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Motivations
Dynamic Mixture Models
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Mixture Models: From Static to Dynamic

» Evolutionary clustering
» add/remove clusters
» movement of clusters
» Document modeling
» add/remove topics
» evolution of topics
» Other applications
» image modeling
» location base services
» financial analysis



Dynamic Mixture Models

Model the behavior of latent components overtime
» Creation of new components.
» Removal of existing components.
» Variation of component parameters.
Components can be
» Clusters — Dynamic Gaussian Mixture Model
» Topics — Dynamic Topic Model



Motivations

Dependent Dirichlet Process
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Dirichlet Process

Dirichlet process (DP) = infinite limit of Dirichlet distribution.
» Finite mixture models.
» Prior: Dir(&@): k-dimensional Dirichlet distribution
» Pre-specified number of components k.
» Dirichlet process mixture models (DPMM).

» Prior: DP(a, H): "infinite dimensional Dirichlet distribution”
» Learn hidden k automatically.



Extending DP to Dependent DPs

A Single DP A Markov chaln of t DPs
Dy

Key problem
How to design the Markov chain to support 3 key dependencies
between D;_y — Ds:

Creation Add a new component

Removal Remove an existing component
Transition Varying component parameters




Model Construction
Key idea
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Several ways to Dirichlet Process

Equivalent constructions for DP

Random measure Basic definition
Posterior Chinese restaurant process
Atomic construction Stick breaking process

Construct DP(x) by T'P and PP

» Generate compound poisson process PP(u x +)

» Gamma process 'P(u) is transformed from compound
poisson process

» Dirichlet process DP(u) is normalized Gamma process
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Poisson, Gamma and Dirichlet Process

Given a measurable space (2, X, )
» Compound Poisson Process
M* ~ PP(ux ), ~(dw)=w""e "dw

I is a point process (collection of infinite random points) on
product space p x y

M= 6.
i=0

» Gamma Process: Transformed from compound poisson
process

G2 > wydy ~TP(n)

(O.we)eN
» Dirichlet Process: Normalized gamma process

D £ G/G(p) ~ DP(n)
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Key Idea for Transforming DPs

DP ---------- > New DP

‘ Operations? |
PP ——— New PP

Complete randomness

A random measure of which the measure values of disjoint
subsets are independent.

Complete Randomness Preserving Operations

Applying any operations that preserve complete randomness to
Poisson processes results in a new Poisson process.

» Superposition two PP
» Subsampling a PP
» Mapping a PP point by point
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Model Construction

Three operations
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Subsampling
Subsampling via Independent Bernoulli Trail

Vi = (0.ps), 2, ~Berouli(q), D=, psdy ~ DP(n)

1
SeD)2 — 3" pys
7 Zzn:1 Po an_; 0%

Theorem (Subsampling)

Sq(D) ~ DP(qu)
Proof sketch:
» DP — PP: D — N ~ PP(uy).
» Subsampling PP: Sy(M) = {neN:z, =1} ~ PP(quy).
» PP — DP: S4(MN) — S4(D) ~ DP(qp)
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Transition
Independent movement of each point

T(-,-): probabilistic transition kernel D =3~ pydy ~ DP(u)

T(D) 2> pydr(e)

Theorem (Transition)

T(D) ~ DP(Tp)
Proof sketch:
» DP — PP: D — N ~ PP(u x 7).
» Mapping PP:
T(M) = {(T(0),wp) : (0,wp) € M} ~ PP(Tp x ).
» PP - DP: T(N) — T(D) ~DP(Tp)
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Superposition
Sum of independent DPs

Dy ~ DP(uk), k =1,..., mbe independent,
(c1,...,¢m) ~ Dir(u1(Q), ..., um(Q))

Theorem (Superposition)

> " ckDy ~ DP(u1 + ... + pim)
k

Proof sketch:
» DP — PP: Dy — My ~ PP(uk x 7).
» Mapping PP: 3", gklMk ~ PP(3 Gkiik X 7).
> PP — DP: ' 3" gDk = 3 ok Dk ~ DP(32 k)
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Model Construction

Discussions
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Are All Poisson Things Necessary?
Basic definition of DP

D ~ DP(u) is a DP if for any partition A, ..., A, of space Q

(D(A1), .., D(An)) ~ Dir(u(A1), - -, 11(An))

Alternate proof of superposition theorem

Let D =, ckDx, consider any partition A, ..., A, of space Q,

(D(A1), ..., D(An)) = (Z Ck Dk (A1), ZCka (An) )
~ D'V(Z 1k (A1), Zﬂk (An))

The second step is from the property of Dirichlet distribution,
and it concludes that D ~ DP(>_, pu)-
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Proof by basic definition

» By defining DP on an extended space over functions, we
can directly model all three operations: subsampling,
transition and superposition without appealing to Poisson
process.

