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Learning and Similarity

Training set (X, %.).,(X,. ¥,), (X4, Vi) € R" XY

Generalization: Giving an unknown sample x to
predict a suitable label y

(X,y) should be similar to one of the classes

How to calculate the similarity?



Similarity measurement
L

Similarity measurement:

length of xi [ =y{xx) [+ i)

+ distance of x and x’:

HX—X'H :\/((x—x')-(x—x')) :\/(x-x)—Z(x-x')Jr(x'-x')
(x-x') _ (x-x')
x| \/(X.X).(X'.X')

+ cosine similarity: cos 5= ”

Dot product determines the similarity!

(x, x') = iZ;:xixi'



Similarity Vs. Kernel

Dot product is not sufficient
Input space is not a dot product space

More general similarity measurement by applying
a map.

b X —"H
H is called feature space or Hilbert space.
Define a similarity measure from the dot product
in H k(x, :1.") — <‘~13(JTJ‘ iﬁ*(.iﬁﬁ)



Kernel trick

Using a linear classifier algorithm to solve a non-
linear problem by mapping the original non-linear
observations into a higher-dimensional space
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Kernel trick

Nonlinear mapping:

O —"H
X +— D(x)

((I’(Xl), yl)a R ((D(Kn)* yn)

The dot product can be computed in H, without
explicitly using or even knowing the mappingc ¢ .



Kernel trick

Examples of common kernels:

Polynomial k(z, ') = {(:1?,;1:") %—15.‘.-)"‘F

Gaussian k(z,2') = exp(—|z — 2'||?/(2 %))

Sigmoidal tanh(k(x y) + 6)
Any algorithm that only depends on the dot
product can benefit from the kernel trick.

Think of kernel as a nonlinear similarity
measurement.



Structural Risk Minimization (SRM)
L

I (ln 2}_?1 + 1) — In(6/4)
L

R[f] < Hfﬁtj]‘[f] +

T

complexity oc @ (Dj

Training error .
g Complexity term N

Expected error

o1 Training error reflects the accuracy of training set.

£
Rempl1= 3+ 3 (7G60), ).

t=1

1 A “simple” function that explains most of the data is preferable to a
complex one (Occam’s razor) .
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Structural Risk Minimization (SRM)

7 We cannot obtain the

: Expected Risk j isk i
b\ Exe expected risk itself, we

will minimized the

bound.

11 keep the empirical risk

zero, while minimizing

Confidence ﬂ - H-" Empirical Risk

'''''''''' laree the complexity term.

small Complexity of Function Set

Find the best tradeoff between
empirical error and complexity
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Structural Risk Minimization
]
h<A?R2+1 and |wl2 <A ———= N f(wz)
where R is the radius of the smallest ball around the
training data, R is fixed for a given data set.

A Y=1 WXL () +b=0 Margin is the minimal
g distance of a sample to

wx)+b=-1" tha decision surface

Y=-1

v
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Structural Risk Minimization

Minimize the training error ——  y;-[(w.x;) +0] > 1
1
Jwl

Minimize the complexity term —— minimize
—— maximize the margin

The original problem:
- 1
min = |wi
w,b 2

subject to ¥ ((W-X;)+b)=1



Lagrange function

1 Introduce a Lagrange multiplier @i =V

7 Lagrange: "

1=1

1 At the deviation, we have
13 0

%L(w b,a) = 0, ﬁ}l(w b,a) =
e Y aw—0 Substitute both
- —— into L to get the
S dual problem

L(w,b, ) —HWH - Z”‘f (i - [(w,x;) +

b — 1)



The Support Vector expansion
—

1 Karush-Kuhn-Tucker conditions:

n

A oL
—:Wj_;yiaixijzo %:_;yiaizo

i [((w,x;)) +0] > 1 == 0, =0 == X; Irrelevant

@ vi - [(w,xi) +0] = 1(on the margin) — x; Support Vector

|‘__l,__;_t = !-_-!'l_i_l; ]



Dual problem

m T

o o 1
DUQI: maximize ”[n) = Z:‘J:i —5 Z ”'iﬂ:_jff’f'y_j<x£-X_j}
1=1 1, 7=1
. m
SUbJeCt o a; >0, i=1,...,m, and Zf};gy; =0
=1

By solving the dual optimization problem, one
obtains the coefficients &; and W can be solved by

the value of it.

The solution is determined by the examples on the

margin f(x) = sgn ((x,w) +b)

T n
= Sgn (25_1 o,y (X, X;) + b)



Kernel expressions

o Original problem:
i 5 [[wl[”

subject to w((w-P(x;))+b) > 1, i=1,...,n.

-1 Dual problem:

TL T
max Y =% > oy k(X X))
i=1 t, j=1
subjectto a; =0,2=1, ..., n,
T
Zaﬂﬁ =0.
i=1



Soft Margin SVMs

C-SVM:

« o e » | 9
for ¢ >0 minimize  7(w. &) =5lw[|"+C) ¢

subject to y;- ((w.x;) +b) >1-¢&, & >0 (margin 2/||w|)
& is slack variable, which is used to relax the hard
margin constraint.

¢ determines the tradeoff between the empirical
risk and the complexity term.



Soft Margin SVMs

T Th
Dual problem: max S = 1S oy, k(s x5)
i=1 iy j=1
subjectto 0< o <C,t1=1,...,n,

T
thi’!-fi = 0.

KKT conditions: i=1
a; =0 = i f(x;)=1 and & =0
0<a <C = yifx)=1 and §=0
a; =C = yf(x)<1 and & =0.

Only when X, Is on the margin or inside the
margin area, the corresponding « ; IS honzero.



Multiple Kernel Learning
—

7 Using multiple kernels can improve performance

M M

Klx,z') = Z dn Ko (a,2') . with d,, =0, Z dy = 1

rn=1 =1

0 K. can simply be classical kernels with different
parameters.

., i
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Algorithm for Simple MKL

1 ° 1 1 i 2 p
o Primal problem: min Qg%llfmllﬁ,ﬁczija
5.1, yfz_fm(m;]-{-y;b:_}l—& Wi
£>0 Vi

z drn — 1 4 d‘i“]‘l E [} \"I""?H. ’

M

0 Optimization Problem: minJ(d) such that " dyy =1, dyy >0

m=1
(min =S L fald, 4O 6 Vi
{fhbe 2 - tn " :
}{d} =3 s.t. Ui Z fm(:l-‘,'] + yjb =1=&
X &=0 Vi

2



Algorithm for Simple MKL

Algorithm 1 SimpleMKL algorithm

set d,, = % form=1,....M
while stopping criterion not met do

compute J(d) by using an SVM solver with K =5 d,, K,
complte ‘.,f' i - form =1,..., M and descent direction D (14)

set p = argmax d,,, Jt=0,d =d, D' =D

Check whether object value

while JT < J{d) do {descent direction updatel

/ decreases or not

d=dl. D= D'

¥ = argmin _dr.ru'fﬂ-.rrn Tmax = _dif)'zﬂff X

»)

{m|Dy, <0}
dl = d + Ymax D, D.It = Du. - D, DI‘ -

The maximum admissible step size

compute JT by using an SVM solver with K = Yo d,'rnKm

end while

line search along D for v € [0, ymax| {calls an SVM solver for each + trial value}

ﬂ: — d + "'Ir'U
end while
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