NMI) as the clustering quality evaluation measure, which
gives the mutual information between obtained clustering and the true clustering normalized by the
cluster entropies. NMI ranges between0 and1 with higher value indicating closer match to the
true clustering. We use Gaussian kernel for computing the graph similarities in all the experiments,
unless mentioned otherwise. The standard deviation of the kernel is taken equal to the median of
the pair-wise Euclidean distances between the data points.In our experiments, the co-regularization
parameterλ is varied from0.01 to 0.05 and the best result is reported (we keepλ the same for all
views; one can however also choose differentλ’s based on the importance of individual views). We
experiment withλ values more exhaustively later in this Section where we showthat our approach
outperforms other baselines for a wide range ofλ. In the results table, the numbers in the parentheses
are the standard deviations of the performance measures obtained with20 different runs ofk-means
with random initializations.

3.1 Results
The results for all datasets are shown in Table 1. For two-view synthetic data (Synthetic Data 1),
both the co-regularized spectral clustering approaches outperform all the baselines by a significant
margin, with the pairwise approach doing marginally betterthan the centroid-based approach. The
closest performing approaches are kernel addition and CCA.For synthetic data, order-2 polynomial
kernel based kernel-CCA gives best performance among all CCA variants, while Gaussian kernel
based kernel-CCA performs poorly. We do not report results for Gaussian kernel CCA here. All the
multi-view baselines outperform the single view case for the synthetic data.

For three-view synthetic data (Synthetic Data 2), we can seethat simple feature concatenation does
not help much. In fact, it reduces the performance when the third view is added, so we report the
performance with only two views for feature concatenation.Kernel addition with three views gives a
good improvement over single view case. As compared to otherbaselines (with two views), both our
co-regularized spectral clustering approaches with two views perform better. For both approaches,
addition of third view also results in improving the performance beyond the two view case.

For the document clustering results on Reuters multilingual data, English and French languages are
used as the two views. On this dataset too, both our approaches outperform all the baselines by a
significant margin. The next best performance is attained byminimum-disagreement spectral clus-
tering [11] approach. It should be noted that CCA and element-wise kernel product performances
are worse than that of single view.

For UCI Handwritten digits dataset, quite a few approaches including kernel addition, element-wise
kernel multiplication, and minimum-disagreement are close to both of our co-regularized spectral
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Method Synth data 1 Synth data 2 Reuters Handwritten Caltech

Best Single View 0.267(0.0) 0.898(0.0) 0.287(0.019) 0.641(0.008) 0.510(0.008)

Feature Concat 0.294(0.0) 0.923(0.0) 0.298(0.020) 0.619(0.015) –
Kernel Addition 0.339(0.0) 0.973(0.0) 0.323(0.021) 0.744(0.030) 0.383(0.008)

Kernel Product 0.277(0.0) 0.959(0.0) 0.123(0.010) 0.754(0.026) 0.429(0.007)

CCA 0.330(0.0) 0.932(0.0) 0.147(0.003) 0.682(0.019) 0.466(0.007)

Min-Disagreement 0.313(0.0) 0.936(0.0) 0.342(0.024) 0.745(0.024) 0.389(0.008)

Co-regularized (P) (2) 0.378(0.0) 0.981(0.0) 0.375(0.002) 0.759(0.031) 0.527(0.007)

Co-regularized (P) (3) – 0.989(0.0) – – 0.533(0.008)

Co-regularized (P) (4) – – – – 0.564(0.007)

Co-regularized (C) (2) 0.367(0.0) 0.955(0.0) 0.360(0.025) 0.768(0.025) 0.522(0.004)

Co-regularized (C) (3) – 0.989(0.0) – – 0.512(0.007)

Co-regularized (C) (4) – – – – 0.561(0.005)

Table 1: NMI results on various datasets for different baselines and the proposed approaches. Numbers in
parentheses are the std. deviations. The numbers (2), (3) and (4) indicate the number of views used in our
co-regularized spectral clustering approach. Other multi-view baselines were run with maximum number of
views available (or maximum number of views they can handle). Letters (P) and (C) indicate pairwise and
centroid based regularizations respectively.

clustering approaches. It can be also be noted that feature concatenation actually performs worse
than single view on this dataset.