» Such construction also allows DDP to be constructed over
any measurable space. This paper is exactly a special
case if the space is fixed to be a discrete Markov chain.
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Inference and Experiments
Inference
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Inference Scheme

» Gibbs sampling. Sample one latent variable from posterior
at each step. Consider time 1,...,t sequentially.

» Update labels. Samples survived components (with
probability @) and component assignments

» Update parameters. Samples component parameter from
()

» lterates between step 2 and 3. Then move on to next time
t + 1, and never estimate earlier distributions.

Sequential sampling

This paper doesn’t derive a batch sampling algorithm. Earlier
samples would likely be less accurate.
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Posterior computation

For simplicity of notation, and without loss of generality, assume
the expectation of new components equals with removed
components.

» Given a set of samples ¢ ~ D;: ¢; appears c;j times

» (By DP posterior) Di|® ~ DP(u+ >~ Ckdg, )

» (This paper) Dy 1|® ~ DP(u + >4 qCkd7(4,))

Is that true?
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Argument against it

Let Dy = 3" Pkda,» Dri1 = ﬁ > 21 PkO6,. ¢ ~ Dyis one
sample from D;.
Fact: D;y1|¢ is not DP.

Mixture of DP is not DP

Consider z; ~ Bernoulli(q). There are two different cases for
Dry1]¢:

» z, = 1. Thus ¢ is not removed. Thus ¢ is equivalently
observed in Diy1. Diy1|¢, 2y =1 ~ DP (1 + d4)

» Z, = 0. In this case ¢ is removed. D;1|¢, zy = 0 ~ DP(p)
Hence Dy, 1|¢ is a mixture of DPs:

Dit1]¢ = gDP(p + 64) + (1 — q)DP (1)

It is proved NOT a DP. [1]
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A deeper argument

v

The observation is censored.
Only knows ¢ is not removed at now.
The complete lifespan of a component ¢ is not observed.

Posterior of DP under censored observations is a mixture
of DP.

v

v

v
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Inference and Experiments

Experiments
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Synset dataset

» Simulated over 80 phases.
» Gaussian mixture models with 2 components initially.

» The speed of introducing new components (one new
component per 20 phases in average) and removing
existing components is equal.

» Mean of component has a Brownian motion.
» 1000 samples per components at each phase.

Baselines

Finite mixture models with K = 3,5,10. DPM is not compared
with.
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Real World Applications
Evolutionary Topic Model

» Model topic evolution of research paper

» Data: all NIPS papers over years

» Method: feature extraction to generate 12 dimensions
feature per document. Then use Gaussian mixture model.

People Flow

» The motion of people in New York Grand Central station.
» Data: 90,000 frames in one hour, divided into 60 phases.

» Try to group people tracks into flows depending on their
motion patterns
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» Propose a principled methodology to construct dependent
Dirichlet processes based on the theoretical connections
between Poisson, Gamma and Dirichlet processes.

» Develop a framework of evolving mixture model, which
allows creation and removal of mixture components, as
well as variation of parameters.

» Derive a Gibbs sampling algorithm for inferring mixture
model parameters from observations.

» Test the approach on both synthetic data and real
applications.
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My Summary

» Poisson process is not essential for constructing DDP.
» Sequential sampling may damage the performance.
» Posterior of this model should be MDP rather than DP.
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For Further Reading |

[§ C. E. Antoniak
Mixtures of Dirichlet processes with applications to
Bayesian nonparametric problems
Annals of Statistics, 2(6):1152-1174, 1974.
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Dirichlet Process

Stick-breaking representation

A sample from DP is almost surely discrete.

Stick-breaking representation

Let D ~ DP(«, H) is a Dirichlet process. Then, almost surely

D=">"pidy,
i=1

P ~ GEM(e)
Vi, 6;~H, iid

The GEM distribution is called "stick-breaking" distribution.
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My Experiments

» Simulated over 30 phases.
» Gaussian mixture models with 2 components initially.

» The speed of introducing new components (0.4 new
component per phase in average) and removing existing
components is equal.

» Mean of component has a Brownian motion.
» 200 samples per components at each phase.
» Bias in posterior is fixed

Baselines

DPM, Sequential sampling (Markov-DPM), Batch algorithm
(F-DPM)
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variation of information

N
o

number of clusters
=
ul

=

My Experiment Results

— F-DPM

Markov-DPM
DPM

=
o

T
F-DPM
Markov-DPM
DPM
Ground Truth
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