For Caltech-101 data, we cannot do feature concatenation since only kernels are available. Surpris-
ingly, on this dataset, all the baselines perform worse thanthe single view case. On the other hand,
both of our co-regularized spectral clustering approacheswith two views outperform the single view
case. As we added more views that were available for the Caltech-101 datasets, we found that the
performance of the pairwise approach consistently went up as we added the third and the fourth
view. On the other hand, the performance of the centroid-based approach slightly got worse upon
adding the third view (possibly due to the view being noisy which affected the learnedU∗); however
addition of the fourth view brought the performance almost close to that of the pairwise case.
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Figure 1:NMI scores of Co-regularized Spectral Clustering as a function ofλ for (a) Reuters multilingual
data and (b)Caltech-101 data

We also experiment with various values of co-regularization parameterλ and observe its effect on
the clustering performance. Our reported results are for the pairwise co-regularization approach.
Similar trends were observed for the centroid-based co-regularization approach and therefore we do
not report them here. Fig. 1(a) shows the plot for Reuters multilingual data. The NMI score shoots
up right afterλ starts increasing from0 and reaches a peak atλ = 0.01. After reaching a second
peak at about0.025, it starts decreasing and hovers around the second best baseline (Minimizing-
disagreement in this case) for a while. The NMI becomes worsethan the second best baseline after
λ = 0.075. The plot for Caltech-101 data is shown in Fig. 1(b). The normalized mutual information
(NMI) starts increasing as the value of lambda is increased away from 0, and reaches a peak at
λ = 0.01. It starts to decrease after that with local ups and downs. For the range ofλ shown in the
plot, the NMI for co-regularized spectral clustering is greater than the closest baseline for most of

7



theλ values. These results indicate that although the performance of our algorithms depends on the
weighing parameterλ, it is reasonably stable across a wide range ofλ.

4 Related Work
A number of clustering algorithms have been proposed in the past to learn with multiple views
of the data. Some of them first extract a set of shared featuresfrom the multiple views and then
apply any off-the-shelf clustering algorithm such ask-means on these features. The Canonical
Correlation Analysis (CCA) [2, 10] based approach is an example of this. Alternatively, some other
approaches exploit the multiple views of the data as part of the clustering algorithm itself. For
example, [19] proposed an Co-EM based framework for multi-view clustering in mixture models.
Co-EM approach computes expected values of hidden variables in one view and uses these in the
M-step for other view, and vice versa. This process is repeated until a suitable stopping criteria is
met. The algorithm often does not converge.

Multi-view clustering algorithms have also been proposed in the framework of spectral cluster-
ing [11, 20, 21]. In [20], the authors obtain a graph cut whichis good on average over the multiple
graphs but may not be the best for a single graph. They give a random walk based formulation for the
problem. [11] approaches the problem of two-view clustering by constructing a bipartite graph from
nodes of both views. Edges of the bipartite graph connect nodes from one view to those in the other
view. Subsequently, they solve standard spectral clustering problem on this bipartite graph. In [21],
a co-training based framework is proposed where the similarity matrix of one view is constrained by
the eigenvectors of the Laplacian in the other view. In [22],the information from multiple graphs
are fused using Linked Matrix Factorization. Consensus clustering approaches can also be applied
to the problem of multi-view clustering [7]. These approaches do not generally work with original
features. Instead, they take different clusterings of a dataset coming from different sources as input
and reconcile them to find a final clustering.

5 Discussion
We proposed a multi-view clustering approach in the framework of spectral clustering. The approach
uses the philosophy of co-regularization to make the clusterings in different views agree with each
other. Co-regularization idea has been used in the past for semi-supervised learning problems. To the
best of our knowledge, this is the first work to apply the idea to the problem of unsupervised learning,
in particular to spectral clustering. The co-regularized spectral clustering has a joint optimization
function for spectral embeddings of all the views. An alternating maximization framework reduces
the problem to the standard spectral clustering objective which is efficiently solvable using state-of-
the-art eigensolvers.

It is possible to extend the proposed framework to the case where some of the views have missing
data. For missing data points, the corresponding entries inthe similarity matrices would be unavail-
able. We can estimate these missing similarities by the corresponding similarities in other views.
One possible approach to estimate the missing entry could beto simply average the similarities
from views in which the data point is available. Proper normalization of similarities (possibly by
Frobenius norm of the whole matrix) might be needed before averaging to make them comparable.
Other methods for missing kernel entries estimation can also be used. It is also possible to assign
weights to different views in the proposed objective function as done in [20], if we have some a
priori knowledge about the informativeness of the views.

Our co-regularization based framework can also be applied to other unsupervised problems such
as spectral methods for dimensionality reduction. For example, the Kernel PCA algorithm [23]
can be extended to work with multiple views by defining each view as having its own Kernel PCA
objective function and having a regularizer which enforcesthe embeddings to looksimilar across
all views (e.g., by enforcing the similarity matrices defined on embeddings of each view to be close
to each other). Theoretical analysis of the proposed approach can also be pursued as a separate line
of work. There has been very little prior work analyzing spectral clustering methods. For instance,
there has been some work on consistency analysis of single view spectral clustering [24], which
provides results about the rate of convergence as the samplesize increases, using tools from theory
of linear operators and empirical processes. Similar convergence properties could be studied for
multi-view spectral clustering. We can expect the convergence to be faster for multi-view case. Co-
regularization reduces the size of hypothesis space and hence less number of examples should be
needed to converge to a solution.
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